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Abstract

In this study, we present a method for the preaicof physiochemical properties of
catalytic sites residues using a suitable ArtificNeural Networking (ANN) Feed
Forward Backpropagation algorithm coupled with & &festructural proteins with the
properties of their amino acid residues. The methasl been applied to a set of 100
structural proteins from the Protein Data Bank (PDBving a ligand at their active site.
Using Ligplot program for searching of active site residues &adace racer for
identifying the non active site moieties, the idiged amino acid residues were classified
in 15 different categories based on their physiatgbal properties. After classification of
active and non active site amino acids, their prtog® were converted into machine
language. Furthermore, we created Neural Networkddatlab software and generated
algorithm for training and testing of data. Thetegfanalysis of results showed that 95%
of active site’s physiochemical properties wererecity predicted. It is hoped that this
work would help in determining the surface topotapproperties for ligand binding
sites residues in protein. The computational outowould be helpful in ligand
designing, molecular dockingle novo drug designing and structural identification and
functional sites Comparisons.

Keyword: Active Site Residues, Protein Databank, Ligand sRithemical Properties,
Artificial Neural Networking

Introduction

Molecular design is important in various fields Isuas organic chemistry, physical
chemistry, chemical engineering, chemical physibgmengineering and molecular
biology. No single strategy or method has comeward that provides an optimum
solution to the many different challenges involvieddesigning materials with new

properties. Computational methods are needed foctifunal prediction of proteins.

Advances in experimental and computational methad® quietly ushered in a new era
in protein function annotation. This ‘age of muliggy’ is marked by the notion that only

the use of multiple tools, multiple evidence andsidering the multiple aspects of
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function can give us the broad picture that 21stwrg biology will need to link and alter
micro- and macroscopic phenotypes. It might alsip hes to undo past mistakes by
removing errors from our databases and preventram fproducing more. On the
downside, multiplicity is often confusing, theredosystematically review methods and
resources for automated protein function predictionking at individual (biochemical)
and contextual (network) functions, respectively][@ particular, knowledge of the
location of catalytic residues provides valuablsight into the mechanisms of enzyme
catalyzed reactions. Many computational methodse Hasen developed for predicting
protein functions and functional residues involvad catalytic reactions, binding
activities, and protein- protein interactions. Autted propagation of functional
annotation from a protein with known function tonmmogous proteins is a well-
established method for the assignment of protenctfon. However, reliable functional
propagation generally requires a high degree otisecg similarity. For example, to
transfer all four digits of an EC number at an erate of below 10% needs at least 60%
sequence identity [1], and only about 60% of thetgins can be annotated by a
homology transfer of experimental functional infation in 62 proteomes.[2]

