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ABSTRACT 
 
A set of nineteen Pyrazinecarboxamides derivatives with herbicidal activity was subjected to the two dimensional 
quantitative structure activity relationships studies. This work was conducted using the principal component 
analysis (PCA) method, the multiple linear regression method (MLR), the multiple non-linear regressions (MNLR) 
and the artificial neural network (ANN). The predicted results of various study compounds afford reliable prediction 
of IC50 with respect to experimental data. Density functional theory (DFT) calculations have been carried out in 
order to get insights into the structure, chemical reactivity and property information for the series of study 
compounds. This study shows that the PCA, MLR and MNLR have served also to predict activities, but when 
compared with the results given by the ANN (R2= 0.994) , we realized that the predictions fulfilled by this latter 
were more effective as indicated by the value of cross validated squared correlation coefficient (R2

CV = 0.998). 
Thus, this validated model brings important structural insight to aid the design of novel 
herbicidal agents.  
 
Keywords: DFT study, QSAR, pyrazinecorboxamides, herbicidal. 
 

 
INTRODUCTION 

 
Herbicides are inhibitors of individual metabolic processes in plants, used in agriculture as a selective means of 
defense against weeds. Weeds compete with crops for sunshine, water, nutrients, and physical space and are thus 
capable of greatly influencing the growth of crops and undermining both crop quality and yield. Also, many weeds 
are the harbor or nest of pathogens, viruses, and pests, which may result in the occurrence and spread of plant 
diseases and insect pests in crops. Herbicides, as the main weed control tool, play a very important role in modern 
agriculture. Crop protection continually needs the discovery of novel herbicides. 
 
Since the discovery of the herbicide 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 2, 4, 5-trichlorophenoxyacetic 
acid (2, 4, 5-T) Fig. 1, the agrochemical industry has successfully developed a wide array of herbicides with various 
chemical structures and modes of action [1]. However, an inevitable problem associated with the use of herbicides is 
the occurrence of herbicide resistant weeds [2]. Therefore, it is necessary to develop efficient herbicides with novel 
structures or modes of action to overcome the resistance of weeds. 
 
Analogues of pyrazinecarboxamides belong to the group of herbicides inhibiting the photosynthetic electron 
transport in spinch chloroplast. On the other hand, the pyrazinamide ring system has received much attention in 
biologically active molecules, such as potent inhibitors of mycobacterium and fungal. In this study, we have 
modeled the inhibition in spinach chloroplast (IC50) of a series of pyrazine-2-corboxylic acid amides derivative 
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(Table 1), using several statistical tools, principal components analysis (PCA), multiple linear regression (MLR), 
multiple non-linear regression (MNLR) and artificial neural network (ANN) calculations. The objectives of this 
work are to develop predictive QSAR models for the toxicity of our studied molecules. On the other hand, several 
quantum chemical methods and Quantum-chemistry calculations have been performed in order to study the 
molecular structure and electronic properties [3,4]. The geometry as well as the nature of their molecular orbital, 
HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) is involved in the 
properties of biological activity of organic compounds. The more relevant molecular properties were calculated, 
these properties are the highest occupied molecular orbital energy EHOMO , the lowest unoccupied molecular orbital 
energy ELUMO , energy gap ∆E, dipole moment µ, the total energy ET, the activation energy Ea and the absorption 
maximum λmaxand factor of oscillation f(SO). 
 

                       

                                                  (a)                                                    (b) 
 

Figure 1. Structure of (a) 2, 4-D and (b) 2, 4, 5-T 
 

MATERIALS AND METHODS 
 

EXPERIMENTAL DATA 
A dataset of 19 compounds was taken from the published pyrazinecarboxamides derivatives as an herbicidal agent 
[5, 6]. The activity under investigation is the inhibition in spinach chloroplast (IC50) of a series of pyrazine-2-
corboxylic acid amides derivatives by 50% (IC50).  
 
The structures and their herbicidal activities are listed in Table1. The inhibitory activity IC50 (µmol/L) values were 
converted to logarithmic form (pIC50) and used as dependent variables in the 3D-QSAR analyses. 
 

Table1. Observed pIC50 of the pyrazinecarboxamide derivatives as herbicidal agents 
 

 
Mol. N° R1 R2 R3 pIC50(obs.) 

