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ABSTRACT

A set of nineteen Pyrazinecarboxamides derivatives with herbicidal activity was subjected to the two dimensional
guantitative structure activity relationships studies. This work was conducted using the principal component
analysis (PCA) method, the multiple linear regression method (MLR), the multiple non-linear regressions (MNLR)
and the artificial neural network (ANN). The predicted results of various study compounds afford reliable prediction
of 1Cs with respect to experimental data. Density functional theory (DFT) calculations have been carried out in
order to get insights into the structure, chemical reactivity and property information for the series of study
compounds. This study shows that the PCA, MLR and MNLR have served also to predict activities, but when
compared with the results given by the ANN (R?= 0.994) , we realized that the predictions fulfilled by this latter
were more effective as indicated by the value of cross validated squared correlation coefficient (RPcy = 0.998).
Thus, this validated model brings important structural insight to aid the design of novel

herbicidal agents.

Keywords: DFT study, QSAR, pyrazinecorboxamides, herbicidal.

INTRODUCTION

Herbicides are inhibitors of individual metabolicopesses in plants, used in agriculture as a sedenteans of
defense against weeds. Weeds compete with cropsufehine, water, nutrients, and physical spaceaasdhus
capable of greatly influencing the growth of cr@gmsl undermining both crop quality and yield. Alemny weeds
are the harbor or nest of pathogens, viruses, astspwhich may result in the occurrence and spoégmant
diseases and insect pests in crops. Herbicidebeamain weed control tool, play a very importasierin modern
agriculture. Crop protection continually needsdiszovery of novel herbicides.

Since the discovery of the herbicide 2, 4-dichldwapoxyacetic acid (2, 4-D) and 2, 4, 5-trichlorapdreyacetic
acid (2, 4, 5-T) Fig. 1, the agrochemical industag successfully developed a wide array of heregcigith various
chemical structures and modes of action [1]. Howeae inevitable problem associated with the useeobicides is
the occurrence of herbicide resistant weeds [2gré&fore, it is necessary to develop efficient redais with novel
structures or modes of action to overcome thetegsie of weeds.

Analogues of pyrazinecarboxamides belong to theumrof herbicides inhibiting the photosynthetic &len
transport in spinch chloroplast. On the other hahd, pyrazinamide ring system has received muantdn in
biologically active molecules, such as potent iithils of mycobacterium and fungal. In this studye Wwave
modeled the inhibition in spinach chloroplast ))Cof a series of pyrazine-2-corboxylic acid amidisivative
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(Table 1), using several statistical tools, priatipomponents analysis (PCA), multiple linear regien (MLR),
multiple non-linear regression (MNLR) and artificiaeural network (ANN) calculations. The objectivek this
work are to develop predictive QSAR models for titwacity of our studied molecules. On the other dhageveral
guantum chemical methods and Quantum-chemistryuledions have been performed in order to study the
molecular structure and electronic properties [3]4le geometry as well as the nature of their mdécorbital,
HOMO (highest occupied molecular orbital) and LUMI@west unoccupied molecular orbital) is involvedthe
properties of biological activity of organic compumis. The more relevant molecular properties weteulzed,
these properties are the highest occupied moleoutatal energyEomo, the lowest unoccupied molecular orbital
energyE, umo, energy gapAE, dipole moment, the total energ¥+, the activation energlf, and the absorption
maximumna,@nd factor of oscillatiofyso).

N
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Figure 1. Structure of (a) 2, 4-D and (b) 2, 4, 5-T
MATERIALS AND METHODS

EXPERIMENTAL DATA

A dataset of 19 compounds was taken from the puddigpyrazinecarboxamides derivatives as an hedbieigent
[5, 6]. The activity under investigation is the iioition in spinach chloroplast (i) of a series of pyrazine-2-
corboxylic acid amides derivatives by 50% {J)C

The structures and their herbicidal activities lgs&d in Tablel. The inhibitory activity kg (umol/L) values were
converted to logarithmic form (pkg) and used as dependent variables in the 3D-QSAR/sEs.

Tablel. Observed plG of the pyrazinecarboxamide derivatives as herbicial agents

0 7
R N W —JRs
ZI AN ITI
= H
R N
Mol. N° R, R» R3 p|C5c(ObS.)

