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Abstract  
 
In this study, we present a method for the prediction of physiochemical properties of 
catalytic sites residues using a suitable Artificial Neural Networking (ANN) Feed 
Forward Backpropagation algorithm coupled with a set of structural proteins with the 
properties of their amino acid residues. The method has been applied to a set of 100 
structural proteins from the Protein Data Bank (PDB) having a ligand at their active site. 
Using Ligplot program for searching of active site residues and Surface racer for 
identifying the non active site moieties, the identified amino acid residues were classified 
in 15 different categories based on their physiochemical properties. After classification of 
active and non active site amino acids, their properties were converted into machine 
language. Furthermore, we created Neural Network Using Matlab software and generated 
algorithm for training and testing of data. Thereafter, analysis of results showed that 95% 
of active site’s physiochemical properties were correctly predicted. It is hoped that this 
work would help in determining the surface topographic properties for ligand binding 
sites residues in protein. The computational outcome would be helpful in ligand 
designing, molecular docking, de novo drug designing and structural identification and 
functional sites Comparisons.  
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Introduction 
Molecular design is important in various fields such as organic chemistry, physical 
chemistry, chemical engineering, chemical physics, bioengineering and molecular 
biology. No single strategy or method has come for ward that provides an optimum 
solution to the many different challenges involved in designing materials with new 
properties. Computational methods are needed for functional prediction of proteins. 
Advances in experimental and computational methods have quietly ushered in a new era 
in protein function annotation. This ‘age of multiplicity’ is marked by the notion that only 
the use of multiple tools, multiple evidence and considering the multiple aspects of 
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function can give us the broad picture that 21st century biology will need to link and alter 
micro- and macroscopic phenotypes. It might also help us to undo past mistakes by 
removing errors from our databases and prevent us from producing more. On the 
downside, multiplicity is often confusing, therefore systematically review methods and 
resources for automated protein function prediction, looking at individual (biochemical) 
and contextual (network) functions, respectively.[21]In particular, knowledge of the 
location of catalytic residues provides valuable insight into the mechanisms of enzyme 
catalyzed reactions. Many computational methods have been developed for predicting 
protein functions and functional residues involved in catalytic reactions, binding 
activities, and protein- protein interactions. Automated propagation of functional 
annotation from a protein with known function to homologous proteins is a well-
established method for the assignment of protein function. However, reliable functional 
propagation generally requires a high degree of sequence similarity. For example, to 
transfer all four digits of an EC number at an error rate of below 10% needs at least 60% 
sequence identity [1], and only about 60% of the proteins can be annotated by a 
homology transfer of experimental functional information in 62 proteomes.[2] 
The evolutionary trace (ET) method is used for prediction of active sites and functional 
interfaces in proteins with known structure. Based on the observation that functional 
residues are more conserved than other residues, the method finds the most conserved 
residues at different sequence identity cutoffs and, as a final step, relies on human visual 
examination of the residues on protein structures [3]. While the ET method was shown 
successful in many case studies [4-6], the need for manual inspection in this original 
implementation is not suitable for automated large-scale analysis. Modified and 
automated versions of the ET method have been developed and   tested on two protein 
datasets [7]. In one study the catalytic residues were predicted correctly for 62 (77.5%) 
out of 80enzymes with the   ACTSITE and SITE records from the PDB database  in 
another study [8], ~60% (79%by manual analysis) of catalytic residues were predicted 
correctly for 29 enzymes with experimentally characterized active sites. Another group of 
methods, the ab initio methods [reviewed in [2, 9]], do not use sequence conservation for 