1* H H 2-Cl-5-OH 2.86 
2* H H 4-F 2.68 
3* H H 2-CF3 2.57 
4 H H 3-CF3 2.11 
5 H H 4-CH3 3.17 
6 Cl H 2-Cl-5-OH 2.79 
7 Cl H 4-F 2.58 
8 Cl H 2-CF3 2.74 
9 Cl H 3-CF3 2.36 
10 Cl H 4-CH3 3.18 
11 H (CH3)3C 4-F 2.72 
12 H (CH3)3C 2-CF3 1.74 
13 H (CH3)3C 3-CF3 2.45 
14 H (CH3)3C 4-CH3 2.21 
15 Cl (CH3)3C 2-Cl-5-OH 2.79 
16 Cl (CH3)3C 4-F 2.01 
17 Cl (CH3)3C 2-CF3 2.31 
18 Cl (CH3)3C 3-CF3 2.24 
19 Cl (CH3)3C 4-CH3 1.86 

*test set 
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CALCULATION OF MOLECULAR DESCRIPTORS 
CALCULATION OF DESCRIPTORS USING GAUSSIAN 03W 
DFT (density functional theory) methods were used in this study. These methods have become very popular in 
recent years because they can reach similar precision to other methods in less time and less cost from the 
computational point of view. In agreement with the DFT results, energy of the fundamental state of a polyelectronic 
system can be expressed through the total electronic density, and in fact, the use of electronic density instead of 
wave function for calculating the energy constitutes the fundamental base of DFT [7,8] using the B3LYP functional 
[9] and a 6-31G(d) basis set. The B3LYP, a version of DFT method, uses Becke’s three-parameter functional (B3) 
and includes a mixture of HF with DFT exchange terms associated with the gradient corrected correlation functional 
of Lee, Yang and Parr (LYP). The geometry of all species under investigation was determined by optimizing all 
geometrical variables without any symmetry constraints.  
 
The 3D structures of the molecules were generated using the Gauss View 3.0, and then, all calculations were 
performed using Gaussian 03W program series, Geometry optimization of nineteen compounds was carried out by 
B3LYP method employing 6–31G (d) basis set. 
 
CALCULATION OF DESCRIPTORS USING ACD/CHEMSKETCH 
ChemSketch program (Demo version 10.0) [10] was employed to calculate the others molecular descriptors, Molar 
Volume (MV (cm3)), Molecular Weight (MW), Molar Refractivity (MR (cm3)), Parachor (Pc (cm3)), Density (D 
(g/cm3)), Refractive Index (n) [11]. 
 
STATISTICAL ANALYSIS 
PRINCIPAL COMPONENTS ANALYSIS (PCA) 
The molecules of pyrazinecarboxamide derivatives (1 to 19) were studied by statistical methods based on the 
principal component analysis (PCA) [11] using the software XLSTAT 2009. 
 
This is an essentially a descriptive statistical method which aims to present, in graphic form, the maximum 
informations contained in the data table 1. 
 
PCA is a statistical technique useful for summarizing all the informations encoded in the structures of compounds. It 
is also very helpful for understanding the distribution of the compounds. 
 
MULTIPLE LINEAR REGRESSIONS (MLR) 
The multiple linear regression statistic technique is used to study the relation between one dependent variable and 
several independent variables. It is a mathematic technique that minimizes differences between actual and predicted 
values. The multiple linear regression model (MLR) [9] was generated using the software XLSTAT 2009, to predict 
IC50. It has served also to select the descriptors used as the input parameters for a back propagation network (ANN). 
 
ARTIFICIAL NEURAL NETWORKS (ANNS) 
The ANNs analysis was performed with the use of Mathlab software v 2008a Neural Fitting tool (nftool) toolbox on 
a data set of pyrazinecarboxamide derivatives IC50 activity [12]. 
 
A number of individual models of ANN were designed built up and trained. Generally the network was built for 
three layers; one input layer, one hidden layer and one output layer were considered [13]. The input layer consisted 
of fifteen artificial neurons of linear activation function. The number of artificial neural in the hidden layer was 
adjusted experimentally. The hidden layer consisted of 8 artificial neural. One neuron formed the output layer of 
sigmoid function activation.  
 

The data subjected to ANN analysis were randomly divided into three sets: a learning set, a validation set and a 
testing set. Prior to that, the whole data set was scaled within the 0–1 range. 
 