1 H H 2-Cl-5-OH 2.86
2 H H 4-F 2.68
3 H H 2-Ch 2.57
4 H H 3-Ch 2.11
5 H H 4-CH; 3.17
6 Cl H 2-CI-5-OH 2.79
7 Cl H 4-F 2.58
8 Cl H 2-Ch 2.74
9 Cl H 3-CR 2.36
10 Cl H 4-CH; 3.18
11 H (CHs)sC 4-F 2.72
12 H (CHs)sC 2-Ch 1.74
13 H (CH)sC 3-Ch 2.45
14 H (CHs)sC 4-CH 2.21
15 Cl (CHs)sC 2-Cl-5-OH 2.79
16 Cl (CHs)sC 4-F 2.01
17 Cl (CHs)sC 2-Ch 2.31
18 Cl (CHs)sC 3-Ch 2.24
19 Cl (CHs)sC 4-CH; 1.86

“test set
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CALCULATION OF MOLECULAR DESCRIPTORS

CALCULATION OF DESCRIPTORS USING GAUSSIAN 03W

DFT (density functional theory) methods were usedhis study. These methods have become very popula
recent years because they can reach similar ppacisi other methods in less time and less cost ftoen
computational point of view. In agreement with ET results, energy of the fundamental state aflggbectronic
system can be expressed through the total electaemsity, and in fact, the use of electronic dgnisistead of
wave function for calculating the energy constisutiee fundamental base of DFT [7,8] using the B3lfyfictional
[9] and a 6-31G(d) basis set. The B3LYP, a versibBFT method, uses Becke’s three-parameter funati(B3)
and includes a mixture of HF with DFT exchange &associated with the gradient corrected correidtiactional
of Lee, Yang and Parr (LYP). The geometry of akk@ps under investigation was determined by optimgiall
geometrical variables without any symmetry constgai

The 3D structures of the molecules were generatitlguthe Gauss View 3.0, and then, all calculatiomse
performed using Gaussian 03W program series, Gegroptimization of nineteen compounds was carriatily
B3LYP method employing 6—-31G (d) basis set.

CALCULATION OF DESCRIPTORS USING ACD/CHEMSKETCH

ChemSketch program (Demo version 10.0) [10] wasleyeg to calculate the others molecular descriptitaar
Volume (MV (cn?)), Molecular Weight (MW), Molar Refractivity (MRc(®)), Parachor (Pc (c¥)), Density (D
(g/cnt)), Refractive Index (n) [11].

STATISTICAL ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS (PCA)

The molecules of pyrazinecarboxamide derivative<o(119) were studied by statistical methods basedhe
principal component analysis (PCA) [11] using tbéware XLSTAT 2009.

This is an essentially a descriptive statisticalthud which aims to present, in graphic form, theximam
informations contained in the data table 1.

PCA is a statistical technique useful for summagzll the informations encoded in the structufesompounds. It
is also very helpful for understanding the disttibn of the compounds.

MULTIPLE LINEAR REGRESSIONS (MLR)

The multiple linear regression statistic techniguesed to study the relation between one dependeiable and
several independent variables. It is a mathematicrtique that minimizes differences between acndlpredicted
values. The multiple linear regression model (MI[®)was generated using the software XLSTAT 2009redict
ICso. It has served also to select the descriptors asele input parameters for a back propagatiomark&t(ANN).

ARTIFICIAL NEURAL NETWORKS (ANNS)
The ANNSs analysis was performed with the use off\éda software v 2008a Neural Fitting tool (nftot@plbox on
a data set of pyrazinecarboxamide derivativeg &Ctivity [12].

A number of individual models of ANN were designiedilt up and trained. Generally the network wadtkfor
three layers; one input layer, one hidden layer @mel output layer were considered [13]. The inpyef consisted
of fifteen artificial neurons of linear activatidanction. The number of artificial neural in thedtlen layer was
adjusted experimentally. The hidden layer consiste@ artificial neural. One neuron formed the autfayer of
sigmoid function activation.

The data subjected to ANN analysis were randomiddd into three sets: a learning set, a validatenand a
testing set. Prior to that, the whole data setseated within the 0-1 range.

The set of pyrazinecarboxamide derivatives of, l&&tivity [14] were subjected to the ANN analydirst, forth

learning set of compounds, 13 inhibitors were ugediN models were designed, built and trained. Téaing set
of data is used in ANNs to recognize the relatigmdetween the input and output data. Then foréésion of the
ANN model designed and selected, the validatioro68tcompounds was used. Testing set with 3 comg®was
provided to be an independent evaluation of the AiNbddel performance for the finally applied netwolrk.this

study, we selected the Sigmoid as a basis fun§tibjh The operation of the output layer is lineahich is given as
below:
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yk(X):iijhj(X)+q< (1)

Where y is the K" output layer unit for the input vector Xy\is the weight connection between thedutput unit
and the J hidden layer unit and,Hs the bias that allows a transfer function “n@me? given by the following
equation:

Bias=> (y-v)
@

where y is the measured value ahds the value predicted by the model.

