A validated stability indicating RP-HPLC method for simultaneous estimation of paracetamol, aceclofenac and rabeprazole sodium in bulk and combined tablet dosage form

G. Saravanan*, Mohammad Yunoos, and B. Pooja

Department of Pharmaceutical Chemistry, Bapatla College of Pharmacy, Bapatla, Andhra Pradesh, India

ABSTRACT

To develop a simple, sensitive, specific, precise and accurate stability indicating RP-HPLC method and subsequent validation of the method for the simultaneous estimation of paracetamol, aceclofenac and rabeprazole sodium in bulk and combined tablet dosage form. The chromatographic separation was carried out using waters 2675 HPLC separation module equipped with Agilent CN column (250 X 4.6mm, 5µ particle size) and mobile phase consisting of ammonium acetate buffer (pH adjusted to 7.5 with ammonia solution) and acetonitrile in the ratio of 70:30 % v/v at a flow rate of 1.0 ml/min was used. UV detection was carried out at 213 nm. The retention time of paracetamol, aceclofenac and rabeprazole sodium was found to be 3.678, 5.556 and 9.572 min respectively. The developed method illustrated excellent linearity in the concentration range of 16-488 µg/ml for paracetamol, 5-150 µg/ml for aceclofenac and 0.5-16.8 µg/ml for rabeprazole sodium respectively. Drugs were subjected to stress conditions including acidic, alkaline, oxidation, photolysis and thermal degradation. No chromatographic interference from the tablet excipients was found. The % recoveries were found to be 100.45 % for paracetamol, 100.47 % for aceclofenac and 100.47 % for rabeprazole sodium respectively which shows accuracy of the method. The developed method was validated in accordance with ICH guidelines and was found to be accurate, precise, reproducible and specific and can be successfully applied for the quantitative estimation of paracetamol, aceclofenac and rabeprazole in bulk and pharmaceutical dosage form and in routine quality control analysis.

Keywords: Aceclofenac, Paracetamol, Rabeprazole, RP-HPLC, Method validation.

INTRODUCTION

Paracetamol, a centrally and peripherally acting non-opioid analgesic and antipyretic which acts by inhibiting the synthesis of prostaglandins, chemically it is N-(4-hydroxyphenyl) acetamide (Fig.1).

```
\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{structure_paracetamol.png}
\caption{Structure of Paracetamol}
\end{figure}
```

Acetaminophen, a phenyl acetic acid derivative with potent analgesic and anti-inflammatory properties, chemically it is 2-[2-[[2-(6 dichlorophenyl) amino] phenyl] acetyl] oxoacetate acid (Fig. 2). It is largely used in the symptomatic treatment of pain and of inflammatory or degenerative orthopedies like osteoarthritis, rheumatoid arthritis and ankylosing spondylities.
Rabeprazole sodium is chemically known as 2-((4-(3-methoxypropoxy)-3-methylpyridin-2-yl)methylsulfinyl)-1H-benzo[d]imidazole (Fig. 3). It is proton pump inhibitor that suppresses gastric H+, K+ ATPase at the secretory surface of the gastric parietal cell and used in the treatment of duodenal ulcers.

Literature review reveals that only Spectrophotometric [1] and HPTLC [2,3] methods have been reported for the simultaneous estimation of paracetamol, aceclofenac and rabeprazole sodium in pharmaceutical dosage forms but several HPLC [4-8] and Spectrophotometric methods [9] are reported in combination with other drugs for their estimation in biological fluids and pharmaceutical dosage forms. However, there was no stability indicating RP-HPLC method has been reported for the simultaneous estimation of paracetamol, aceclofenac and rabeprazole sodium in tablet dosage form. Hence, the present study was aimed to develop a simple stability indicating RP-HPLC method for the simultaneous analysis of paracetamol, aceclofenac and rabeprazole sodium in bulk and combined tablet dosage forms. The developed method was validated as per ICH and USP guidelines [10].