The set of pyrazinecarboxamide derivatives of IC50 activity [14] were subjected to the ANN analysis. First, forth 
learning set of compounds, 13 inhibitors were used. ANN models were designed, built and trained. The learning set 
of data is used in ANNs to recognize the relationship between the input and output data. Then for the revision of the 
ANN model designed and selected, the validation set of 3 compounds was used. Testing set with 3 compounds was 
provided to be an independent evaluation of the ANN model performance for the finally applied network. In this 
study, we selected the Sigmoid as a basis function [15]. The operation of the output layer is linear, which is given as 
below:   
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Where yk is the kth output layer unit for the input vector X, wkj is the weight connection between the kth output unit 
and the jth hidden layer unit and bk is the bias that allows a transfer function “non-zero” given by the following 
equation:  

∑ −=
−

y)y(Bias
                                         (2) 

 

where y is the measured value and 

−
y is the value predicted by the model.  

The accuracy of the model was mainly evaluated by the root mean square error (RMSE). Formula is given as 
follows: 

∑
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               (3) 
 

 
where n = number of compounds, pexp = experimental value, ppred = predicted value and summation is of overall 
patterns in the analyzed data set [16,17]. The scripts were run on a personal PC. 
 

RESULTS AND DISCUSSION 
 
This study was carried for a series of 19 of pyrazinecarboxamide derivatives, in order to determine a quantitative 
relationship between structure and herbicidal activity IC50. Table 2 shows the values of the calculated parameters 
obtained by DFT/B3LYP 6-31G* optimization and ACD/ChemSketch program of the studied compounds. 
 

Table 2. Values of the calculated parameters obtained by DFT/B3LYP 6-31G* optimization and ACD/ChemSketch program of the 
studied compounds 

 

N° pIC 50 MW MR 
(cm3) 

MV 
(cm3) 

Pc 
(cm3) 

D 
(g/cm3) 

α ET 

(eV) 
EHOMO  

(eV) 
ELUMO 

(ev) 
∆E 

(eV) 
µ 

(Debay) 
Ea 

(ev) 
λmax 

(nm) f(so) 

1* 2.86 249.653 68.780 165.100 486.000 1.511 25.280 - 32 645.8 -5.994 -2.128 3.866 2.627 120.125 281.050 0.0410 
2* 2.68 217.199 57.000 158.900 442.300 1.366 22.590 -20 785.0 -6.003 -2.159 3.844 4.096 118.619 284.610 0.0495 
3* 2.57 267.207 61.990 188.200 492.300 1.419 24.570 -27 260.4 -6.383 -2.189 4.194 1.378 111.044 269.080 0.0141 
4 2.11 267.207 61.990 188.200 492.300 1.419 24.570 -27 260.4 -6.406 -2.275 4.131 6.119 119.755 281.920 0.0452 
5 3.17 213.235 61.830 171.000 472.800 1.246 24.510 -19 153.5 -5.825 -2.053 3.772 3.513 116.389 290.070 0.0474 
6 2.79 284.098 68.680 177.000 521.900 1.604 27.220 -45 160.6 -6.085 -2.424 3.661 2.005 129.503 260.700 0.0197 
7 2.58 251.644 61.890 170.900 478.100 1.472 24.530 -33 299.8 -6.126 -2.466 3.661 2.439 128.637 262.450 0.0157 
8 2.74 301.652 66.880 200.200 528.200 1.506 26.510 -39 775.2 -6.510 -2.476 4.034 0.796 134.236 251.510 0.0216 
9 2.36 301.652 66.880 200.200 528.200 1.506 26.510 -39 394.5 -6.441 -4.112 2.329 1.982 103.354 326.650 0.0199 
10 3.18 247.680 66.730 182.900 508.700 1.353 26.450 -31 668.3 -5.947 -2.362 3.585 2.034 127.140 265.540 0.0174 
11 2.72 273.305 75.390 225.600 590.300 1.211 29.880 -25 067.2 -5.909 -1.927 3.982 4.806 124.577 271.000 00212 
12 1.74 323.313 80.370 254.900 640.400 1.268 31.860 -31 542.6 -6.286 -1.961 4.325 1.853 126.924 265.990 0.0261 
13 2.45 323.313 80.370 254.900 640.400 1.268 31.860 -31 542.6 -6.316 -2.043 4.274 3.829 126.437 267.020 0.0254 
14 2.21 269.342 80.220 237.700 620.800 1.133 31.800 -23 435.7 -5.735 -1.827 3.908 3.778 122.404 275.820 0.0153 
15 2.79 340.205 87.060 243.700 669.900 1.395 34.510 -49 442.6 -6.008 -2.183 3.824 1.177 130.704 258.300 0.0377 
16 2.01 307.751 80.280 237.500 626.200 1.295 31.820 -37 581.8 -6.034 -2.218 3.817 3.297 128.580 262.570 0.0279 
17 2.31 537.758 85.270 266.900 676.900 1.340 33.800 -44 057.2 -6.414 -2.236 4.178 0.584 133.849 252.230 0.0640 
18 2.24 357.758 85.270 266.900 676.300 1.340 33.800 -44 057.3 -6.444 -2.325 4.119 2.967 133.718 252.480 0.0466 
19 1.86 303.787 85.110 249.600 656.700 1.216 33.740 -35 950.4 -5.859 -2.119 3.740 2.116 127.608 264.570 0.0351 

