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Abstract

Design of the optimum preform for near net shapeufacturing is a crucial step in upsetting
process design. In this study, the same is arratedsing artificial neural networks (ANN)
considering different unequal interfacial frictimonditions between top and bottom die and
billet interface. Back propagation neural netwogke trained based on finite element analysis
results considering four unequal interfacial foctl conditions and varying geometrical and
processing parameters, to predict the optimum prefor commercial aluminum. Neural
network predictions are verified for three new peofis of commercial aluminum and observed
that these are in close match with their simulatioanterparts.
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Introduction

Upsetting is an important metal forming operatitins a class of bulk forming operation where
large deformation is given to the material for shapd property modification. The major issue,
which restricts imparting large deformation to thiflet, is the bulging induced tensile stress
which later results in cracking. Bulge is also wsideble from near net shape manufacturing
point of view as it will require secondary procesglike trimming. To obtain the near net shape,
preform design of the billets is a powerful solaticConsiderable amount of literature are
available on the preform design in forging process.

Roy et al. (1994) report application of neural nateg in interpolation of preform shapes in
plane strain forgings. Ranatunga et al. (1996)gmepreform designing techniques based on the
upper bound elemental technique (UBET) with eviderué effective material usage and
extended overall die-life. Lee et al. (1997) repapplication of an upper-bound elemental
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technique in preform design for asymmetric forgivigich is validated through experiments. Liu
et al. (1998) present a preform design method wbarhbines the FEM & upper bound based
reverse simulation technique. The billet designsith@ithis technique achieves a final forging
with minimum flash. Ko et al. (1999) describe a ne&thod of preform design in muti-stage
metal forming processes considering workabilityiteéd by ductile fracture. Neural networks
and Taguchi method are used for minimizing the dbje function. Srikanth et al. (2000)
present a continuum sensitivity analysis approachtfe computation of the shape sensitivity,
which is later used for the purpose of preform giesind shape optimization in forging process.
Chang et al. (2000) propose reverse simulationcgupr clubbed with finite element analyses for
preform design. Bramley et al. (2001) report a me@thod named as tetrahedral upper bound
analysis which enables a more realistic flow simotato be achieved. Antonio et al. (2002)
presents an inverse engineering formulation togetiéh evolutionary search schemes for
forging preform design. Shim et al. (2003) preseapimal preform design for 3D free forgings
using sensitivity approach and FEM. Tomov et al00@ reports preform design of
axisymmetric forging using FE software FORM-2D. €ial. (2004) reports finite element (FE)
based forging simulation and optimization approachorder to achieve net-shape forging
production for aero engine components. Effectsi@fethstic deformation, thermal distortion and
press-elasticity were considered. Poursina et2804) proposes a FEM and GA based preform
design procedure for axisymmetric forgings in vidw achieve high quality products.
Thiyagarajan et al. (2005) presents a 3-D prefonaps optimization method for the forging
process using the reduced basis technique. Reptlla. (2005) presents reliability-based
optimization method for preform shape design in ftirging. Antonio et al. (2005), reports an
inverse approach for preform design of forged comgmts under minimal energy consumption
using FEM and genetic algorithms. Park and Hwangl.ef2007) reports preform design for
precision forging of rib type aerospace componestag finite element analysis. Poshala et al.
(2008) carried out formability analysis and its esmental validations for aluminum preforms
using neural network. Haluk Tumer et al. (2008)irapged die and preform to minimize
hardness distribution in back extrusion procesagudlelder-Mead search algorithm integrated
with the finite element model.

Although substantial literature on preform designavailable, they address it as individual
problem considering one or few parameters. The mbjective of this study is to devise a
generalized procedure of preform design considenagous parameters. For this, neural
network has been used for preform design of thettipg process. In this study effect of critical
factors including different preform shapes, inteldhfriction conditions, and their effect on the
final deformed profiles are studied using FE sirtiata Four cases of unequal interfacial friction
conditions are considerefdr the sameBased on the simulation results, a back propagation
neural network is trained to provide guidelines $etection of parameters to result in near net
shape manufacturing. Neural network predictions laeeng verified with three numerical
examples for commercial aluminum.

Artificial Neural Networks

Artificial neural network attempts to imitate thealning activities of the brain. In an artificial
neural network (ANN), the artificial neuron ¢ine processing unit may have several input
paths corresponding to the dendrites in théogiocal neuron as shown in figurel. The units
combine usually, by a simple summation, the weightalues of these paths (Fig.2). The
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weighted value is passed to the neuron, evheris modified by threshold function such

as sigmoid function (Fig.3). The modified valsedirectly presented to the next neuron. In
Fig.4 a 3-4-2 feed forward back propagation aitfioeural network is shown. The connections
between various neurons are strengthened or wedlkaeording to the experiences obtained
during the training. The algorithm for traigirthe back propagation neural network can be
explained in the following steps-

Stepl —Select the number of hidden layers, numberitefations, tolerance of the mean

square error and initialize the weights ands functions.

Step2— Present the normalized input —output patters tgethe network. At each node of the

network except the nodes on input layer,idate the weighted sum of the inputs, add

bias and apply sigmoid function

Step3Calculate total mean error. If error is lesmrt permissible limit, the training process

is stopped. Otherwise,

Step4—Change the weights and bias values based onajjeedrdelta rule and repeat step 2.
The mathematical formulations of training the natecan be found in Ref. 21.

