A validated RP-HPLC method for simultaneous estimation of moxifloxacin hydrochloride and ketorolac tromethamine in ophthalmic dosage form

Shahana Begum**, K. Divya Bharathi¹, Laxmikanth Vaddepally² and G. Tulja Rani*¹

¹Department of Pharmaceutical Analysis and Quality Assurance, Malla Reddy Institute of Pharmaceutical Sciences, Maisammaguda, Secunderabad, India
²National Institutes of Pharmaceutical Education and Research, Kukatpally Industrial Estate, Balanagar, Hyderabad, Telangana

ABSTRACT

A simple, specific and fast reverse phase liquid chromatographic method is established for determination of moxifloxacin hydrochloride and ketorolac tromethamine in bulk drugs and pharmaceutical formulations. Chromatographic separations for separation of moxifloxacin hydrochloride and ketorolac tromethamine were achieved within 8 minutes by use of Inertsil ODS-3V C8 column (250 X 4.6 mm, 5 µm) as stationary phase with mobile phase containing 10 mM potassium dihydrogen phosphate buffer with triethylamine (pH 3.5±0.05 adjusted with dilute phosphoric acid) acetonitrile and methanol (40:30:30 v/v/v) at a flow rate of 1.0 ml/min-. Detection was performed at 306 nm using Prominance UV-Visible detector. The method was validated in accordance with ICH guidelines. Response was a linear function of concentrations over the range of 60-140 µg/ml for moxifloxacin hydrochloride and 48-112 µg/ml for ketorolac tromethamine. Limit of quantification (LOQ) was found to be 5.89, 5.29 and limit of detection (LOD) 1.94, 1.75 µg/ml for moxifloxacin hydrochloride and ketorolac tromethamine respectively. Accuracy and precision values of both within run and between-run obtained from six different sets of three quality control (QC) samples analyzed in separate occasions for both the analytes ranged from 98.98% to 100.04% respectively. The developed and validated method was successfully applied to quantitative determination of moxifloxacin hydrochloride and ketorolac tromethamine in pharmaceutical formulation.

Keywords: Reverse phase liquid chromatography, Moxifloxacin hydrochloride, Ketorolac tromethamine

INTRODUCTION

Moxifloxacin hydrochloride (MOX), 1-Cyclopropyl-6-fluoro-1, 4-dihydro-8- methoxy-7-{(4aS,7aS)-octahydro-6H-pyrolo [3, 4- b]pyridin-6-yl]-4-oxo-3 quinolinecarboxylic acid hydrochloride (Figure 1), is a synthetic fourthgeneration broad-spectrum fluoroquinolone antibiotic. It acts by inhibiting DNA gyrase, a type II topoisomerase and topoisomerase IV, which are involved in DNA replication and metabolism¹.
Ketorolac tromethamine (KET) is (±)-5-benzoyl-2,3- dihydro-1H-pyrrolizine-1-carboxylic acid, a compound with 2-amino-2-(hydroxymethyl)-1,3- propanediol, a pyrrolizine carboxylic acid derivative (Figure 2), a nonsteroidal anti-inflammatory drug, is indicated for short-term management of moderate to severe pain and shows a high incidence of side effects like gastric bleeding1. The primary mechanism of action responsible for ketorolac's anti-inflammatory, antipyretic and analgesic effects is the inhibition of prostaglandin synthesis by competitive blocking of the enzyme cyclooxygenase (COX). The combination of ketorolac tromethamine with moxifloxacin hydrochloride is extensively used for the treatment of postoperative inflammation and infection following cataract surgery1.

Various methods like UV spectrophotometry [1,2] estimation in biological fluids by HPLC [3,4] HPTLC [5] were reported for determination of MOX with other drugs in literature. Similarly ketorolac tromethamine was determined using HPLC [6,7,8] methods. However, a few analytical methods were also reported for the simultaneous determination of moxifloxacin hydrochloride and ketorolac tromethamine in a mixture by UV spectrophotometry [9], liquid chromatography mass spectrometry [10], stability indicating RP-HPLC[11], RP-HPLC [12,13] and HPTLC method [13]. An extensive review of the literature did not revealed any simple economical HPLC method for simultaneous determination of both the drugs. Therefore, attempts were made to develop and validate simple, precise, and sensitive, isocratic reverse phase high performance liquid chromatographic method for simultaneous determination of both drugs in pharmaceutical formulations.