 
The set of sixteen descriptors encoding the 19 of pyrazinecarboxamide compounds, electronic, energetic and 
topologic parameters are submitted to PCA analysis [18]. The first three principal axes are sufficient to describe the 
information provided by the data matrix. Indeed, the percentages of variance are 42.52%; 20.36% and 13.64% for 
the axes F1, F2 and F3, respectively. The total information is estimated to a percentage of 76.52%. The principal 
component analysis (PCA) [19, 20] was conducted to identify the link between the different variables. Bold values 
are different from 0 at a significance level of p= 0.05. Correlations between the fifteen descriptors are shown in table 
3 as a correlation matrix and in fig. 2 these descriptors are represented in a correlation circle. 
 
The Pearson correlation coefficients are summarized in the following table 3. The obtained matrix provides 
information on the negative or positive correlation between variables. 
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 * The Molecular Refractivity MR  is strongly correlated with: the Polarizability α (r= 0.996), the Parachor Pc 
(r=0.984), and is well correlated with the Molecular Volume MV (r=0.933).  
* The Molar Weight MW  is well correlated with the Parachor Pc (r =0.979) and with the Polarizability α (r= 0.952). 
* The Parachor Pc is strongly correlated with the Polarizability α (r =0.994). 
* The Energy of activation Ea is negatively correlated with the maximum of absorption λmax (r= -0.902). 
 

Table 3. Correlation matrix (Pearson (n)) between different obtained descriptors 
 

 pIC50 MW MR MV Pc D α ET EHOMO  ELUMO  ∆E µ Ea λmax 
               

MW -0.383 1             
MR -0.496 0.679 1            
MV -0.627 0.729 0.933 1           
Pc -0.558 0.720 0.984 0.979 1          
D 0.334 -0.060 -0.471 -0.548 -0.496 1         
α -0.512 0.686 0.994 0.952 0.994 -0.496 1        
ET 0.134 -0.638 -0.531 -0.416 -0.512 -0.454 -0.525 1       
EHOMO  0.262 -0.465 0.042 -0.178 -0.068 -0.468 0.024 0.401 1      
ELUMO  -0.024 -0.043 0.252 0.202 0.218 -0.546 0.239 0.344 0.441 1     
∆E -0.176 0.217 0.256 0.326 0.281 -0.338 0.251 0.153 -0.082 0.858 1    
µ -0.094 -0.461 -0.237 -0.163 -0.219 -0.349 -0.232 0.623 0.262 0.251 0.128 1   
Ea -0.102 0.470 0.550 0.471 0.536 -0.092 0.555 -0.504 -0.018 0.469 0.530 -0.246 1  
λmax 0.080 -0.416 -0.459 -0.415 -0.459 0.085 -0.467 0.402 0.070 -0.604 -0.711 0.317 -0.902 1 
f (SO) -0.060 0.424 0.172 0.160 0.159 -0.091 0.150 -0.084 -0.096 0.179 0.254 0.098 0.175 -0.062 

 
CORRELATION CIRCLE  
The principal component analysis (PCA) was also performed to detect the connection between the different 
variables. The principal component analysis revealed the correlation circle (Fig. 2) shows that the F1 axis (42.59% 
of the variance) appears to represent the Molar Refractivity (MR ), and the F2 axis (20.36% of the variance) seems to 
represent the lowest unoccupied molecular orbital energy (ΕLUMO ).  
 

 
 

Figure 2. Correlation circles 
 

Analysis of projections according to the planes F1–F2 and F1-F3 (62.95% and 56.23% of the total variance 
respectively) of the studied molecules (Fig. 3) shows that the molecules are dispersed in two Regions: Region 1 
contains compounds having a values of ET between -19 153.5 eV and -37 581.8 eV, Region 2 contains compounds 
having a values of ET between -39 394.5 eV and - 49 442.6 eV. 
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Figure 3. Cartesian diagram according to F1-F2 
 
MULTIPLE LINEAR REGRESSIONS (MLR)  
To establish quantitative relationships between herbicidal activity pIC 50 and selected descriptors, our array data 
were subjected to a multiple linear and nonlinear regression. Only variables whose coefficients are significant were 
retained.  
 