The accuracy of the model was mainly evaluatedHhey rbot mean square error (RMSE). Formula is giasn

follows:

1
RMSE= H'z(pexp_ppred)2
i=1

®3)

where n = number of compounds,j= experimental value,,pq = predicted value and summation is of overall
patterns in the analyzed data set [16,17]. Th@tscwere run on a personal PC.

RESULTS AND DISCUSSION

This study was carried for a series of 19 of pyrazarboxamide derivatives, in order to determirgpiantitative
relationship between structure and herbicidal #gtilCs,. Table 2 shows the values of the calculated paenne
obtained by DFT/B3LYP 6-31G* optimization and ACVéSketch program of the studied compounds.

Table 2. Values of the calculated parameters obta@u by DFT/B3LYP 6-31G* optimization and ACD/ChemSkéch program of the
studied compounds

° MR MV Pc D a Er Enomo | ELumo AE Ea Amax
NTIPICso| MW | ooy | en®) | (en®) | (gren?) @) | @ | @ | @ Debay)| @) | oy | 169
T | 2.86 | 249.653 68.780| 165.100] 486.000 1511 | 25.280 - 32 645.8 -5.094] 2.128| 3.866] 2.627 | 120.128 281.050] 0.0410
7 | 2.68 | 217.199 57.000] 158.900] 442300 1.366 | 22.590 20 785.0] -6.004 -2.159| 3.844] 4.096 | 118.619 284.610] 0.0495
3 | 2.57 | 267.201 61.990] 188.200] 492.300] 1.410 | 24.57q 27 260.4] -6.383 -2.189| 4.194] 1.378 | 111.044 269.080] 0.0141
4 | 2.11 | 267.207 61.990] 188.200] 492.300| 1.419 | 24.57q 27 260.4| -6.404 -2.275| 4.131| 6.119 | 119.754 281.920] 0.0452
5| 3.17 | 213.239 61.830] 171.000] 472.800] 1.246 | 24.510 -10 153.5| -5.824 -2.053| 3.772| 3.513 | 116.389 290.070] 0.0474
6 | 2.79 | 284.094 68.680] 177.000] 521.900 1.604 | 27.224 -45 160.6] -6.084 -2.424] 3.661] 2.005 | 129.503 260.700] 0.0197
7| 2.58 | 251.644 61.890] 170.000] 478.100 1.472 | 24.53] 33 299.8| -6.124 -2.466] 3.661] 2.439 | 128.631 262.450] 0.0157
8 | 2.74 | 301.654 66.880] 200.200] 528.200] 1.506 | 26.510 -39 775.2| -6.514 -2.476] 4.034] 0.796 | 134.23¢ 251.510] 0.0216
9 | 2.36 | 301.654 66.880] 200.200] 528.200 1.506 | 26.51( -39 394.5| -6.441 -4.112| 2.329] 1.982 | 103.354 326.650] 0.0109

10| 3.18 | 247.68( 66.730f 182.900] 508.700] 1.353 | 26.45Q -31 668.3] -5.947 -2.362| 3.585| 2.034 | 127.14( 265.540]| 0.0174

11] 2.72 | 273.30§ 75.390] 225.600] 590.300] 1.211 | 29.88Q -25 067.2] -5.909 -1.927] 3.982| 4.806 | 124.577 271.000] 00212

12| 1.74 | 323.313 80.370f 254.900| 640.400] 1.268 | 31.86Q -31 542.6] -6.286 -1.961|4.325[ 1.853 | 126.924 265.990| 0.0261

13| 2.45| 323.313 80.370] 254.900] 640.400| 1.268 | 31.86Q -31 542.6] -6.314 -2.043]| 4.274] 3.829 | 126.437 267.020| 0.0254

14| 2.21 | 269.343 80.220f 237.700] 620.800] 1.133 | 31.80Q -23 435.7] -5.733-1.827|3.908 3.778 | 122.404 275.820| 0.0153

15] 2.79 | 340.209 87.060] 243.700] 669.900| 1.395 | 34.51Q -49 442.6] -6.00§ -2.183] 3.824| 1.177 | 130.704 258.300| 0.0377

16| 2.01 | 307.753 80.280f 237.500] 626.200] 1.295 | 31.82Q -37 581.8| -6.034-2.218]|3.817 3.297 | 128.58( 262.570| 0.0279

17] 2.31 | 537.75§ 85.270] 266.900] 676.900| 1.340 | 33.80Q -44 057.2|] -6.414 -2.236] 4.178| 0.584 | 133.849 252.230| 0.0640

