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Abstract

The error bound of a numerical algorithm is verydal to it's selection for use in computatio of
numerical values of Initial Value Problems. In terk, we investigate and compute the error
bounds for the new Euler scheme proposed by Abrahdit]. We compare and contrast this

same parameter for the existing Euler Methods aedew proposed method.
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INTRODUCTION

Ordinary Differential Equations (ODEs) are of baswgportance in engineering mathematics
because many physical laws and relations appeahematically in the form of a ODE.
Whenever an initial condition is attached to an QiBecomes an Initial Value Problem (IVP).
The number of instances where an exact soluti@and®DE can be found by analytical means is
very limited.

Therefore, one of the objectives of numerical agialys to solve such complex problems using
only the simple operations of arithmetic, to depeland evaluate methods for computing
numerical results. The method of computing the moakvalues are called algorithm. In the
search for good algorithms, error bounds for thehows become very crucial because it
determines the choice of step length, and of cotinsespeed in generating the numerical results.

Generalizations of Euler M ethods

Given a functiory (x, ¥ (x)) and an “initial value’y(x,) corresponding to a solution value
at(x,), we seek to evaluate numerically the funcyigm)satisfying

y'(x) = f(X,y (x))' x € [xOIxend]'} (1)

y(x0) = Yo
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An approximate solution to an Initial Value Probl@wiP) (1) is typically obtained by iterating a
set ofdifference equationthat approximate the original system.

The famous method of Euler was published in higghvolume workinstitutiones Calculi
Integralsin the years 1768 to 1770, republished in hisectdld works in 1913 [4]. It involves
computing a discrete $¢t, }, for arguments{x,, } , using the difference equation

. = O (X, Ys h)
EM* Yni1= Yn { =hf (x, y),n=12,..,m )
where the step sizé = x,,1 — X,
The Euler method is simple. It uses only one pafdaformation from the past and evaluates the
driving function only once per step. However, in practical for computational purposes since
a considerable effort is required to improve accyrén spite ofb; (x,, v,; h) its limitations, the
Euler method is the fundamental building block tlee higher accuracy methods, be it Runge—

Kutta or Linear Multistep methods [8].

Since the difference equation is linearyp and f,, , and being a one-step method, it can easily
handle IVPs that require variable step length. &aaler proposed his historical Euler method in
1768, there has been lot of developments on thssabf method. Among others, Abraham [1],
recently, proposed a new improvement on Euler Me&thehich is called Modified Improved
Modified Euler Method. In this work, we examine tbeor bound for this newly proposed
algorithm in relation to the other existing Euleetimods. Our computation show that the order of
accuracy of the method is 2, when applied to InWalue Problem, the method competes well
with the existing methods. However, we discovelet for certain step length, the method did
not yield good results. The summary of these aelmmnts [1, 7] are presented in table 1

Table 1. Development of Euler Methods

Stability Function
Method Yns1 — Yn = P O, yns h) R Y
Method(Z)
EM = hf (Xp, Yn) 1+2z
1
ME = hf (o Sy + 20 Cono) 142452
1 1 1
IE =§h(f(xn,yn)+f(xn+ h,yn+hf(xn,yn))) 1+Z+§Zz+ ZZ3
1 1
IME :hf(xn+%hiyn+%hf(xn+hiyn+hf(xn;yn))> 1+Z+§Z2+ 523
_ 1 1 1 1 1 ) 1 5
MIME | = hf (% + 5 Yn + Shf (X0 + SR Yo + SHS (2, ) l+z+52%+ 72

Propagation of Errorsin Euler Methods

Euler methods, like other one-step methods aredbasethe principle of discretization. These
methods have the common feature that no attemptaide to approximate the exact solution
y(x) over a continuous range of the independent vaiaigpproximate values are sought only
on a set of discrete pointg, x,, x, ... We denote the true solution of the differential attpn at

x = x, byy(x,), and the appropriate solution obtained by applgng of the Euler methods as

vn- We wish to investigate the propagation of erfothese methods which is a crucial property
of the method. This study also helps in the salactf steplength and thus, the speed of
generating numerical results for IVPs.
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Definition 3.0.1. The Local Truncation Error (LTE) at,,,, of the Euler methods is defined to
bet, ., where