functional site prediction. These methods exploit general protein properties, such as 
residue buffer capacity [10], the electrostatic energy of charged residues [11], protein sub 
cellular localization [12], and conservation of local structural similarities. [13] These 
methods are potentially useful for the prediction of novel protein function seven if 
sequence conservation of the functional site in question is low. The last group of methods 
combines sequence conservation with different aspects of protein structure. [14-
17]Three-dimensional cluster analysis predicted functional residues by examination of 
spatially-adjacent conserved residues [14], and achieved a high recovery (83%) with low 
error rate (2%) for the prediction of catalytic residues in 15 enzymes. A similar method 
enriched with two additional structural parameters predicted ~47% of catalytic residues at 
the 5% false positive rate among 39 enzymes from the CDD database with manually 
curate’s catalytic sites. [15] A method for locating catalytic residues based on the 
sequence conservation, local special conservation, stability analysis, and geometrical 
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location of the residue predicted 56% of catalytic residues in 49 enzymes. [16]The 
method considered only highly conserved D, E, K, R,H, S, T, N, Y, and C residues. A 
trained neural network (NN) with spatial clustering predicted over 69% of catalytic 
residues with a high false positive rate among 189enzymes from the CATRES database 
containing manually curetted catalytic residues. [17] The method used sequence 
conservation, residue type, and four structural parameters as inputs for the NN. Direct 
comparison of methods is confounded by the use of different performance measure and 
different data sets of various size and quality. Nevertheless, the overall accuracy for the 
prediction of catalytic residues remains low (in the 70% range). [18] We describe a 
methodology that attempts to optimize two components, global shape and local 
physicochemical texture, for evaluating the similarity between a pair of surfaces. Surface 
shape similarity is assessed using a three-dimensional object recognition algorithm and 
physicochemical texture similarity is assessed through a spatial alignment of conserved 
residues between the surfaces. The comparisons are used in tandem to efficiently search 
the Global Protein Surface Survey (GPSS), a library of annotated surfaces derived from 
structures in the PDB, for studying evolutionary relationships and uncovering novel 
similarities between proteins.[19] We introduce a classifier to predict the small molecule–
enzyme interaction, i.e., whether they can interact with each other. Small molecules are 
represented by their chemical functional groups, and enzymes are represented by their 
biochemical and physicochemical properties, resulting in a total of 160 features. These 
features are input into the AdaBoost classifier, which is known to have good 
generalization ability to predict interaction. As a result, the overall prediction accuracy, 
tested by tenfold cross-validation and independent sets, is 81.76% and 83.35%, 
respectively. [20] Protein-protein interactions play an important role in a number of 
biological activities. We developed two methods of predicting protein-protein interaction 
site residues. One method uses only sequence information and the other method uses both 
sequence and structural information. We used support vector machine (SVM) with a 
position specific scoring matrix (PSSM) as sequence information and accessible surface 
area (ASA) of polar and non-polar atoms as structural information. SVM is used in two 
stages. In the first stage, an interaction residue is predicted by taking PSSMs of 
sequentially neighboring residues or taking PSSMs and ASAs of spatially neighboring 
residues as features. The second stage acts as a filter to refine the prediction results. The 
recall and precision of the predictor using both sequence and structural information are 
73.6% and 50.5%, respectively. We found that using PSSM instead of frequency of 
amino acid appearance was the main factor of improvement of our methods.[22] 
This study was aimed to develop an improved fully-automated method for the prediction 
of physiochemical properties of catalytic residues of structural protein of PDB using a 
carefully selected and supervised Machine learning Backpropagation algorithm coupled 
with an optimal discriminative set of structural protein properties. This study helps in de 
novo prediction of properties of functional sites of proteins.  
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Material and Methods 