MULTIPLE LINEAR REGRESSION OF THE VARIABLE PIC 50 (MLR) 
Modeling herbicidal activity pI50 value of all training compounds (compounds 16 pyrazinecarboxamides 
derivatives) led to the best value corresponding to the linear combination of the following descriptors: Molar 
Volume MV , Molecular Weight MW , Molar Refractivity MR , Parachor Pc, Density D, the total energy ET, the 
highest occupied molecular orbital energy EHOMO , the lowest unoccupied molecular orbital energy ELUMO , the total 
dipole moment of the molecule µ, the activation energy Ea, absorption maximum λmax and factor of oscillation f(SO).  
 
The resulting equation is: 
 
pIC 50=-128.88+2.76× 10-03× MW +1.89× 10-02× MR -0.59× MV +0.27× Pc-16.03× D+4.82.10-04× Et-16.19×  
EHOMO -3.52× ELUMO -6.36.10-02× µ+0.22× Ea+2.25× 10-02× λmax+8.48.10-02× f (SO)                            (4) 

 
 

Figure 4. Graphical representation of calculated and observed pIC50 by MLR 
 

For our 16 compounds, the correlation between experimental and calculated pIC50one based on this model are quite 
significant (Figure 4) as indicated by statistical values:  
 

N = 16         R = 0.98         R2 =0.96         RMSE = 0.19 
 
The figure 4 shows a very regular distribution of pIC50 values depending on the experimental values. 
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MULTIPLE NONLINEAR REGRESSION OF THE VARIABLE PIC 50 (MNLR) 
We have used also the technique of nonlinear regression model to improve the predicted pIC50 in a quantitative way. 
It takes into account several parameters. This is the most common tool for the study of multidimensional data. 
 
The resulting equation is: 
pIC 50 = -118.584+2.082× 10-03× MW +12.975× MR -0.594× MV +0.254× Pc-15.626× D-32.323× α + 5.071× 10-

04× Et-16.913× EHOMO -3.633× ELUMO -0.110× µ+0.153× Ea-5.802× 10-03× λmax+2.126× f(SO)                     (5) 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
Figure 5. Graphical representation of calculated and observed pIC50 by MNLR 

  
The obtained parameters describing the topologic and the electronic aspects of the studied molecules are: 

N = 16          R = 0.98          R2 = 0.96         RMSE= 0.31  
 

The pIC 50 value predicted by this model is somewhat similar to that observed. The fig. 5 shows a very regular 
distribution of IC50 values based on the observed values. 
As part of this conclusion, we can say that the herbicidal activity values obtained from MLR and RNLR are highly 
correlated to that of the observed herbicidal activity. 
True predictive power of a QSAR model is to test their ability to predict accurately the activities of compounds from 
an external test set (compounds which were not used for the model development), the activities of the remained set 
of 3 compounds (1-3) are deduced from the quantitative model proposed with the 16 molecules (training set) by 
MLR and MNLR.  
 
The comparison of the values of pIC 50 (test) to pIC 50 (obs.) shows that a good prediction has been obtained for the 3 
compounds: 
 

MLR                                   N = 3         Rtest= 0.85         R2test = 0.73 
 

MNLR                                N = 3         Rtest= 0.94         R2test = 0.88 
 
ARTIFICIAL NEURAL NETWORKS (ANN) 
Artificial Neural Networks (ANN) can be used to generate predictive models of quantitative structure-activity 
relationships (QSAR) between a set of molecular descriptors obtained from the MLR and observed activity. 
 
The correlations coefficients and Standard Error of Estimate, obtained with the Neural Network, show that the 
selected descriptors by MLR are pertinent and that the model proposed to predict activity is relevant. 
 
The values of predicted activities and the observed values are given in table 4. 
 
The obtained squared correlation coefficient (R2) value confirms that the ANN results were the best to build the 
quantitative structure activity relationship models.  
 
In this part, we investigated the best linear QSAR regression equations established in this study. Based on this result, 
a comparison of the quality of ACP, MLR, MNLR and ANN models shows that the ANN models have substantially 
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better predictive capability because the MNLR approach gives better results than MLR, and MNLR. ANN was able 
to establish a satisfactory relationship between the molecular descriptors and the activity of the studied compounds.  
 