MATERIALS AND METHODS

Chemicals and Solvents:
Paracetamol, aceclofenac and rabeprazole sodium were obtained as gift samples from Aurobindo Pharma Limited, Hyderabad. HPLC grade methanol and acetonitrile were purchased from E.Merck. Chem.ltd. Mumbai) and HPLC grade water was used throughout the study. All the chemicals (Merck. Chem.ltd.Mumbai) used were of analytical grade. Fixed dose combination tablet formulation (SAFENAC-XP) containing 325 mg of paracetamol, 100 mg of aceclofenac and 10 mg of rabeprazole sodium was procured from local market.

Instrumentation and Chromatographic Conditions:
All the chromatographic measurements were made on HPLC (waters 2675) separation module equipped with Agilent CN column (250 X 4.6mmX 5µm) and UV detector (waters). Ultra Sonicator (Enertech SE60US), Weighing balance (Single pan balance, Ascoset ER200A) and pH meter (Unichem AD102U) were used throughout the study. Mobile phase consisting of ammonium acetate buffer (pH 7.5) and acetonitrile (70:30 % v/v) was used in isocratic mode and the mobile phase was filtered through nylon disc filter of 0.45 µm (Millipore) and sonicated for 5 min before use. The flow rate was 1.0 ml/min. UV detection was carried out at 213 nm and separation was achieved at ambient temperature.

Preparation of Buffer:
Ammonium acetate buffer pH 7.5 is prepared by adding 0.385 gm of ammonium acetate in 100 ml double distilled water and then adjusted to pH 7.5 with ammonia solution.

Preparation of standard solution:
Weighed accurately and transferred about 203.5 mg of paracetamol, 62.6 mg of aceclofenac and 6.8 mg of rabeprazole sodium of working standard into a 50 ml volumetric flask, dissolved and diluted with mobile phase and
filtered through 0.45 µ nylon syringe filter. Further 4.0 ml of the above stock solution was transferred into a 50 ml volumetric flask and then made up to the volume with mobile phase.

Preparation of sample solution:
20 tablets were weighed and powdered. A quantity of tablet powder equivalent to 325 mg of paracetamol, 100 mg of aceclofenac and 10 mg of rabeprazole sodium was accurately weighed and transferred into a 50 ml volumetric flask, about 30 ml of mobile phase was added and sonicated for 15 min. Then volume was made up to the mark with mobile phase and filtered through 0.45 µ nylon syringe filter. Further 2.5 ml of the above solution was transferred into a 50 ml volumetric flask and then made up to the volume with mobile phase.

Procedure for assay:
A steady base line was recorded with the optimized chromatographic conditions after equilibrating the column for 30 minutes using mobile phase and then standard and sample solutions of 10 µL were separately injected into the HPLC system and the chromatograms were recorded as shown in fig. 4 and fig. 5. The amount present in each tablet was quantified by comparing the peak area of standard drug with that of the sample.

Method Validation
The optimized chromatographic method was completely validated according to the procedures described in ICH Q2 (R1) guidelines.

Linearity:
A linear relationship was evaluated across the range of the analytical procedure. A series of standard dilutions were prepared from the working standard solution in the concentration range of 16-488 µg/ml of paracetamol, 5-150 µg/ml of aceclofenac and 0.5-16.8 µg/ml of rabeprazole sodium. Then 10 µl of each solution was injected into HPLC system. Linearity is evaluated by plotting the peak area as a function of analyte concentrations.

Precision:
System Precision:
Six standard solutions were injected into the chromatographic system and % RSD was calculated.

Method Precision:
Six assay samples of drug product at 100 % of the test concentration were prepared and injected into the chromatographic system and % RSD was calculated.

Ruggedness (Intermediate precision):
Six assay samples of drug product at 100 % of test concentration were prepared and injected into the chromatographic system on different days by using different column and equipment and % RSD was determined.

