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Abstract 
 
Design of the optimum preform for near net shape manufacturing is a crucial step in upsetting 
process design. In this study, the same is arrived at using artificial neural networks (ANN) 
considering different unequal interfacial friction conditions between top and bottom die and 
billet interface. Back propagation neural networks are trained based on finite element analysis 
results considering four unequal interfacial frictional conditions and varying geometrical and 
processing parameters, to predict the optimum preform for commercial aluminum. Neural 
network predictions are verified for three new problems of commercial aluminum and observed 
that these are in close match with their simulation counterparts.  
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Introduction  
 
Upsetting is an important metal forming operation. It is a class of bulk forming operation where 
large deformation is given to the material for shape and property modification. The major issue, 
which restricts imparting large deformation to the billet, is the bulging induced tensile stress 
which later results in cracking. Bulge is also undesirable from near net shape manufacturing 
point of view as it will require secondary processing like trimming. To obtain the near net shape, 
preform design of the billets is a powerful solution. Considerable amount of literature are 
available on the preform design in forging process.   
 
Roy et al. (1994) report application of neural networks in interpolation of preform shapes in 
plane strain forgings. Ranatunga et al. (1996) present preform designing techniques based on the 
upper bound elemental technique (UBET) with evidence of effective material usage and 
extended overall die-life. Lee et al. (1997) report application of an upper-bound elemental 
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technique in preform design for asymmetric forging which is validated through experiments. Liu 
et al. (1998) present a preform design method which combines the FEM & upper bound based 
reverse simulation technique. The billet designed using this technique achieves a final forging 
with minimum flash. Ko et al. (1999) describe a new method of preform design in muti-stage 
metal forming processes considering workability limited by ductile fracture. Neural networks 
and Taguchi method are used for minimizing the objective function. Srikanth et al. (2000) 
present a continuum sensitivity analysis approach for the computation of the shape sensitivity, 
which is later used for the purpose of preform design and shape optimization in forging process. 
Chang et al. (2000) propose reverse simulation approach clubbed with finite element analyses for 
preform design. Bramley et al. (2001) report a new method named as tetrahedral upper bound 
analysis which enables a more realistic flow simulation to be achieved. Antonio et al. (2002) 
presents an inverse engineering formulation together with evolutionary search schemes for 
forging preform design. Shim et al. (2003) presents optimal preform design for 3D free forgings 
using sensitivity approach and FEM. Tomov et al. (2004) reports preform design of 
axisymmetric forging using FE software FORM-2D. Ou et al. (2004) reports finite element (FE) 
based forging simulation and optimization approach in order to achieve net-shape forging 
production for aero engine components. Effects of die-elastic deformation, thermal distortion and 
press-elasticity were considered. Poursina et al. (2004) proposes a FEM and GA based preform 
design procedure for axisymmetric forgings in view to achieve high quality products. 
Thiyagarajan et al. (2005) presents a 3-D preform shape optimization method for the forging 
process using the reduced basis technique. Repalle et al. (2005) presents reliability-based 
optimization method for preform shape design in the forging. Antonio et al. (2005), reports an 
inverse approach for preform design of forged components under minimal energy consumption 
using FEM and genetic algorithms. Park and Hwang et al. (2007) reports preform design for 
precision forging of rib type aerospace components using finite element analysis. Poshala et al. 
(2008) carried out formability analysis and its experimental validations for aluminum preforms 
using neural network. Haluk Tumer et al. (2008) optimised die and preform to minimize 
hardness distribution in back extrusion process using Nelder-Mead search algorithm integrated 
with the finite element model.  
 
Although substantial literature on preform design is available, they address it as individual 
problem considering one or few parameters. The main objective of this study is to devise a 
generalized procedure of preform design considering various parameters. For this, neural 
network has been used for preform design of the upsetting process. In this study effect of critical 
factors including different preform shapes, interfacial friction conditions, and their effect on the 
final deformed profiles are studied using FE simulation. Four cases of unequal interfacial friction 
conditions are considered for the same. Based on the simulation results, a back propagation 
neural network is trained to provide guidelines for selection of parameters to result in near net 
shape manufacturing. Neural network predictions are being verified with three numerical 
examples for commercial aluminum.  
 
Artificial Neural Networks 
Artificial neural network attempts to imitate the learning activities of the brain. In  an  artificial  
neural  network (ANN), the  artificial  neuron  or  the  processing  unit  may  have  several  input  
paths  corresponding  to  the  dendrites in the biological neuron as shown in figure1. The units 
combine usually, by a simple summation, the weighted values of these paths (Fig.2). The  
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weighted  value  is  passed  to  the  neuron,  where  it  is  modified  by  threshold  function  such  
as  sigmoid  function (Fig.3). The modified value is directly presented to the next neuron. In 
Fig.4 a 3-4-2 feed forward back propagation artificial neural network is shown. The connections 
between various neurons are strengthened or weakened according to the experiences obtained 
during the training. The  algorithm  for    training  the  back propagation neural network  can  be  
explained  in  the  following  steps- 
 
Step1 – Select  the  number of  hidden  layers, number  of  iterations, tolerance  of  the  mean  
square  error and  initialize  the  weights  and  bias functions. 
Step2 – Present the normalized input –output pattern sets to the network. At  each  node  of  the  
network  except  the  nodes  on  input  layer, calculate  the  weighted  sum  of  the  inputs, add  
bias  and  apply  sigmoid  function  
Step3-Calculate total mean error. If  error  is  less  than  permissible  limit,  the  training  process  
is  stopped. Otherwise, 
Step4 –Change the weights and bias values based on generalized delta rule and repeat step 2.  