The values of predicted activities calculated using ANN and the observed values are illustrated in figure 6. 
 

  
 

Figure 6. Correlations of observed and predicted activities calculated using ANN  
 
The values of predicted activities calculated using ANN and the observed values are given in table 4. 
 
In the above these QSAR models, ANN is the best model, that indicate the effects of these descriptors on the 
herbicidal activity of the studied pyrazinecarboxamide derivatives. A unified ANN models with high statistical 
quality (R = 0.997, R2 = 0.994) was obtained from the pool of all type of descriptors. In order to validate the 
generated ANN models leave one out (LOO) method was used to check their predictivity and robustness, test sets of 
new compounds, not included in the model development set, must be used. The LOO is an approach particularly 
well adapted to the estimation of that ability. In this procedure, one compound is removed from the data set, the 
network is trained with the remaining compounds and used to predict the discarded compound. The process is 
repeated in turn for each compound in the data set. In this paper the ‘leave-one-out’ procedure was used to evaluate 
the predictive ability of the ANN. 
 

N = 16       R = 0.997       R2 = 0.994      RLOO = 0.999       R2LOO = 0.998 
 

Table 4. Observed, predicted activities and residue according to different methods 
 

pIC 50 

N Observed 
MLR MNLR ANN 

Pred. Resid. Pred. Resid. Pred. Resid. 
4 2.11 2.186 -0.076 2.188 -0.078 2.109 0.001 
5 3.17 3.107 0.063 3.101 0.069 3.155 0.015 
6 2.79 2.680 0.110 2.695 0.095 2.749 0.041 
7 2.58 2.737 -0.157 2.707 -0.127 3.130 -0.550 
8 2.74 2.721 0.019 2.709 0.031 2.742 -0.002 
9 2.36 2.359 0.001 2.361 -0.001 2.255 0.105 

10 3.18 3.134 0.046 3.166 0.014 3.175 0.005 
11 2.72 2.665 0.055 2.689 0.031 2.713 0.007 
12 1.74 1.764 -0.024 1.793 -0.053 1.718 0.022 
13 2.45 2.331 0.119 2.299 0.151 2.423 0.027 
14 2.21 2.343 -0.133 2.331 -0.121 1.981 0.229 
15 2.79 2.898 -0.108 2.886 -0.096 2.708 0.082 
16 2.01 1.930 0.080 1.924 0.086 2.001 0.009 
17 2.31 2.310 0.000 2.310 0.000 1.735 0.575 
18 2.24 2.269 -0.029 2.286 -0.046 2.223 0.017 
19 1.86 1.825 0.035 1.815 0.045 1836 0.001 

 
In this part, we investigated the best linear QSAR regression equations established in this study. Based on this result, 
a comparison of the quality of the CPA, MLR, MNLR and ANN models shows that the ANN model has 
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substantially better predictive capability because the ANN approach gives better results than MLR and MNLR. 
ANN was able to establish a satisfactory relationship between the molecular descriptors and the activity of the 
studied compounds. 
 
From the values of correlation coefficient of the tree compounds (test set) (R2

test), the ‘leave one out’ (LOO) cross-
validated coefficient (R2LOO) and other statistical parameters of these methods (MLR, MNLR and ANN), it is clear 
that the predictive power of this model is high. 
 
The predicted activity values, pyrazinecarboxamides derivatives of this set, obtained from above three QSAR 
models are listed in Table 4 along with their observed activity.  

 
CONCLUSION 

 
In this study, QSAR models were used to search for molecular descriptors closely related to the herbicidal activity of 
pyrazinecarboxamides derivatives. Furthermore, internal and external validations were conducted to check the 
reliability and the stability of the QSAR models elaborated by the MLR, MNLR and ANN methods, and the 
resulting models were compared. This results show that the artificial neural network ANN had a good predictive 
ability and strong robustness than the MLR and MNLR, yields a regression model with improved predictive power, 
we have established a relationship between several descriptors and the herbicidal activity of pyrazinecarboxamides 
derivatives. Thus, the model could be efficiently employed for estimating the herbicidal activity of 
pyrazinecarboxamides derivatives and for select the descriptors which have a impact on this activity and are 
sufficiently rich in chemical, electronic and topological information to encode the structural feature, may be used 
with other descriptors for the development of predictive QSAR models. 
 
The QSAR model is statistically significant, robust and can be used for prediction purposes, it may be help full for a 
better understanding of the activity of this class of compounds and useful as a guidance for the proposal of new 
herbicidal agents.  
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