Dendrites
Cell Body
MNMucleus

Aoxon

Fia.1: A typical bioloaical

Fig.3: The sigmoid function Fig.4: Neural network

Methodology

In Fig.5, schematic undeformed and deformed bikets shown. Let top, middle and bottom
diameters of these billets are to be a, b ¢, anthacg respectively. Their diameter ratios with
respect to top diameter, can be expressed;as/& R=c/a and 1=bi/ay, r.=Ci/a. It is obvious
that for near net shape manufacturingamd g should be one. Since deformed profiles depend
on geometrical and frictional conditions, large mems of variation of these parameters are
accounted. Four sets of interfacial frictional paeters and 38 sets of geometrical conditions
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making total 152 combinations are considered is #tudy for commercial aluminum. Finite

element simulations of these cases are carrietboaidtain the deformation behavior. Based on
these results, back propagation neural networksraiged to predict desired preform for given
f;, and f values to result in near net shape upsetting.

Exfi==

I JE—

[m}

Fia.5: Initial and final shapes of billet

Geometrical, Material and Processing Parameters

Cylindrical specimens of 40 mm top diameter and™f height are used for simulation studies
of commercial aluminum. The central and bottom diters are considered as 28, 30, 32, 34 36,
38 and 39 mm. In this way center and top diametigo and bottom and top diameter ratig (R
and R), also named as preform ratios, comes out to He0075, 0.8, 0.85, 0.9, 0.95 and 0.975
respectively. Four combinations of interfacial fions, Coulomb friction, at top and bottom
surfaces of billet and platens considered for sathoih studies are given in Table 1.

Table.1: Frictional conditions at die and billet interface

S.No | f(Friction between top die and billet| fy(Friction between bottom die and
interface) billet interface)
1 0.2 0.1
2 0.3 0.2
3 0.4 0.2
4 0.4 0.3

The 38 cases of geometric parameters accountéxd istdy. Material properties of commercial
aluminum have been obtained by conducting tensesést Specimens of gauge length 80 mm,
prepared as per ASTM standard, are tested in adlaunmake Universal Testing Machine
(UTM). The test and tested specimens of commergiaminum are shown in Fig.6. The
engineering stress & strain are converted inta tinee counterparts using standard relationships
(Kalpakjian and Schmid ,2004). Based on these tgsoiaterial modeling is carried outhe
post yielding behaviour is modeled using the poaerequation (Meyers and Chawla, 1997):
o =ke"

Where k is the strength coefficient and n is thedéaing exponent. The material properties
evaluated and adapted for FE simulation are ginérable 2.
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Fig.6: Tensile specimens (Before & after tes

Table.2: Material Properties

Properties Commercial Aluminumn
Youngs modulus (E)MPa 7x10
Poisson’s ratioy) 0.33
Strengthcoefficient (K)MPa 2254
Hardening exponent (n) 0.095

FE Simulation

Finite element analyses of the upsetting processanried out using MSC.Marc software (Ref
22). Curved profiles of specimens are modeled &s lagtween top, middle and bottom diameters
using ARC command of the software. Taking advantafethe symmetrical conditions,
axisymmetrical formulation is adopted. Four noddeddrilateral elements are used for the FE
modeling. There are 800 elements and 861 noddseimbdel. Considering the variation in 38
geometrical cases and four cases of frictional ttimm$, total 152 cases are simulated for
commercial aluminum. Punch and die are modeledgas wodies. Bottom die is fixed whereas
punch is movable which is given the displacemeninblary conditionThe entire commercial
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Fin.7: FFM models (a) hefore deformtion (hY after deformation

Aluminum billets are identically deformed to finakight of 28 mm viz. 30 % reduction in

height. A typical FE and deformed models are shamwrig.7. Geometrical parameters of
deformed and undeformed conditions for all the I1d&ses are recorded separately for
commercial aluminum.
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Numerical Validation

FE results in terms of diameter ratios are usedtriining neural networks. One 4-6-2 back
propagation neural network for commercial alumint@s been used for the training.f§, ri, r»
are input and Rand R are output parameters. The error limit is 0.00d @rntook 1537695
epochs to converge the desired limit. The trainetgvark is being tested for three new problems
of commercial aluminum upsetting to show the efficaf the neural network predictions. The
input parameters for them are given in Table3. pregicted preforms (Rand R values) are
used for validation through FE simulation. Theand g’ values predicted are very close to the
near net shape manufacturing. Maximum error is 18ichvis very less. The initial and final
deformed meshes for these cases are shown inlEgh be observed that deformed profiles are
close to the near net shapes of perfect cylinders.

Table.3: Numerical Validation of ANN for commercial aluminum

S.No | { fp Ri R, M(acwal | Meem) | Y0Eror| ryacuan | r2eemy | YError

1 0.28/ 0.20| 0.835| 1 1 099 | 1 1 0.999 0.1

2 0.30/0.25/0.86 | 1 1 0.998| 0.2 1 0.999 0.1

3 0.35/ 0.30| 0.825| 0.975| 1 0.995 0.5 1 1.003 0.3
Conclusion

In this study artificial neural networks have beesed for the design of preforms for the
cylindrical billet upsetting. Based on the reswitd52 FE simulations a back propagation neural
network is trained for commercial aluminum. Traineetworks are first verified with three
numerical examples. It is found that simulation aetlvork predictions are in close match. This
study also demonstrates that ANN can be effectiuelyd for preform design. It is hoped, this
study will help design engineers in fast and rééigpredictions of optimum preforms under
different unequal interfacial friction conditionsrfnet shape manufacturing.
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