 
(i) Compilation of benchmarking dataset (ii) Searching of active site and non active 
residues (iii) Classification of Residue features (iv) Binary Coding and generation of data 
set (v) Neural network training and testing.  
 
Bench marking of dataset  
The benchmarking dataset was compiled from the PDB the management of the PDB 
became the responsibility of the Research collaboratory for Structural Bioinformatics 
(RCSB). In general terms, the vision of the RCSB is to create a resource based on the fast 
modern technology that facilitates the use and analysis of structural data and thus creates 
an enabling resource for biological research. We collect the 100 Protein ligand complex 
hetero atoms in PDB database, for example: 1a4k.pdb, 1a4q.pdb, 1a5g.pdb, 1a42.pdb, 
1a50.pdb, 1a94.pdb, 1aaq-1996.pdb, 1aaq-2002.pdb, abe-1983.Pdb, and 1abe-1983-
2.pdb, 1abe-1996.pdb, 1abe-2002.pdb, 1abf etc. 
 
Searching of active and non active residues 
The LIGPLOT algorithm reads in the 3D structure of the ligand from the PDB file, 
together with the protein residues it interacts with, and `unrolls' each object about its 
rotatable bonds, flattening them out onto the 2D   page. The program automatically 
generates schematic diagrams of protein-ligand interactions from the 3D coordinates in a 
PDB file, so we use the Ligplot for finding the active site amino acid. For searching of 
non active site Residues we use Surface Racer: A computer programs, which perform 
fast calculations of the solvent accessible and molecular (solvent excluded) surface areas 
of macro molecules. All surface area and curvature calculations are analytical therefore 
yield exact values of these quantities. High calculation speed of this software is achieved 
primarily by avoiding computation- ally expensive mathematical procedures whenever 
possible and by efficient binding of surface data structures. We run the surface racer and 
find the non catalytic residues. 
 
Encoding and generation of data set 
For the initial analysis, each residue of the benchmarking dataset was represented as a 
vector with 15 residue property values and a label {put the value 1 for property which is 
present  or 0 property which is not present} to indicate the hydrophobic or hydrophilic 
character, polar or non polar, contain aliphatic or aromatic side chain, positive charged, 
negative charged, uncharged, containing sulphur, optically inactive, making H bonding, 
cyclic, essential or nonessential etc important functional and structural parameters were 
derived for each residues(catalytic and non-catalytic) in all 100 proteins.  
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Fig1. Ligplot output of 1a46.pdb showing the catalytic site 
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Table1. The active and non active site amino acid of some structural proteins 

 
 

Table 2. Data represent the example of binary coding of residue properties 

 

Protein      Active site residue Non catalytic Residue 

1a4k Glu 81A    Asn35B Gly230 SER ARG TYR 

1a5g Asp12     His57 Ser195     LYS  PRO ARG  

1a42 His199      Gln137   Thr199      ASP ASN  GLN 

1a46 Glu205 Gly216      Lys375 ARG  GLU LYS  

Protein Residues       Property encoding 

(Polar, Non polar, Aromatic, Aliphatic, Acidic, Basic, Positive, 

Negative or Uncharged, Essential or not, Sulfur Contain, Optically 

inactive, Cyclic and H bonding) 

1gld.pdb Cys, Gln, 

His 

  100100100011000,  100010100010000, 

0000001010010000                                          

        



B S Yadav etal                          Archives of Applied Science Research; 2009, 1 (1): 8-17 
                        
 

_________________________________________________________________ 
Scholars Research library Journal 

14 

  

 

 
Fig 2. Diagrammatic representation of used methodology 

 
 
Neural network training and testing of data 
After generating the input data we divided data set in to group, one is training data for the 
train the network and another is testing data for the testing of network. Create the 
program using Matlab editor and fix input, output value and all variable in program for 
the network initiation.  The three essential features of ANN are basic computing elements 
referred to as neurons, the network architecture describing the connections between the 
neurons and the training algorithm used to find values of the network parameters for 
performing a particular task. Each neuron performs a simple calculation, a scalar function 
of a scalar input. S Network architecture refers to the organization of the neurons and the 
types of connections. In the multilayer feed forward network, neurons are organized in a 
series of layers. Information flows only in one direction; units receive information only 
from units in higher layers of the network. The neural network that was used in this 
investigation consists of a 100 unit input layer and two-unit output layer, hidden layers 
were incorporated into the network. Furthermore, the network utilizes a feed-forward 
design, in which signals are transferred forward from the input units to the output unit. 
The output unit represents the prediction made by the neural network as to whether the 
central residue represents catalytic site or non catalytic site. 
During each cycle, the inputs are presented to the network. The weights of the units are 
adjusted at the end of the cycle, and this procedure is repeated. Back-propagation, a type 
of learning algorithm, is used to optimize the adjustment of the weights. This form of 

Collect protein-ligand 
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residues with Ligplot 

Searching non active site 
residues using Surface racer 

Distinguished amino acid 
with 15 different properties  

 