Accuracy:
Recovery studies were performed by standard addition method by spiking at three different levels 50 %, 100 % and 150 % of the known quantities of standard within the range of linearity to sample solution of drug product and these solutions were analyzed by developed method in triplicate.

Robustness:
Robustness was performed at different flow rates (± 0.2 ml/min), different wavelengths (± 5 nm), different mobile phase ratio (± 5 %), and different mobile phase pH (± 0.2) by using working standard solution of paracetamol, aceclofenac and rabeprazole sodium. The results obtained were unaffected by small variations in the system suitability parameters.

Limit of detection and quantitation:
Series of diluted standard solutions were prepared and analyzed by both methods. The limit of detection (LOD) and limit of quantitation (LOQ) were separately determined based on standard deviation of the y-intercept and the slope of the calibration curve.

Specificity and Forced degradation studies:
The study was intended to ensure the effective separation of paracetamol, aceclofenac and rabeprazole sodium and their degradation peaks of formulation ingredients at the retention time of respective drugs.

Acid degradation was carried out in 0.1N HCl and similarly alkaline degradation was conducted using 0.1N NaOH and refluxed for 30 min at 60 ºC. After cooling, the solutions were neutralized and diluted with mobile phase.
Solutions for oxidative stress studies were prepared using 3% H$_2$O$_2$ and subjected to reflux for 30 min at 60 °C, cooled and diluted accordingly with the mobile phase. For thermal stress testing, the drug solution was heated at 60 °C for 30 min, cooled and used. The drug solution for photo stability testing was exposed to UV light for 6h in a UV light chamber (365nm) and analyzed.

RESULTS AND DISCUSSION

Method Development and optimization

Preliminary tests were performed to select adequate optimum conditions. The parameters such as detection wavelength, ideal mobile phase and their proportions, flow rate and concentration of the standard solutions were studied. After several trials, it was found that mixture of ammonium acetate buffer (pH 7.5) and acetonitrile gave sharp, well resolved peaks with symmetry within the limits and significant reproducibility as compared to other mobile phase compositions.

The chromatographic separation was carried out using Agilent CN column (250 X 4.6mmX 5µ) and mobile phase comprising of ammonium acetate buffer (pH 7.5) and acetonitrile in the ratio of 70:30 % v/v at a flow rate of 1.0 ml/min. The detection was carried out at 213 nm. The retention time of paracetamol, aceclofenac and rabeprazole sodium were found to be 3.678, 5.556 and 9.572 min respectively.

Linearity:

The calibration curves obtained shows good linear relationship over the concentration range of 16-488 µg/ml, 5-150 µg/ml and 0.5-16.8 µg/ml of paracetamol, aceclofenac and rabeprazole sodium respectively (fig. 6, fig. 7 and fig. 8). Peak areas and concentrations were subjected to least square regression analysis to calculate regression equation. Correlation coefficient was found to be 0.9996, 0.9995 and 0.9992 for paracetamol, aceclofenac and rabeprazole sodium indicating a linear response over the range used. The data from the calibration curve is given in Table 1.
Figure 6: Calibration curve of paracetamol

Figure 7: Calibration curve of aceclofenac

Figure 8: Calibration curve of rabeprazole sodium

Accuracy:
The accuracy of the proposed method was evaluated by performing recovery studies. The %RSD and % recovery were within the acceptable limits in all 3 levels. The % recovery was found to be 100.45 % for paracetamol, 100.47 % for aceclofenac and 100.47 % for rabeprazole sodium. It is evident from the results of accuracy study are given in the Table 2, Table 3 and Table 4, that the proposed method enables very accurate for quantitative estimation of paracetamol, aceclofenac and rabeprazole sodium in tablet dosage form.
Table 1: Data of Linearity studies