The evolutionary trace (ET) method is used for mtezh of active sites and functional
interfaces in proteins with known structure. Basedthe observation that functional
residues are more conserved than other residuesn#thod finds the most conserved
residues at different sequence identity cutoffs, @sda final step, relies on human visual
examination of the residues on protein structugs\\hile the ET method was shown
successful in many case studies [4-6], the needri@mual inspection in this original
implementation is not suitable for automated lassgale analysis. Modified and
automated versions of the ET method have been ageeland tested on two protein
datasets [7]. In one study the catalytic residuesevpredicted correctly for 62 (77.5%)
out of 80enzymes with the ACTSITE and SITE resoficbm the PDB database in
another study [8], ~60% (79%by manual analysistathlytic residues were predicted
correctly for 29 enzymes with experimentally chéeazed active sites. Another group of
methods, thab initio methods [reviewed in [2, 9]], do not use sequereservation for
functional site prediction. These methods explanayal protein properties, such as
residue buffer capacity [10], the electrostaticrggef charged residues [11], protein sub
cellular localization [12], and conservation of &écstructural similarities. [13] These
methods are potentially useful for the predictidnnovel protein function seven if
sequence conservation of the functional site irstjoe is low. The last group of methods
combines sequence conservation with different daspef protein structure. [14-
17]Three-dimensional cluster analysis predictedctional residues by examination of
spatially-adjacent conserved residues [14], andeaeld a high recovery (83%) with low
error rate (2%) for the prediction of catalyticiceses in 15 enzymes. A similar method
enriched with two additional structural parametanedicted ~47% of catalytic residues at
the 5% false positive rate among 39 enzymes froenGBD database with manually
curate’s catalytic sites. [15] A method for locgticatalytic residues based on the
sequence conservation, local special conservastability analysis, and geometrical
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location of the residue predicted 56% of catalygsidues in 49 enzymes. [16]The
method considered only highly conserved D, E, K{,RS, T, N, Y, and C residues. A
trained neural network (NN) with spatial clusteripgedicted over 69% of catalytic
residues with a high false positive rate among @89mes from the CATRES database
containing manually curetted catalytic residues7][TThe method used sequence
conservation, residue type, and four structuraaipeters as inputs for the NN. Direct
comparison of methods is confounded by the useff@rent performance measure and
different data sets of various size and qualityvétheless, the overall accuracy for the
prediction of catalytic residues remains low (ire th0% range). [18] We describe a
methodology that attempts to optimize two composierglobal shape and local
physicochemical texture, for evaluating the sinifyabetween a pair of surfaces. Surface
shape similarity is assessed using a three-dimeaisabject recognition algorithm and
physicochemical texture similarity is assessedugioa spatial alignment of conserved
residues between the surfaces. The comparisonssackin tandem to efficiently search
the Global Protein Surface Survey (GPSS), a libdrgnnotated surfaces derived from
structures in the PDB, for studying evolutionaryatenships and uncovering novel
similarities between proteins.[19Ye introduce a classifier to predict the small ecale—
enzyme interaction, i.e., whether they can intevath each other. Small molecules are
represented by their chemical functional groupsl enzymes are represented by their
biochemical and physicochemical properties, rasglih a total of 160 features. These
features are input into the AdaBoost classifier,iclwhis known to have good
generalization ability to predict interaction. Agesult, the overall prediction accuracy,
tested by tenfold cross-validation and independseis, is 81.76% and 83.35%,
respectively. [20]Protein-protein interactions play an importanterah a number of
biological activities. We developed two methodpredicting protein-protein interaction
site residues. One method uses only sequence iafimammand the other method uses both
sequence and structural information. We used stippmtor machine (SVM) with a
position specific scoring matrix (PSSM) as sequant@mation and accessible surface
area (ASA) of polar and non-polar atoms as strattmformation. SVM is used in two
stages. In the first stage, an interaction residugredicted by taking PSSMs of
sequentially neighboring residues or taking PSSk ASAs of spatially neighboring
residues as features. The second stage acts ltex &ofirefine the prediction results. The
recall and precision of the predictor using botqusmce and structural information are
73.6% and 50.5%, respectively. We found that ush@&pM instead of frequency of
amino acid appearance was the main factor of inggr@nt of our methods.[22]

This study was aimed to develop an improved fulleanated method for the prediction
of physiochemical properties of catalytic reside¢sstructural protein of PDB using a
carefully selected and supervised Machine learBiagkpropagation algorithm coupled
with an optimal discriminative set of structurabfmin properties. This study helps in de
novo prediction of properties of functional sitédpooteins.
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Material and M ethods

(i) Compilation of benchmarking dataset (ii) Seamghof active site and non active
residues (iii) Classification of Residue featur@3 Binary Coding and generation of data
set (v) Neural network training and testing.

Bench marking of dataset

The benchmarking dataset was compiled from the BRXBmanagement of the PDB
became the responsibility of the Research collaborafor Structural Bioinformatics
(RCSB). In general terms, the vision of the RCSBisreate a resource based on the fast
modern technology that facilitates the use andyarmabf structural data and thus creates
an enabling resource for biological research. Wkecithe 100 Protein ligand complex
hetero atoms in PDB database, for example: ladk.padq.pdb, 1a5g.pdb, 1a42.pdb,
1a50.pdb, 1a94.pdb, laag-1996.pdb, laaq-2002.pol,1983.Pdb, and labe-1983-
2.pdb, labe-1996.pdb, 1abe-2002.pdb, 1abf etc.