T+t = Y (Xne1) = Y(X0) — Puetnoa Y (xn); h) 3)
andy(x) is the theoretical solution of the IVP (1)

If we make the localizing assumption that no prasierrors have been made (that is , that
y. = ¥(x,,), then the LTE ofEuler methodssatisfies

Tne1 = Y (Xn41) — Ynt1

The study of error bounds also plays a significat in the design of program codes for solving
IVP (1). Only few codes control the LTE committedeaery integration step by demanding that

[51,
TTL+1 S thTTl (4)

where h,, = x,,.1 — x, IS the current stepsize anglis the allowable error tolerance, which may
depend on the independent variable Most practical codes, however, replacg on the
righthand side of (4) by unity, thus adopting eper step criterion [5].

A user is actually interested in the true or gladrabr specified by

€n+1 = y(xn+1) — Yn+1, (5)

This global truncation errog,,,; is defined such that it is no longer assumed tleaprevious
truncation errors have been made. And it is wedviam that the variational equation

e'(x) = ](x,y(x))e(x),e(a)z o) (6)
(where J is the Jacobian matrix associated with the IVPs@ys how an errod at x = a
propagates. The approximate equation (6) is sadidfy the error-neglecting second order terms

[5].

The propagation of errors depends on two factamseha
* thelocal error and
» the nature/stability of the problem

For instance if the IVP (1) is inherently stableaftis, all the eigenvalues dhave negative real

parts), then the local errors may damp out withraasing X; otherwise, the errors will be
magnified with increasing [7]. Bulirsh and Stoer [2], constructed asymptatpper and lower

bounds on the global errors emanating from extetjwel methods to IVPs. Shampine [10],
generalized this idea for any one-step method emdowith an asymptotically correct LTE
estimator.

There exist fundamental obstacles in the directrobaf the global error, but in recent years,
appreciable progress has been attained and rediatieation of the global error [5].

The LTE and the roundo errors constitute a sequefcperturbations that shift computed
solutions to the neighbouring integral curves.

The stability of a discretization method for (1)nt#nds that, provided the starting global error
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e, # 0, the ultimate global erroe,, should be bounded [5]; that is a finite constéamixists such
that

en < Keg
Therefore, the LTE foMIME methodcan be obtained by using the Taylor’s series esipa for
y(x,4+1) and(y,4,) from table 1 as follows,

Tn+1 = Yut Af + %hszy + %hs(fff+fzfyy)
—yn + hf o075 + SR QR(FAE+ f2fy) + 0RY) (D)

1
= 2P (2 fy = 2ff7) + 0(h") (8)
This can also be written as
Th+1 = (p(:V(xn))hs + 0(h4) )
where
1
o(y0w) =57 (F*fy = 2/ ) (10)

is called the principal error function, anctp(y(xn))h3 the Principal Local Truncation Error
(PLTE) [6, 5].

Suppose the following bounds fgr and its partial derivatives hold for
x € [a,bl,y € (— o)

lfMl <0

pJ

If )
< —
Q™

oy’

J Sp (11)

where P and Q are positive constants [9], andp is the order of the method
(in this casep = 2). Then,

Ifyl <P,Ifyyl < P?Q~'and |fyyy| < P3Q*
and the following bounds on the errors are obtafoetheMIME and Euler
Methodsin table 1:

Table 2: Principal Error functions and Bounds of Euler Methods

Method Principal Local Truncation Error Region of
solute Stability
(PLTE) Absolute Stabili
EM loem (y(xn))R?| < %hZQP -2<z<0
ME | oue(y(en))h?| < Zh2QP? —2<z<0
IE |1 (y(x))R3| < %h‘gQP2 -2<z<0
IME |ome(y(x))R3| < gh's’sz —1.47797 <z <0
MIME | oaims (Y () )13 < —h*QP? —2<z<0

Numerical Computations

In this section we compute the appropriate meshis@mends so as to integrate the IVPs in
Examples 1 - 4 [5, 6], using the Euler methods stated in tH#etavith an allowable error
tolerance ¢ = 10~* . These computations are shownfigure 1. We also implement these
schemes on the IVPs in the given examples. The ncaheesults generated are also plotted and
displayed in figures 2 9.
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Example 1
Consider the IVP,
y'(x) = —10(y(x)*=1),y(0) = 2,0 <x <1 (12)
of which its bounds can readily be establishe@ as= 10,P = 20. The theoretical solution of
this problem is given as

Yy =1+ 1001

The graphs of the numerical values gf(x) generated for this example using the Euler methods
are displayed in figures 2 and 3.