MATERIALS AND METHODS

Equipments
The HPLC system consisted of Shimadzu LC-20A system equipped with model LC-20AT pump, SPD-20A prominence UV-visible detector (set at 306 nm) and a Rheodyne injection valve with a 20 µL loop. Peak areas were integrated using spinchrome CFR software program. The experimental conditions were optimized on an Inersil ODS-3V C8 column (250 X 4.6 mm, 5 µm) at room temperature.

Chemicals and reagents
MOX, KET were procured from Hetero drugs Ltd. Methanol and acetonitrile used were of HPLC grade from E-Merk and ortho- phosphoric acid pure potassium dihydrogen phosphate, triethylamine-analytical grade from Merck, HPLC-grade water generated from a Milli-Q water purification system, was used throughout the analysis. Mahaflox-KT eye drops obtained from local market.
Determination of Detection Wavelength
Accurately weighed and transferred about 100 mg each of moxifloxacin hydrochloride and ketorolac tromethamine standard into a 100 ml volumetric flask separately, then added to it about few ml of methanol and sonicated for 10 minutes to dissolve and diluted up to mark with diluent. This produced standard stock solution (1000µg/ml). Further 1ml of above solution was transferred into 10 ml volumetric flask and volume was made up with diluent. Finally 1 ml of above solution is diluted to 10 ml using diluent and mixed well. The concentration of the working standard solution thus produced is 10µg/ml.

The working standard solutions of moxifloxacin hydrochloride and ketorolac tromethamine (10µg/ml) were scanned over the range of 190-400 nm. Both the drugs showed good response at 306nm, therefore 306 nm was selected for further study. The UV absorption Spectrum of moxifloxacin hydrochloride and ketorolac tromethamine is shown in Figure.3.

Chromatographic conditions
Mobile phase consisted of methanol, acetonitrile and 10 mM potassium dihydrogen phosphate (pH 3.5±0.05) in the ratio of (30:30:40 v/v/v, respectively). Flow rate of the mobile phase was 1.0 ml/min and all chromatographic experiments were performed at room temperature (25°C ± 2°C).

Preparation of Buffer Solution: 2.72 gm of potassium dihydrogen phosphate was dissolved in 1000mL MilliQ water, and then add 1ml of triethylamine (TEA) and pH of this solution was adjusted to 3.5±0.05 with ortho phosphoric acid. The solution was mixed well and then filtered through 0.45µ filter paper.

Preparation of Mobile phase: Mobile phase was prepared by mixing buffer solution of pH 3.5±0.05, acetonitrile and methanol in the ratio 40:30:30, v/v/v. The mobile phase is then filtered through 0.45µ membrane and sonicated for 8 min.

Preparation of Working Standard Solution: Accurately weighed 100 mg of moxifloxacin hydrochloride and ketorolac tromethamine standard drug and transferred to 100 ml volumetric flasks and dissolved in 100 ml of mobile phase. From the above stock solution 1ml of MOX solution and 0.8ml of KET solution was transferred to 10 ml of volumetric flask and was made up to with diluent. The working standard solution produced contains 100µg/ml of MOX and 80µg/ml of KET.

Preparation of Sample Solution: The 5ml vial of ophthalmic solution (Mahaflox-KT eye drops, manufacturer-Mankind) containing 0.5%w/v of moxifloxacin HCL and 0.4%w/v of ketorolac tromethamine directly transferred into 25ml of volumetric flask. About 10 ml of mobile phase was added, sonicated to mix, diluted up to volume with mobile phase solvent and mixed (100µg/ml of MOX and 80µg/ml of KET), which was assayed and quantified.

Optimized method
Standard solutions ranging from 60-140 µg/ ml for moxifloxacin HCL (60, 80, 100, 120, and 140 µg /ml) and 48-112 µg/ ml for ketorolac tromethamine (48, 64, 80, 96, 112 µg/ml) were prepared. From Each solution 20 µl was injected in to the optimized chromatographic system and chromatogram was recorded (Figure 6). Areas obtained
from chromatograms were taken and a graph was plotted for both the drugs by taking areas on the y-axis and concentrations on the X-axis.

METHOD VALIDATION

The proposed method was validated in compliance with the ICH guidelines and successfully applied for determination of moxifloxacin hydrochloride and ketorolac tromethamine in their pharmaceutical formulations.

System Suitability Studies

The system suitability studies were done for parameters like theoretical plates, tailing factor, retention time, resolution were studied and presented in table 2.