Searching of active and non active residues

The LIGPLOT algorithm reads in the 3D structuretioé ligand from the PDB file,
together with the protein residues it interactshwand “unrolls' each object about its
rotatable bonds, flattening them out onto the 2Ppage. The program automatically
generates schematic diagrams of protein-liganddotons from the 3D coordinates in a
PDB file, so we use the Ligplot for finding the iget site amino acid. For searching of
non active site Residues we use SurfRaeer: A computer programs, which perform
fast calculations of the solvent accessible ancemwér (solvent excluded) surface areas
of macro molecules. All surface area and curvataeulations are analytical therefore
yield exact values of these quantities. High calttah speed of this software is achieved
primarily by avoiding computation- ally expensiveatimematical procedures whenever
possible and by efficient binding of surface ddtactures. We run the surface racer and
find the non catalytic residues.

Encoding and generation of data set

For the initial analysis, each residue of the bemmiking dataset was represented as a
vector with 15 residue property values and a |§pet the value 1 for property which is
present or O property which is not present} toigate the hydrophobic or hydrophilic
character, polar or non polar, contain aliphati@amatic side chain, positive charged,
negative charged, uncharged, containing sulphuically inactive, making H bonding,
cyclic, essential or nonessential etc importantfiemal and structural parameters were
derived for each residues(catalytic and non-catglyt all 100 proteins.
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Figl. Ligplot output of 1a46.pdb showing the catalytic site
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Tablel. The active and non active site amino acid of some structural proteins

Protein Active siteresidue Non catalytic Residue

ladk Glu 81A Asn35B | Gly230 SER ARG TYR
labg Asp12 His57 Serl95 LYS PRO ARG
la42 His199 GIn137 Thr199 ASP ASN GLN
1a46 Glu205 | Gly216 Lys375 | ARG GLU LYS

Table 2. Data represent the example of binary coding of residue properties

Protein Residues Property encoding
(Polar, Non polar, Aromatic, Aliphatic, Acidic, Bas Positive,
Negative or Uncharged, Essential or not, Sulfurt@ion Optically

inactive, Cyclic and H bonding)

1gld.pdb| Cys, GlIn, 100100100011000, 100010100010000,
His 0000001010010000

13

Scholars Research library Journal



B SYadav etal Archives of Applied Science Research; 2009, 1 (1): 8-17

Collectproteir-ligand Searching Active Sit
PDB complex hetro atom residues with Liaplc

A 4

database

\ 4

Searcling non active sit:

residues using Surface rac

A

Distinguished aminocid

with 15 different properties

A 4

Mapping All 20 amino acit
in the form of binary digit

A 4

Testing the neural network ¢

the unknown protein residugg Created and trained t

data set 11sinod MATI A

neural network on the abov

Fig 2. Diagrammatic representation of used methodology

Neural network training and testing of data

After generating the input data we divided datarséb group, one is training data for the
train the network and another is testing data for testing of network. Create the
program using Matlab editor and fix input, outpalue and all variable in program for
the network initiation. The three essential feasunf ANN are basic computing elements
referred to as neurons, the network architectuserdeng the connections between the
neurons and the training algorithm used to findugal of the network parameters for
performing a particular task. Each neuron perfoansgmple calculation, a scalar function
of a scalar input. S Network architecture referthioorganization of the neurons and the
types of connections. In the multilayer feed forsvaetwork, neurons are organized in a
series of layers. Information flows only in oneadition; units receive information only
from units in higher layers of the network. The rauwnetwork that was used in this
investigation consists of a 100 unit input layed @awo-unit output layer, hidden layers
were incorporated into the network. Furthermore tietwork utilizes a feed-forward
design, in which signals are transferred forwaninfrthe input units to the output unit.
The output unit represents the prediction madehkynteural network as to whether the
central residue represents catalytic site or noalyta site.

During each cycle, the inputs are presented tméteork. The weights of the units are
adjusted at the end of the cycle, and this proeedurepeated. Back-propagation, a type
of learning algorithm, is used to optimize the atiinent of the weights. This form of
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supervised training, in which the desired outpuprissented to the network along with
the inputs, was used to train the neural network.