The mathematical formulations of training the network can be found in Ref. 21. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Methodology 
In Fig.5, schematic undeformed and deformed billets are shown. Let top, middle   and bottom 
diameters of these billets are to be a, b c, and a1, b1, c1 respectively. Their diameter ratios with 
respect to top diameter, can be expressed as R1=b/a, R2=c/a and r1=b1/a1, r2=c1/a1. It is obvious 
that for near net shape manufacturing, r1 and r2 should be one. Since deformed profiles depend 
on geometrical and frictional conditions, large numbers of variation of these parameters are 
accounted. Four sets of interfacial frictional parameters and 38 sets of geometrical conditions 

Fig.1: A typical biological Fig.2: A single processing unit 

Fig.3: The sigmoid function Fig.4: Neural network 
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making total 152 combinations are considered in this study for commercial aluminum. Finite 
element simulations of these cases are carried out to obtain the deformation behavior. Based on 
these results, back propagation neural networks are trained to predict desired preform for given 
ft, and fb values to result in near net shape upsetting.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Geometrical, Material and Processing Parameters 
Cylindrical specimens of 40 mm top diameter and 40 mm height are used for simulation studies 
of commercial aluminum. The central and bottom diameters are considered as 28, 30, 32, 34 36, 
38 and 39 mm. In this way center and top diameter ratio and bottom and top diameter ratio (R1 
and R2), also named as preform ratios, comes out to be 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 and 0.975 
respectively. Four combinations of interfacial frictions, Coulomb friction, at top and bottom 
surfaces of billet and platens considered for simulation studies are given in Table 1. 
 
 

 
The 38 cases of geometric parameters accounted in the study. Material properties of commercial 
aluminum have been obtained by conducting tensile tests. Specimens of gauge length 80 mm, 
prepared as per ASTM standard, are tested in a Shimadzu make Universal Testing Machine 
(UTM). The test and tested specimens of commercial aluminum are shown in Fig.6. The 
engineering stress & strain are converted into their true counterparts using standard relationships 
(Kalpakjian and Schmid ,2004). Based on these results, material modeling is carried out. The 
post yielding behaviour is modeled using the power law equation (Meyers and Chawla, 1997):  

σ = kεn 
 
Where k is the strength coefficient and n is the hardening exponent. The material properties 
evaluated and adapted for FE simulation are given in Table 2. 
 

S.No f t(Friction between top die and billet 
interface) 

fb(Friction between bottom die and 
billet interface) 

1 0.2 0.1 
2 0.3 0.2 
3 0.4 0.2 
4 0.4 0.3 

Fig.5: Initial and final shapes of billet 

Table.1: Frictional conditions at die and billet interface 
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FE Simulation 
Finite element analyses of the upsetting process are carried out using MSC.Marc software (Ref 
22). Curved profiles of specimens are modeled as arcs between top, middle and bottom diameters 
using ARC command of the software. Taking advantage of the symmetrical conditions, 
axisymmetrical formulation is adopted. Four nodded quadrilateral elements are used for the FE 
modeling. There are 800 elements and 861 nodes in the model. Considering the variation in 38 
geometrical cases and four cases of frictional conditions, total 152 cases are simulated for 
commercial aluminum. Punch and die are modeled as rigid bodies. Bottom die is fixed whereas 
punch is movable which is given the displacement boundary condition. The entire commercial  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aluminum billets are identically deformed to final height of 28 mm viz. 30 % reduction in 
height. A typical FE and deformed models are shown in Fig.7. Geometrical parameters of 
deformed and undeformed conditions for all the 152 cases are recorded separately for 
commercial aluminum. 

Properties Commercial Aluminum 
Youngs modulus (E)MPa 7x104 

Poisson’s ratio (ν) 0.33 
Strengthcoefficient (K)MPa 225.4 

Hardening exponent (n) 0.095 

Fig.6: Tensile specimens (Before & after test) 

          Fig.7: FEM models (a) before deformation (b) after deformation  

(a) (b) 

Table.2: Material Properties 
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                                    (a) 

                                      (b)  

 

 

Fig8: Initial and deformed shapes of aluminum (a) ft= 0.28, fb= 0.20, R1= 0.835, R2=1 
          (b) ft= 0.3, fb=0.25, R1=0.86, R2=1                 (c) ft=0.35, fb=0.30 R1=0.83,R2=0.975 
 

 

 

          (c) 
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Numerical Validation 
FE results in terms of diameter ratios are used for training neural networks. One 4-6-2 back 
propagation neural network for commercial aluminum has been used for the training. ft, fb, r1, r2 
are input and R1,and R2 are output parameters. The error limit is 0.001 and it took 1537695 
epochs to converge the desired limit. The trained network is being tested for three new problems 
of commercial aluminum upsetting to show the efficacy of the neural network predictions. The 
input parameters for them are given in Table3. The predicted preforms (R1 and R2 values) are 
used for validation through FE simulation. The ‘r1 and r2’ values predicted are very close to the 
near net shape manufacturing. Maximum error is 1% which is very less. The initial and final 
deformed meshes for these cases are shown in Fig8. It can be observed that deformed profiles are 
close to the near net shapes of perfect cylinders.  
 
 

 
Conclusion 
 
In this study artificial neural networks have been used for the design of preforms for the 
cylindrical billet upsetting. Based on the results of 152 FE simulations a back propagation neural 
network is trained for commercial aluminum. Trained networks are first verified with three 
numerical examples. It is found that simulation and network predictions are in close match. This 
study also demonstrates that ANN can be effectively used for preform design. It is hoped, this 
study will help design engineers in fast and reliable predictions of optimum preforms under 
different unequal interfacial friction conditions for net shape manufacturing. 
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