Table: 2 Results of system suitability of the proposed method

<table>
<thead>
<tr>
<th>S.No.</th>
<th>PARAMETER</th>
<th>Moxifloxacin HCL</th>
<th>Ketorolac tromethamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tailing factor (Tf)</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>2.</td>
<td>Resolution (Rs)</td>
<td>4.7</td>
<td>--</td>
</tr>
<tr>
<td>3.</td>
<td>Retention time (Rt)</td>
<td>3.723</td>
<td>5.467</td>
</tr>
<tr>
<td>4.</td>
<td>Theoretical plates (N)</td>
<td>2798</td>
<td>3222</td>
</tr>
</tbody>
</table>

Specificity

The method was found to be selective as no significant interfering peak is observed at the retention times of MOX and KET which were 3.770, and 5.457 min. respectively. Total chromatographic run time was 8 min and shows the representative chromatograms of blank and spiked with analytes.

Linearity

Linear calibration plots of the proposed method were obtained over concentration ranges of 60-140 µg/ml for moxifloxacin HCL (60, 80, 100, 120, and 140 µg/ml) and 48-112 µg/ml for ketorolac tromethamine (48, 64, 80, 96, 112 µg/ml). Each solution was prepared in triplicate. Regression coefficients were found to be 0.998 for MOX and KET respectively (Figure. 7 and 8).
Accuracy
The standard addition method was used to demonstrate the accuracy of the proposed method. For this purpose, known quantities of moxifloxacin HCL and ketorolac tromethamine were supplemented to the previously analysed sample solution and then experimental and true values compared. Three levels of solutions were made corresponding to 80, 100 and 120% of nominal analytical concentration (100 µg mL⁻¹ MOX 80 µg mL⁻¹ for KET). Standard preparation & Sample preparations was injected into the HPLC and % RSD for moxifloxacin HCL and ketorolac tromethamine peaks in Standard preparation was calculated.

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Area</th>
<th>SD</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>6209.874</td>
<td>23.32</td>
<td>0.37</td>
</tr>
<tr>
<td>100%</td>
<td>7605.479</td>
<td>32.2</td>
<td>0.42</td>
</tr>
<tr>
<td>120%</td>
<td>8488.269</td>
<td>42.032</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Recovery
The Recovery of an analytical method should be established across its range. The study was performed by making three different standard concentrations 80%, 100% and 120% of known amounts of studied drugs. The Recovery was found for moxifloxacin HCL 80%- 99.63%, 100%- 100.26% and 120%- 99.25% and for ketorolac tromethamine 80%- 99.43%, 100%- 99.47% and 120%- 99.92%.

Precision
A. System precision
The system precision was carried out to ensure that the analytical system is working properly. Standard preparation was injected six times into the HPLC and RSD for moxifloxacin HCL and ketorolac tromethamine peaks in Standard preparation was calculated. The retention time and area of six determinations was measured and % RSD 0.60% for MOX, 0.72 for KET.
Robustness studies

Robustness is done by changing deliberately the optimised parameters like flow rate and detection wavelength, Rt and area under changed conditions are compared under the optimum conditions.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Variation</th>
<th>Retention time</th>
<th>Average area (n=3)</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection 306</td>
<td>Detection wavelength 304nm</td>
<td>3.792</td>
<td>5.631</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>Detection wavelength 308nm</td>
<td>3.779</td>
<td>5.628</td>
<td>0.021</td>
</tr>
<tr>
<td>Flow rate 1ml/min</td>
<td>Less flow 0.8ml/min</td>
<td>4.694</td>
<td>6.942</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>More Flow 1.2ml/min</td>
<td>3.212</td>
<td>4.735</td>
<td>0.085</td>
</tr>
</tbody>
</table>

Ruggedness

Ruggedness is the degree of reproducibility of the results obtained under a variety of conditions. It is checked that the results are reproducible under differences in conditions, analysts and instruments and hence the proposed method was found to be rugged.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Analyst 1 (Average Area)</th>
<th>Analyst 2 (Average area)</th>
<th>Analyst 1 (Average area)</th>
<th>Analyst 2 (Average area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6262.785</td>
<td>6221.290</td>
<td>4267.555</td>
<td>4294.025</td>
</tr>
<tr>
<td>2.</td>
<td>6263.781</td>
<td>6220.399</td>
<td>4267.552</td>
<td>4294.082</td>
</tr>
<tr>
<td>3.</td>
<td>6261.788</td>
<td>6222.292</td>
<td>4267.544</td>
<td>4294.029</td>
</tr>
<tr>
<td>4.</td>
<td>6262.668</td>
<td>6223.293</td>
<td>4267.551</td>
<td>4293.035</td>
</tr>
<tr>
<td>5.</td>
<td>6261.783</td>
<td>6228.290</td>
<td>4267.054</td>
<td>4295.025</td>
</tr>
<tr>
<td>6.</td>
<td>6263.781</td>
<td>6224.291</td>
<td>4267.002</td>
<td>4294.029</td>
</tr>
<tr>
<td>Average</td>
<td>6262.74</td>
<td>6223.309</td>
<td>4267.376</td>
<td>4294.037</td>
</tr>
<tr>
<td>SD</td>
<td>0.8157</td>
<td>2.561</td>
<td>0.2467</td>
<td>0.5748</td>
</tr>
<tr>
<td>%RSD</td>
<td>0.013</td>
<td>0.014</td>
<td>0.0057</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Limit of detection (LOD) and Limit of quantitation (LOQ)