ANN can be ‘trained’ to perform a specific task &justing these weights. The weights
are continually adjusted by comparing the outputhefnetwork with the target until the
output of the network ‘matches’ the target in tease that the error function measuring
the difference between the target and the outpuatiismized. Many pairs of input and
output are used tot rain the network and this mafdadjustment is called ‘supervised’
learning .A learning rule in which weights and lessare adjusted by error-derivative
(delta) vectors back propagated through the netwBdck propagation is commonly
applied to feed forward multilayer networks. Outputompared with the target for each
input and adjustments of the weights are made wsitngining algorithm, most often the
back propagation algorithm. Incremental trainings@netimes referred to ‘adaptive’
training. Back propagatioimvolves two passes through the network, a forweass and a
backward pass. The forward pass generates the network’subudptivities and is
generallythe least computation intensive. The more time womsg backwardpass
involves propagating the error initially found ihet output nodes bacthrough the
network to assign errors to each node that conrtbto the initialerror. Once all the
errors are assigned, the weights are changedtsmaisimize these errors.

Result and Discussion

The ANN models developed in this study are basebiochemical features of active site
residue of structural protein. We found that themoek reached an overall accuracy of
95% + 2.86% based on amino acid derived featuresrder to judge the neural network
learning processa suitable measure of performance is required.| Botar (percentage
of incorrect predictions) is not sufficient duetkee highly unbalanced nature of the data
set.All of the statistics are derived from the followiquantities:
p = Number of correctly classified catalytic resdu
n = Number of correctly classified non-catalytisickies.
o = Number of non-catalytic residues incorrectlgdicted to be catalytic (over-
predictions).
u = Number of catalytic residues incorrectly préelicto be non-catalytic (under-
predictions).
t = Total residues (p + n + 0 + u).
The total error (Q Total) is given by equation (1)
Q Total =p + n/tx 100 (2)
To complement this, two other measures of perfonmawere used; Q Predicted
measures the percentage of catalytic predictiorss #re correct and Q Observed
measures the percentage of catalytic residuesitbatorrectly predicted.
Training Result
(96/10000
an86-00
Performance of Testing set
(38/40)*100
ans= 95.00
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To determine the best machine learning algorithra, teain the neural network with

training set of 100 PDB structural proteins with B@talytic residues and 50 non
catalytic. The residue of the dataset was repredeby a set of 15 residue properties
(Biochemical Properties of amino acid)

Which encoded in binary digit (O 1) previously shote be of functional relevance, as
well as a label {1 0 / 0 1} to indicate catalytiomcatalytic residue. This method
correctly predicted 96 of the 100 residues, withogarall predictive accuracy of more
than 90%. The results demonstrate that the develédéN-based binary prediction of
biochemical properties of catalytic site residueatkequate and can be considered an
effective tool forin silico screening. The structure of a protein is an ingdrt
determinant for the detailed molecular functiorpadteins, and would consequently also
be useful for prediction of ligand molecules. Based the analysis of biochemical
features from protein structure, differences in pheameters between catalytic and non-
catalytic have previously been shown to exist aseldufor prediction of catalytic/non-
catalytic in archaeal. This agrees well with owsulethat sequence derived features can
be used for predicting enzymes.

Presumably, accuracy of the approach operatindv@structure derived features can be
improved even further by expanding the parameterdyo applying more powerful
classification techniques such as Support Vectachifees or Bayesian Neural Networks.

Conclusion

An overall predictive accuracy of more than 90 %ssimg only 4 % of the catalytic
residues, The analysis of the optimal subset s#ldcom the initiall5 residue properties
indicated that the algorithrwas capable tdearn to distinguish catalytic from non-
catalytic residuedased on structural protein residues on proteifaserproperties like
hydrophobic or hydrophilic character, polar or rmolar, contain aliphatic or aromatic
side chain, positive charged, negative chargedhanged, containing sulphur, optically
inactive, making H bonding, cyclic, essential ornessential etc. This algorithm
predicted fundamental features of catalytic resdaed could predict catalytic residues
with accuracy > 90 % for proteins with known sturet This study shows that the
choices of machine learning Neural network Backpgapion algorithm sets for the
selectedalgorithm are critical for the prediction tasks.eTtesults of the present work
demonstrate that protein structure derived featunath ANN Backpropagation
classification method appear to be a very fastgmmatlassification mechanism providing
good results, comparable to some of the currenttsfin the literature.
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