Antibiotic resistance patterns among *Acinetobacter baumannii* strains isolated from burned patients

Maryam Pourhajibagher¹, Masoumeh Mokhtarani¹, Davood Esmaeili² and Abbas Bahador³,⁴,¹*

¹Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
²Applied Microbiology Research center, and Microbiology Department, Baqiyatallah University of Medical Sciences, Tehran, Iran
³Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
⁴Laser Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran

ABSTRACT

Emergence and spread of *Acinetobacter baumannii* infections and resistance to most of the antibiotics are a global concern. Recently, we are facing with the development of multi drug resistance (MDR) *A. baumannii*. Since the organism causes outbreaks of infection and health care associated, the appropriate antibiotic choice for the treatment is a priority. This study was performed in order to elucidate the antibiotic resistance trends among *A. baumannii* strains. A total of 120 non-duplicate isolates recovered from patients with burn wounds were subjected to conventional cultural and biochemical tests. For those isolates that were preliminary identified as *A. baumannii*, multiplex PCR was performed. Antimicrobial susceptibility testing was done by disk diffusion agar and broth microdilution methods. In total, 100 isolates (88.3%) were identified as *A. baumannii* using conventional phenotypic methods with subsequent confirmation by multiplex PCR. The majority of the rates of antibiotic susceptibility in *A. baumannii* were belonged to colistin, tigecycline, tetracycline, and ampicillin/sulbactam with 99%, 81%, 71%, and 56%, respectively. High levels of resistance to beta-lactam antibiotics and cephalosporins were found in our isolates. Among other isolates, MDR *A. baumannii* strains showed the most susceptibility to colistin, tigecycline, ampicillin/sulbactam, tetracycline, and imipenem. Combinations antimicrobial agents and prevention of infections transmission are essential in controlling MDR *A. baumannii* outbreaks, especially in developing countries such as Iran.

Key words: *Acinetobacter baumannii*, multi drug resistance, antibiotic, Iran

INTRODUCTION

Acinetobacter baumannii is an opportunistic pathogen with increasing relevance in community-acquired and nosocomial infections [1]. *A. baumannii* has been implicated in diverse infections, including endocarditis, secondary meningitis, ventilator-associated pneumonia (VAP), sepsisemia, infections of the skin, soft tissues, and urinary tract, abdominal abscesses, and surgical wound infections [2-5].
Prolonged length of hospital stay, presence of susceptible patients, exposure to an intensive care unit (ICU), colonization pressure, exposure to antimicrobial agents and antibiotics, and incomplete compliance with infection control procedures are some of the reasons for the emergence of antibiotic resistance against *A. baumannii* [4, 6, 7]. *A. baumannii* infections were impressively treated with traditional antibiotics in about three decades ago [8]. By contrast, nowadays it displays resistance to approximately all main classes of antibiotics, including broad-spectrum penicillins, chloramphenicol, fluoroquinolones, cephalosporins, carbapenems, aminoglycosides, and tetracyclinees [4, 8].

Rapid emergence of resistance to several antibiotics, increased incidence, and the universal spread of multi drug resistance (MDR) isolates are the troubling evolution [9].

Widespread outbreaks of MDR (the isolate that is resistant to at least one agent in three classes of antimicrobial groups), extensive drug resistant (XDR; the isolate that is resistant to at least one agent in all but two or fewer antimicrobial categories), and pandrug resistant (PDR; XDR isolate that is resistant to polymyxins and tigecycline) *A. baumannii* infections have further limited effective choices for the treatment of *A. baumannii* infections [4].

In these circumstances, find the best antibiotic treatment is important. Combination antibiotic therapy is a strategy often employed in the treatment of MDR *A. baumannii* infections [10]. The current study was performed to elucidate the trends of antibiotic resistance of *A. baumannii* isolates to several classes of antibiotics.

MATERIALS AND METHODS

Bacterial isolates
A total of 120 nonduplicate isolates from patients with burn wounds were collected from Motahari hospitals in Tehran, Iran, from Oct 2012 toJun 2013.

Species identification
The isolates were identified as Acinetobacter spp. based on the preliminary results of conventional biochemical tests which determine the phenotypic characteristics including growth on MacConkey agar, catalase and oxidase tests, sugar fermentation, motility, and other standard recommended tests [11, 12]. In the following, molecular methods were used for definitive identification of these isolates.

Molecular methods
A. baumannii genomic DNA was prepared from fresh overnight cultures grown in brain heart infusion (BHI) broth (Merck, Darmstadt, Germany) at 37°C as described previously [13]. Extracted DNA was resuspended in 100 µl of TE buffer (10 mM Tris, 1 mM EDTA [pH 8.0]) and boiled 15 min. Purified DNA was aliquoted and stored at −20°C.

A. baumannii strains were identified using species-specific gyrB gene-based multiplex PCR as described previously [14]. Primer sequences are shown in Table 1. The PCR amplicons obtained were submitted to electrophoresis in 1% agarose gel then were stained with ethidium bromide (0.5 µg/ml) for UV light analysis and digitized (UVIDOC-CF08.XD).