Limit of detection (LOD) was established 1.94 and 1.75 µg/ml for MOX and KET respectively. Limit of quantification (LOQ) was established 5.89 and 5.29 µg/ml for MOX and KET respectively.

Assay

20µL of Standard solution and sample solution were injected separately into the chromatography system and the peak areas responses for the analyte peaks were measured and substituted in the formula to calculate % recovery

<table>
<thead>
<tr>
<th>Product</th>
<th>Ingredient</th>
<th>Label value (% w/v)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahaflox-KT</td>
<td>Moxifloxacin Hydrochloride</td>
<td>0.5</td>
<td>98.39</td>
</tr>
<tr>
<td>Ketorolac tromethamine</td>
<td>0.4</td>
<td>98.59</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

To develop a new RP-HPLC method, several mobile phase compositions were tried. A satisfactory separation with good peak symmetry was obtained with Inertsil ODS-3V C18 (4.6 x 150 mm, 5 µm) column using mobile phase containing potassium dihyrogen phosphate (pH 3.5±0.05): acetonitrile :methanol(40:30:30v/v/v) at a flow rate of 1ml/min. Quantification was achieved with UV detection at 306 nm based on peak area. The retention time for moxifloxacin hydrochloride and ketorolac tromethamine were found to be 3.723 min and 5.467 min, respectively. The optimized method was validated as per ICH guidelines. The System suitability parameters observed by using this optimized conditions were reported. A linearity range of 60-140µg/ml with correlation coefficient 0.998 was established for moxifloxacin hydrochloride and 48-112 µg/ml with correlation coefficient 0.998 was established for...
ketorolac tromethamine. The precision of the proposed method was carried in terms of the repeatability and the
%RSD values of moxifloxacin hydrochloride was found to be 0.57% and of ketorolac tromethamine was found to be
0.74% and reveal that the proposed method is precise. The LOD and LOQ values for moxifloxacin hydrochloride
were 1.94µg/ml, 5.89µg/ml respectively and for ketorolac tromethamine were found to be 1.75µg/ml, 5.29µg/ml.
The study of robustness in the present method shows no significant changes either in the peak area or Rt. The results
of analysis of commercial formulation indicated that there is no interference due to common formulation excipients
with the developed method. Therefore, the proposed method can be used for routine analysis of these two drugs in
their combined pharmaceutical dosage form.

CONCLUSION

A simple, sensitive, and accurate method using reverse phase HPLC was described for simultaneous determination
of moxifloxacin hydrochloride and ketorolac tromethamine in pharmaceutical formulations. The proposed method
was validated by testing its linearity, accuracy, precision, limits of detection, and quantitation, and specificity. The
developed and validated a RP-HPLC method that has significant advantages over the previously published method
as it provides simple mobile phase composition for chromatographic separation, shorter run time for analysis, simple
sample preparation as well as improved sensitivity. Therefore, this new method leads to a simple, feasible, cost
effective, rapid method with high degree of accuracy and specificity to quantify simultaneously MOX and KET in
pharmaceutical formulations with HPLC. It will be extremely helpful for successfully analyzing the MOX and KET
in ophthalmic dosage formulations.

Acknowledgement

I sincerely thank, Principal and Management of Malla Reddy institute of Pharmaceutical sciences, Maisammaguda
for allowing us to carry out the project work in the college. We also thank Hetero Drugs ltd., for gifting drugs
moxifloxacin and ketorolac.

REFERENCES

[3] Najma sultana, Mahwish Aktar, Sana shamim, Somia gul, Muhammad saeed arayne, Moona mehabooob khan,
online February 2012.
[14] Tapas majumder, sarbojit kundu , subrata Kumar ray and prasanta kumar bara, IJPSR, 2014 June, 5(7), 2902-
2907.
Geneva, Commission of the European Communities 1996.