<table>
<thead>
<tr>
<th>Level</th>
<th>Paracetamol Conc. (µg/ml)</th>
<th>Peak area</th>
<th>Aceclofenac Conc. (µg/ml)</th>
<th>Peak area</th>
<th>Rabeprazole sodium Conc. (µg/ml)</th>
<th>Peak area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>100709</td>
<td>5</td>
<td>152141</td>
<td>0.5</td>
<td>41390</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>154830</td>
<td>10</td>
<td>218044</td>
<td>1.0</td>
<td>81693</td>
</tr>
<tr>
<td>3</td>
<td>81</td>
<td>388419</td>
<td>25</td>
<td>587393</td>
<td>2.7</td>
<td>21796</td>
</tr>
<tr>
<td>4</td>
<td>162</td>
<td>743035</td>
<td>50</td>
<td>1139678</td>
<td>5.4</td>
<td>402344</td>
</tr>
<tr>
<td>5</td>
<td>244</td>
<td>1097666</td>
<td>75</td>
<td>1750213</td>
<td>8.1</td>
<td>604262</td>
</tr>
<tr>
<td>6</td>
<td>325</td>
<td>1402362</td>
<td>100</td>
<td>2217023</td>
<td>10.8</td>
<td>849736</td>
</tr>
<tr>
<td>7</td>
<td>407</td>
<td>1786792</td>
<td>125</td>
<td>2685212</td>
<td>13.6</td>
<td>1179716</td>
</tr>
<tr>
<td>8</td>
<td>488</td>
<td>2096312</td>
<td>150</td>
<td>3429851</td>
<td>16.8</td>
<td>1441240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
<td>4348.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intercept</td>
<td>22759</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106478</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>0.9996</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9995</td>
</tr>
</tbody>
</table>

Table 2: Accuracy data for Paracetamol

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Peak area</th>
<th>% recovery</th>
<th>Mean % recovery</th>
<th>Overall mean % recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>728747</td>
<td>100.9</td>
<td>Mean=100.7</td>
<td>Mean=100.45</td>
</tr>
<tr>
<td>50%</td>
<td>733737</td>
<td>100.7</td>
<td>S.D = 0.163</td>
<td>S.D = 0.149</td>
</tr>
<tr>
<td>50%</td>
<td>725504</td>
<td>100.5</td>
<td>% RSD = 0.161</td>
<td>% RSD = 0.144</td>
</tr>
<tr>
<td>100%</td>
<td>1401192</td>
<td>100.8</td>
<td>Mean=100.56</td>
<td>Mean=100.45</td>
</tr>
<tr>
<td>100%</td>
<td>1403724</td>
<td>100.6</td>
<td>S.D = 0.204</td>
<td>S.D = 0.144</td>
</tr>
<tr>
<td>100%</td>
<td>1398253</td>
<td>100.3</td>
<td>% RSD = 0.202</td>
<td>% RSD = 0.144</td>
</tr>
<tr>
<td>150%</td>
<td>2077466</td>
<td>100.1</td>
<td>Mean=100.1</td>
<td>Mean=100.45</td>
</tr>
<tr>
<td>150%</td>
<td>2050485</td>
<td>100.0</td>
<td>S.D = 0.08</td>
<td>S.D = 0.144</td>
</tr>
<tr>
<td>150%</td>
<td>2059855</td>
<td>100.2</td>
<td>% RSD = 0.07</td>
<td>% RSD = 0.144</td>
</tr>
</tbody>
</table>