Table 1: Multiplex PCR primers for detection of *A. baumannii*

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence (5' to 3')</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>gyrB-2</td>
<td>CTTCGGACCGGTCAATTTCAC</td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>GACAACAGGTATAAAGTTCAGTG</td>
<td></td>
</tr>
<tr>
<td>D19</td>
<td>CCCTATCTGTATCCGCAAGTA</td>
<td></td>
</tr>
<tr>
<td>D16</td>
<td>GATAACAGGTATAAAGTTTTCAGTG</td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>CAAAACGTACAGTTGGTAGCCACTGC</td>
<td></td>
</tr>
<tr>
<td>Sp2F</td>
<td>GTTCCTGTACCGAAAATTCTCG</td>
<td></td>
</tr>
<tr>
<td>Sp4F</td>
<td>CAGCCGTAAGAGTGCAATTA</td>
<td>14</td>
</tr>
<tr>
<td>Sp4R</td>
<td>AACGGAGCTTGTCAGGGTTA</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobial susceptibility testing by disk diffusion method
The antibiotic susceptibilities of clinical isolates were determined by Kirby Bauer's disk diffusion method on Muller-Hinton agar (Merk, Germany) according to the Clinical and Laboratory Standards Institute (CLSI) criteria [15]. The antibiotic disks (MAST, UK) applied were cefepime (CPT; 30 µg), ceftriaxone (CRO; 30µg), cefotaxime
(CTX; 30 µg), piperacillin (PIP; 30 µg), piperacillin/tazobactam (PTZ; 100 + 10 µg), ceftazidime (CAZ; 30 µg), ticarcillin (TIC; 75 µg), meropenem (MEM;10µg), gentamycin (GM; 10 µg), ciprofloxacin (CIP; 5 µg), amikacin (AMK; 30 µg), tobramycin (TOB;10µg), imipenem (IPM; 10 µg), ampicillin/sulbactam (SAM; 10 + 10 µg), tetracycline (TET; 30 µg), and tigecycline (TGC; 15 µg).

RESULTS

During the study, 120 clinical isolates suspected to *A. baumannii* were collected that 100 isolates of them identified as *A. baumannii* by conventional biochemical and molecular assessments, which represented 83.3% of all the isolated strains. Table 2 summarized the results of the antibacterials susceptibility tests of *A. baumannii* strains.

All of 100 isolates of *A. baumannii* were resistant to 17 different antibiotics, belonging to eight different classes of antibiotics. According to CLSI antimicrobial susceptibility testing standards, the majority of the rates of antibiotic susceptibility in *A. baumannii* were belonged to colistin (99%), tigecycline (81%), tetracycline (71%) and ampicillin/sulbactam (56%). These isolates had resistance between 59-98% to other antibiotics.

As can be seen in Table 2, the high levels of resistance (> 90%) were found in the group of beta-lactam antibiotics (such as penicillin and cephalosporins).

Table 2: Resistance rates of *A. baumannii* isolates to antimicrobial agents

<table>
<thead>
<tr>
<th>Samples (100)</th>
<th>FEP</th>
<th>CRO</th>
<th>CTX</th>
<th>PIP</th>
<th>PTZ</th>
<th>TIC</th>
<th>CAZ</th>
<th>MEM</th>
<th>GEN</th>
<th>CIP</th>
<th>AMK</th>
<th>TOB</th>
<th>IPM</th>
<th>SAM</th>
<th>TET</th>
<th>TGC</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (%)</td>
<td>99</td>
<td>98</td>
<td>95</td>
<td>93</td>
<td>93</td>
<td>94</td>
<td>91</td>
<td>90</td>
<td>89</td>
<td>78</td>
<td>63</td>
<td>60</td>
<td>44</td>
<td>29</td>
<td>19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1</td>
<td>(75)</td>
<td>2</td>
<td>(50)</td>
<td>1</td>
<td>(25)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(25)</td>
<td>4</td>
<td>(100)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MDR</td>
<td>33</td>
<td>(100)</td>
<td>33</td>
<td>(100)</td>
<td>33</td>
<td>(100)</td>
<td>3</td>
<td>(94)</td>
<td>31</td>
<td>(93)</td>
<td>30</td>
<td>(91)</td>
<td>28</td>
<td>(85)</td>
<td>36</td>
<td>(91)</td>
<td>30</td>
</tr>
<tr>
<td>XDR</td>
<td>62</td>
<td>(100)</td>
<td>62</td>
<td>(100)</td>
<td>61</td>
<td>(99)</td>
<td>61</td>
<td>(98)</td>
<td>61</td>
<td>(98)</td>
<td>62</td>
<td>(100)</td>
<td>59</td>
<td>(99)</td>
<td>61</td>
<td>(98)</td>
<td>62</td>
</tr>
<tr>
<td>PDR</td>
<td>4</td>
<td>(100)</td>
<td>1</td>
</tr>
</tbody>
</table>

CPT (Cefepime), Ceftriaxone (CRO), Cefotaxime (CTX), Piperacillin (PIP), Piperacillin/Tazobactam (PTZ), Ceftazidime (CAZ), Meropenem (MEM), Gentamycin (GM), Ciprofloxacin (CIP), Amikacin (AMK), Tobramycin (TOB), Imipenem (IPM), Ampicillin/Sulbactam (SAM), Tetracycline (TET), Tigecycline (TGC), Colistin (COL).