Example 2
Consider the general test problem,

y(@)=y@), y0) =1 0<x=<1 (13)
of which its bounds can readily be established)asxp (1) ,P = 1. The theoretical solution of
this problem is given as

y(x) = exp (x)

The graphs of the numerical values pfx) generated for this example using the Euler methods
are displayed in figures 4 and 5.

Example 3
Consider the IVP,
y(@) =y, y0=10<x <1 (14
of which its bounds can readily be establisheddas= 1, P = 7. The theoretical solution of this
problem is given as

y(0) = J(x +2)?
The graphs of the numerical valuesygi) generated for this example using the Euler methods
are displayed in figures 6 and 7.

Example 4
Consider the IVP,

Yy =1+@E)?Ay (0 =10 <x <% (15)
of which its bounds can readily be established@as= 2,P = 2. The theoretical solution of
this problem is given as

y(x) = tan (x + %)
The graphs of the numerical valuesygi) generated for this example using the Euler methods
are displayed in figures 8 and 9.

CONCLUSION

The comparison between MIME method with other eéxisEuler methods shows that, MIME
and Improved Euler methods have the same stepsizedb stability function and Region of
Absolute Stability (see table 1, 2 and figure Ipri figures 2 — 9, it is obvious that the newly
proposed MIME metho d has a higher order of acquthan many existing Euler methods.
However, the results obtained in some cases werasraccurate as some existing Euler method.
For instance, despite the fact that, the stalilihctions, region of absolute stability and stepsiz
bounds are the same for MIME and IE methods:

* In example 1, foin = 0.05, MIME generated the best results from figure 2emas from

figure 3 forh = 0.1, IE method gave the best results
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* In example 2, foh = 0.0fandh = 0.05 MIME generated the best results from figure 4 &

respectively

* In example 3, MIME method performed best h = 0.05anch = 0.0¢ from figures 6 and 7

respectively.

* Also, in example 4, MIME method performed besth = 0.03rom figure 8, whereas all tf
methods did not yield good resufor h = 0.05from figure 9. This confirms the fact tF
stability of the problem being solvalso plays significant role in generating a goaiilt

We therefore conclude that the study of propagaifagrrors in Euler methods is quite signific
and should find relevance in the development offam codes for solving IVPs in ODEs amc

other relevance.

In addition, we have alsdisplaye( the stability regions of thedeuler methoc in the complex
plane in Figures 10 and 1This analysis will also find relevance in theestéion of a gool
numerical scheme for solving Initial Value Probleiin Ordinary Differential Equation:
especially whemethods with low computational cs are of major intere:

Figure 1: Stepsize (h) boundsfor Euler Methods
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Example : Example 2 Example 3 Example -
BEM 0.00857763 0.001 0.02 0.00707106
BME 0.03436983 0.005313293 0.084343267 0.03347164
olE 0.0545587 0.008434327 0.13388659 0.05313292
BIME 0.03436983 0.005313293 0.084343267 0.03347164
EMIME | 0.0545587 0.008434327 0.13388659 0.05313292
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Figure 4: Graph of Numerical Values of y(x) using h=0.05 (0= x < 0.7)
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Figure 5: Graph of Numerical Values of y(x) using h=0.5 (0 < x < 0.7)
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Figure 6: Graph of Numerical Values of y(x) usingh=0.1 (0< x < 0.7)
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Figure 7: Graph of Numerical Values of y(x) using h=0.5 (0 < x < 0.7)
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Figure 8: Graph of Numerical Values of y(x) using h=0.1 (0< x < 0.7)
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Figure 9: Graph of Numerical Values of y(x) using h=0.5 (0< x < 0.7)
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Figure 10: The Stability regions of the Euler Methodsin the Complex Plane
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Figure 11: Comparison of Stability regionsfor the Euler Methods (EM, ME, IME, |E and
MIME).
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