Table 3: Accuracy data for Aceclofenac

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Peak area</th>
<th>% recovery</th>
<th>Mean % recovery</th>
<th>Overall mean % recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>1149529</td>
<td>100.5</td>
<td>Mean=100.66</td>
<td>Mean=100.47</td>
</tr>
<tr>
<td>50%</td>
<td>1151965</td>
<td>100.8</td>
<td>S.D = 0.122</td>
<td>S.D = 0.216</td>
</tr>
<tr>
<td>50%</td>
<td>1152844</td>
<td>100.7</td>
<td>% RSD = 0.121</td>
<td>% RSD = 0.215</td>
</tr>
<tr>
<td>100%</td>
<td>2259891</td>
<td>100.7</td>
<td>Mean=100.36</td>
<td>Mean=100.47</td>
</tr>
<tr>
<td>100%</td>
<td>2245916</td>
<td>100.2</td>
<td>S.D = 0.234</td>
<td>S.D = 0.216</td>
</tr>
<tr>
<td>100%</td>
<td>2263236</td>
<td>100.2</td>
<td>% RSD = 0.233</td>
<td>% RSD = 0.215</td>
</tr>
<tr>
<td>150%</td>
<td>3437674</td>
<td>100.3</td>
<td>Mean=100.4</td>
<td>Mean=100.47</td>
</tr>
<tr>
<td>150%</td>
<td>3375615</td>
<td>100.1</td>
<td>S.D = 0.294</td>
<td>S.D = 0.215</td>
</tr>
<tr>
<td>150%</td>
<td>3401808</td>
<td>100.8</td>
<td>% RSD = 0.292</td>
<td>% RSD = 0.215</td>
</tr>
</tbody>
</table>

Table 4: Accuracy data for Rabeprazole Sodium

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Peak area</th>
<th>% recovery</th>
<th>Mean % recovery</th>
<th>Overall mean % recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>424025</td>
<td>100.5</td>
<td>Mean=100.56</td>
<td>Mean=100.47</td>
</tr>
<tr>
<td>50%</td>
<td>410072</td>
<td>100.3</td>
<td>S.D = 0.248</td>
<td>S.D = 0.248</td>
</tr>
<tr>
<td>50%</td>
<td>422888</td>
<td>100.9</td>
<td>% RSD = 0.246</td>
<td>% RSD = 0.248</td>
</tr>
<tr>
<td>100%</td>
<td>843148</td>
<td>100.9</td>
<td>Mean=100.53</td>
<td>Mean=100.47</td>
</tr>
<tr>
<td>100%</td>
<td>841216</td>
<td>100.4</td>
<td>S.D = 0.251</td>
<td>S.D = 0.249</td>
</tr>
<tr>
<td>100%</td>
<td>830822</td>
<td>100.3</td>
<td>% RSD = 0.249</td>
<td>% RSD = 0.248</td>
</tr>
<tr>
<td>150%</td>
<td>1200300</td>
<td>100.7</td>
<td>Mean=100.33</td>
<td>Mean=100.47</td>
</tr>
<tr>
<td>150%</td>
<td>1255253</td>
<td>100.2</td>
<td>S.D = 0.251</td>
<td>S.D = 0.248</td>
</tr>
<tr>
<td>150%</td>
<td>1258669</td>
<td>100.1</td>
<td>% RSD = 0.250</td>
<td>% RSD = 0.248</td>
</tr>
</tbody>
</table>

Precision:
The % RSD of method precision and system precision were found to be 1.612 and 0.558 for paracetamol, 0.838 and 0.589 for aceclofenac and 1.104 and 0.961 for rabeprazole sodium respectively. The % RSD below 2.0 shows high precision of proposed method as shown in Table 5 and Table 6.

Ruggedness:
The % RSD obtained on different days by using different column and equipment were found to be 0.712 and 0.504 for paracetamol, 1.695 and 0.801 for aceclofenac and 1.774 and 1.199 for rabeprazole sodium respectively. The % RSD below 2.0 shows rugged method.
Robustness:
The robustness of the method is used to determine the capacity of the intended method to remain unaffected by changing flow rates, wavelengths, mobile phase organic ratio and mobile phase pH. The results indicated that the method is robust as the % RSD shows below 2.0.