In this study, 62%, 33%, 4% and 1% of the 100 isolates had XDR, MDR, Non MDR- XDR, and PDR phenotypes. MDRA: *baumannii* strains showed the most susceptibility to colistin, tigecycline, ampicillin/sulbactam, tetracycline, and imipenem and PDR strain was resistant to colistin (MIC ≥ 32µg/ml).
A. baumannii infection has become a serious challenge to global health care systems and management of it is a great perturbation and common problem for physicians and clinical microbiologists [1, 2]. During the past decade, antimicrobial resistance among A. baumannii has increased [4].

Multiple mechanisms have been found to be responsible for the resistance to antibiotics in A. baumannii that generally falls into three broad groups: (1) antimicrobial inactivating enzymes, (2) decrease access to microbial targets, and (3) mutations [16]. A. baumannii has a broad array of beta lactamases enzymes that can hydrolyze the beta lactam antibiotics and resistance to cephalosporins, carbapenems, and penicillins when expressed [17]. On the other, the loss or decreased expression of porin channels, alterations in the structure and number of porin proteins, and multidrug efflux pumps that are capable of actively removing a wide range of antimicrobial agents from the bacterial cell which could potentially disrupt the cytoplasmic membrane, lead to reduced outer membrane permeability that cause the resistance to antibiotics such as carbapenem [18]. Also, change of targets or upregulating cellular functions (alterations in penicillin binding proteins) due to mutations such as point mutations is another mechanism of resistance [19].

The appropriate antibiotic choice is essential for treatment of A. baumannii infections and is guided foremost by in vitro antimicrobial susceptibility tests [20]. Among these, the determination of MICs by broth microdilution has been considered the “gold standard” [21]. On the other hand, the reliability and comparability of susceptibility testing such as disk diffusion agar or the Etest have been also reconciled for A. baumannii [20].

As mentioned, our data show that colistin, tigecycline, and tetracycline had the less rate of resistance against A. baumannii, respectively. On contrary, cephalosporins (including cefepime, ceftriaxone, ceftaxime, ceftazidime), piperacillin/tazobactam, and ticarcillin showed the most rates of resistance against A. baumannii isolates, respectively.

Often colistin or tigecycline are the only available treatments for MDR A. baumannii infections [22]. Monotherapy is not recommended for severe A. baumannii infection. Formerly, treatment of A. baumannii infection included a beta-lactamase-stable beta-lactam such as piperacillin or imipenem, in combination with aminoglycosides, such as amikacin. Montero et al. [23] found that the combinations of rifampin with imipenem, tobramycin, or colistin were the most effective regimens against MDR A. baumannii. Pourhajibagher et al. [4] stated that the combinations of imipenem with rifampin, tigecycline and colistin are recommended as the best therapeutic approach for treatment of nosocomial infections of A. baumannii due to their effectiveness and low toxicity. Owen et al. [24] also found that combination therapy may be advisable to prevent the emergence of colistin resistance during monotherapy.

In addition to an increase in antibiotic resistant A. baumannii strains from 2001 to 2013 in Iran, the prevalence of MDR strains also increased (from 50% in 2001-2007 to 74% in 2010-2011), with a mean prevalence of 71.2% [25]. Pourhajibagher et al. [4] reported that 55% of A. baumannii were resistant to imipenem and 74% were MDR.

Treatment of MDR strains is usually difficult. Several studies revealed that colistin can cure or improve the 57%-77% of patients with MDR A. baumannii infections [26-29]. Other studies have reported more favorable clinical response rates (56%-61%) for parenteral colistin treatment of MDR Acinetobacter VAP [30-33]. In our study, colistin and tigecycline showed the less rates of MDR and XDR phenotype compared with other antibiotics.

CONCLUSION

Notwithstanding a background for relatively low virulence, MDR A. baumannii infection poses a terrible threat to patients. The significant health challenges for treatment of A. baumannii and selection of the best antibiotics are exacerbated by prolonging hospitalization, treatment failures, and increased mortality. To the best of the authors’ knowledge, no controlled trials to guide therapeutic choices.

Antimicrobial susceptibility test is important in providing useful information for effective treatment, and occasionally more than one antibiotic is required to cure and improve A. baumannii infections. However, antibiotic treatments are not always the same for the difference of medical cognition in different regions.
However, based on the results of this study, colistin in combination with tigecycline are useful antibiotic compounds for A. baumannii strains isolated from patients with burn wounds. Nevertheless, the gaps in the current knowledge of the response and bacterial mechanisms of antimicrobials resistance exist and the critical need for a comprehensive monitoring and infection control policy MDR A. baumannii isolates from various parts of Iran is noteworthy.

Acknowledgement

This research has been supported by Tehran University of Medical Sciences & health Services grant No. 93-01-30-24287.

REFERENCES

Scholar Research Library