Mapping All 20 amino acid  
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supervised training, in which the desired output is presented to the network along with 
the inputs, was used to train the neural network. 
ANN can be ‘trained’ to perform a specific task by adjusting these weights. The weights 
are continually adjusted by comparing the output of the network with the target until the 
output of the network ‘matches’ the target in the sense that the error function measuring 
the difference between the target and the output is minimized. Many pairs of input and 
output are used tot rain the network and this mode of adjustment is called ‘supervised’ 
learning .A learning rule in which weights and biases are adjusted by error-derivative 
(delta) vectors back propagated through the network. Back propagation is commonly 
applied to feed forward multilayer networks. Output is compared with the target for each 
input and adjustments of the weights are made using a training algorithm, most often the 
back propagation algorithm. Incremental training is sometimes referred to ‘adaptive’ 
training. Back propagation involves two passes through the network, a forward pass and a 
backward pass. The forward pass generates the network’s output activities and is 
generally the least computation intensive. The more time consuming backward pass 
involves propagating the error initially found in the output nodes back through the 
network to assign errors to each node that contributed to the initial error. Once all the 
errors are assigned, the weights are changed so as to minimize these errors.  
 
Result and Discussion 

 
The ANN models developed in this study are based on biochemical features of active site 
residue of structural protein. We found that the network reached an overall accuracy of 
95% ± 2.86% based on amino acid derived features. In order to judge the neural network 
learning process, a suitable measure of performance is required. Total error (percentage 
of incorrect predictions) is not sufficient due to the highly unbalanced nature of the data 
set. All of the statistics are derived from the following quantities: 

p = Number of correctly classified catalytic residues. 
n = Number of correctly classified non-catalytic residues. 
o = Number of non-catalytic residues incorrectly predicted to be catalytic (over-

      predictions). 
u = Number of catalytic residues incorrectly predicted to be non-catalytic (under-

     predictions). 
t = Total residues (p + n + o + u). 
The total error (Q Total) is given by equation (1) 
Q Total =p + n / t x 100                                   (2) 

To complement this, two other measures of performance were used; Q Predicted 
measures the percentage of catalytic predictions that are correct and Q Observed 
measures the percentage of catalytic residues that are correctly predicted. 
Training Result 

                                          (96/100)*100 
                                             ans = 96.00 

Performance of Testing set 
                                                     (38/40)*100 
                                                       ans = 95.00 
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To determine the best machine learning algorithm, we train the neural network with 
training set of 100 PDB structural proteins with 50 catalytic residues and 50 non 
catalytic. The residue of the dataset was represented by a set of 15 residue properties 
(Biochemical Properties of amino acid) 
 
Which encoded in binary digit (0 1) previously shown to be of functional relevance, as 
well as a label {1 0 / 0 1} to indicate catalytic/non-catalytic residue. This method 
correctly predicted 96 of the 100 residues, with an overall predictive accuracy of more 
than 90%. The results demonstrate that the developed ANN-based binary prediction of 
biochemical properties of catalytic site residue is adequate and can be considered an 
effective tool for in silico screening. The structure of a protein is an important 
determinant for the detailed molecular function of proteins, and would consequently also 
be useful for prediction of ligand molecules. Based on the analysis of biochemical 
features from protein structure, differences in the parameters between catalytic and non-
catalytic have previously been shown to exist and used for prediction of catalytic/non-
catalytic in archaeal. This agrees well with our result that sequence derived features can 
be used for predicting enzymes. 
Presumably, accuracy of the approach operating by the structure derived features can be 
improved even further by expanding the parameters or by applying more powerful 
classification techniques such as Support Vector Machines or Bayesian Neural Networks.  
 
Conclusion  
 
An overall predictive accuracy of more than 90 %, missing only 4 % of the catalytic 
residues, The analysis of the optimal subset selected from the initial 15 residue properties 
indicated that the algorithm was capable to learn to distinguish catalytic from non-
catalytic residues based on structural protein residues on protein surface properties like 
hydrophobic or hydrophilic character, polar or non polar, contain aliphatic or aromatic 
side chain, positive charged, negative charged, uncharged, containing sulphur, optically 
inactive, making H bonding, cyclic, essential or nonessential etc. This algorithm 
predicted fundamental features of catalytic residues, and could predict catalytic residues 
with accuracy > 90 % for proteins with known structure. This study shows that the 
choices of machine learning Neural network Backpropagation algorithm sets for the 
selected algorithm are critical for the prediction tasks. The results of the present work 
demonstrate that protein structure derived features with ANN Backpropagation 
classification method appear to be a very fast protein classification mechanism providing 
good results, comparable to some of the current efforts in the literature. 
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