<table>
<thead>
<tr>
<th>Table 5: Data of System Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Time</td>
</tr>
<tr>
<td>Injection</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>SD</td>
</tr>
<tr>
<td>% RSD</td>
</tr>
</tbody>
</table>

Table 6: Data of Method Precision

<table>
<thead>
<tr>
<th>Injection</th>
<th>Paracetamol</th>
<th>Aceclofenac</th>
<th>Rabeprazole sodium</th>
<th>Paracetamol</th>
<th>Aceclofenac</th>
<th>Rabeprazole sodium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.675</td>
<td>5.441</td>
<td>9.548</td>
<td>1392869</td>
<td>2253656</td>
<td>799772</td>
</tr>
<tr>
<td>2</td>
<td>3.677</td>
<td>5.440</td>
<td>9.550</td>
<td>1396841</td>
<td>2226909</td>
<td>824362</td>
</tr>
<tr>
<td>3</td>
<td>3.671</td>
<td>5.433</td>
<td>9.547</td>
<td>1428735</td>
<td>2267793</td>
<td>813508</td>
</tr>
<tr>
<td>4</td>
<td>3.672</td>
<td>5.431</td>
<td>9.546</td>
<td>1439493</td>
<td>2265756</td>
<td>823568</td>
</tr>
<tr>
<td>5</td>
<td>3.677</td>
<td>5.438</td>
<td>9.555</td>
<td>1392570</td>
<td>2275776</td>
<td>798929</td>
</tr>
<tr>
<td>6</td>
<td>3.673</td>
<td>5.430</td>
<td>9.553</td>
<td>1437156</td>
<td>2278154</td>
<td>804336</td>
</tr>
<tr>
<td>Mean</td>
<td>3.674</td>
<td>5.433</td>
<td>9.549</td>
<td>1414611</td>
<td>2261341</td>
<td>810745</td>
</tr>
<tr>
<td>SD</td>
<td>22803.5</td>
<td>18950</td>
<td>8950.6</td>
<td>22803.5</td>
<td>18950</td>
<td>8950.6</td>
</tr>
<tr>
<td>% RSD</td>
<td>1.612</td>
<td>0.838</td>
<td>1.104</td>
<td>1.612</td>
<td>0.838</td>
<td>1.104</td>
</tr>
</tbody>
</table>

Specificity:
To evaluate stability indicating properties and specificity of the method, the drug product is subjected to forced degradation studies under different conditions like acidic (fig. 9), alkaline (fig. 10), oxidation (fig. 11), photolysis (fig. 12) and thermal degradation (fig. 13) and checking the chromatograms for appearance of any extra peaks at the retention time of Paracetamol, aceclofenac and rabeprazole sodium and the results shows that there were no co-eluting or degradation peaks at the peak of analytes, as shown in Table 7 which indicates free from interference from the excipients present in the drug product and % degradation was calculated as shown in Table 8.

Figure 9: A typical chromatogram of acid hydrolysis degraded sample
Figure 10: A typical chromatogram of base hydrolysis degraded sample

Figure 11: A typical chromatogram of oxidative degraded sample

Figure 12: A typical chromatogram of photolytic degraded sample

Figure 13: A typical chromatogram of thermal (heat) degraded sample
Table 7: Data of forced degradation studies

<table>
<thead>
<tr>
<th>Stress condition</th>
<th>Paracetamol</th>
<th>Aceclofenac</th>
<th>Rabeprazole sodium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retention time (Rt)</td>
<td>USP Plate count</td>
<td>USP Tailing</td>
</tr>
<tr>
<td>Acidic</td>
<td>3.660</td>
<td>6879</td>
<td>1.462</td>
</tr>
<tr>
<td>Alkaline</td>
<td>3.659</td>
<td>7857</td>
<td>1.471</td>
</tr>
<tr>
<td>Thermal</td>
<td>3.657</td>
<td>8378</td>
<td>1.480</td>
</tr>
<tr>
<td>Photolytic</td>
<td>3.659</td>
<td>8080</td>
<td>1.481</td>
</tr>
<tr>
<td>Oxidative</td>
<td>3.657</td>
<td>7857</td>
<td>1.471</td>
</tr>
</tbody>
</table>

Table 8: Data of % degradation of Paracetamol, Aceclofenac and Rabeprazole sodium

<table>
<thead>
<tr>
<th>Stress condition</th>
<th>% degradation</th>
<th>% drug recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidic</td>
<td>9.4</td>
<td>90.6</td>
</tr>
<tr>
<td>Alkaline</td>
<td>6.2</td>
<td>93.8</td>
</tr>
<tr>
<td>Thermal</td>
<td>4.1</td>
<td>95.9</td>
</tr>
<tr>
<td>Photolytic</td>
<td>3.7</td>
<td>96.3</td>
</tr>
<tr>
<td>Oxidative</td>
<td>5.2</td>
<td>94.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress condition</th>
<th>% degradation</th>
<th>% drug recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceclofenac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidic</td>
<td>1.2</td>
<td>98.8</td>
</tr>
<tr>
<td>Alkaline</td>
<td>1.6</td>
<td>98.4</td>
</tr>
<tr>
<td>Thermal</td>
<td>0.7</td>
<td>99.3</td>
</tr>
<tr>
<td>Photolytic</td>
<td>0.4</td>
<td>99.6</td>
</tr>
<tr>
<td>Oxidative</td>
<td>1.4</td>
<td>98.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress condition</th>
<th>% degradation</th>
<th>% drug recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabeprazole sodium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidic</td>
<td>1.8</td>
<td>98.2</td>
</tr>
<tr>
<td>Alkaline</td>
<td>1.4</td>
<td>98.6</td>
</tr>
<tr>
<td>Thermal</td>
<td>0.8</td>
<td>99.2</td>
</tr>
<tr>
<td>Photolytic</td>
<td>2.2</td>
<td>97.8</td>
</tr>
<tr>
<td>Oxidative</td>
<td>1.2</td>
<td>98.8</td>
</tr>
</tbody>
</table>

System suitability:
System suitability was carried out by injecting six standard concentrations at optimized chromatographic conditions. The system suitability parameters were noted as shown in Table 9.

Table 9: Data of System Suitability Parameters

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the drug</th>
<th>Rt (min)</th>
<th>Area (A.U)</th>
<th>% Area</th>
<th>Height (A.U)</th>
<th>USP Resolution</th>
<th>USP Tailing</th>
<th>USP Plate Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Paracetamol</td>
<td>3.678</td>
<td>144326</td>
<td>25.12</td>
<td>228179</td>
<td></td>
<td>1.507</td>
<td>8596</td>
</tr>
<tr>
<td>2</td>
<td>Aceclofenac</td>
<td>5.556</td>
<td>2248725</td>
<td>39.15</td>
<td>237942</td>
<td>9.36</td>
<td>1.538</td>
<td>9400</td>
</tr>
<tr>
<td>3</td>
<td>Rabeprazole sodium</td>
<td>9.572</td>
<td>849736</td>
<td>19.83</td>
<td>139707</td>
<td>13.15</td>
<td>1.546</td>
<td>11506</td>
</tr>
</tbody>
</table>

CONCLUSION

From this study, a simple, precise and accurate stability indicating RP-HPLC method was developed and validated for the analysis of paracetamol, aceclofenac and rabeprazole sodium in pharmaceutical dosage form. The developed method was validated as per ICH guidelines and found to be applicable for routine quality control analysis for the simultaneous estimation of paracetamol, aceclofenac and rabeprazole sodium in bulk and pharmaceutical dosage form.

Acknowledgements
The authors are thankful to Aurobindo Pharma Limited, Hyderabad, India for providing gift samples and also to the Bapatla College of Pharmacy, Bapatla, for providing necessary facilities to carry out the research work.

REFERENCES