18| 2.24 | 357.75§ 85.270f 266.900] 676.300] 1.340 | 33.80Q -44 057.3] -6.444-2.325|4.119| 2.967 | 133.718 252.480| 0.0466

19] 1.86 | 303.7874 85.110] 249.600] 656.700| 1.216 | 33.74Q -35 950.4] -5.859 -2.119] 3.740| 2.116 | 127.60§ 264.570] 0.0351

The set of sixteen descriptors encoding the 19 yozinecarboxamide compounds, electronic, energatit

topologic parameters are submitted to PCA ana[§ik The first three principal axes are sufficiémtdescribe the
information provided by the data matrix. Indeed; percentages of variance are 42.52%; 20.36% atd%3for

the axes F1, F2 and F3, respectively. The totalrmétion is estimated to a percentage of 76.52%. drimcipal

component analysis (PCA) [19, 20] was conducteidi¢atify the link between the different variabl@&nld values

are different from 0 at a significance level of @85. Correlations between the fifteen descripamesshown in table
3 as a correlation matrix and in fig. 2 these dpsars are represented in a correlation circle.

The Pearson correlation coefficients are summarirethe following table 3. The obtained matrix pides
information on the negative or positive correlatimtween variables.
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* The Molecular RefractivityMR is strongly correlated with; the Polarizability (r= 0.996), the Parachd?c
(r=0.984), and is well correlated with the MoleaWalumeMV (r=0.933).

* The Molar WeightMW is well correlated with the Parachec (r =0.979) and with the Polarizability(r= 0.952).
* The ParachoPcis strongly correlated with the Polarizabilityr =0.994).

* The Energy of activatiok, is negatively correlated with the maximum of absiorpi ., (r= -0.902).

Table 3. Correlation matrix (Pearson (n)) between ifferent obtained descriptors

pICs, MW MR MV Pc D o Er  Enomo Eiuwmo  AE ') Ea Amax
MW  -0383 1
MR -0.496 0.679 1
MV -0.627 0.729 0.933 1
Pc -0.558 0.720 0.984 0.979 1
D 0.334 -0.060-0.471 -0.548 -0.496 1
a -0.512 0.686 0.994 0.952 0.994-0.49% 1
Er 0.134 -0.638 -0.531 -0.416 -0.512 -0.454 -0.525 1
Enomo 0.262 -0.465 0.042 -0.178 -0.068 -0.468 0.024 0.401 1
Eiumo -0.024 -0.043 0.252 0.202 0.218 -0.5460.239 0.344 0441 1
AE -0.176 0.217 0.256 0.326 0.281 -0.33®.251 0.153 -0.082 0.858 1
H -0.094 -0.461 -0.237 -0.163 -0.219 -0.349 -0.232 0.623 0.262 0.251 0.128 1
Ea -0.102 0.470 0.550 0.471 0.536 -0.09D.555 -0.504 -0.018 0.469 0.530 -0.246 1
Amax 0.080 -0.416 -0.459 -0.415 -0.459 0.085 -0.467 0.402 0.070 -0.604-0.711 0.317 -0.902 1
fsop -0.060 0.424 0.172 0.160 0.159 -0.09D.150 -0.084 -0.096 0.179 0.254 0.098 0.175 -0.062

CORRELATION CIRCLE

The principal component analysis (PCA) was alsofgpered to detect the connection between the differe
variables. The principal component analysis revk#te correlation circle (Fig. 2) shows that theaxis (42.59%

of the variance) appears to represent the MolaraRt¥ity (MR), and the F2 axis (20.36% of the variance) seems t
represent the lowest unoccupied molecular orbitatgy € umo )-

. Variables (axes FletF2: 62,95 %)

0,75 * Eb T
* @ BHOMO

0,5

0,25
pIC50

&

Armiax

F2 (20,36 %)

-0,25

-0.5

-0,75

-1 0,75 -05 -0,25 0 0,25 05 0,75

F1{42,59%)

Figure 2. Correlation circles

Analysis of projections according to the planes F2-and F1-F3 (62.95% and 56.23% of the total vagan
respectively) of the studied molecules (Fig. 3)vehdhat the molecules are dispersed in two RegiBegjion 1
contains compounds having a valueEefetween -19 153.5 eV and -37 581.8 eV, Region 2adom compounds
having a values dEt between -39 394.5 eV and - 49 442.6 eV.
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Observations (axes F1et F2: 62,95 %)

Region1

F2 (20,26 %)

F1[42,59 %)

Figure 3. Cartesian diagram according to F1-F2

MULTIPLE LINEAR REGRESSIONS (MLR)

To establish quantitative relationships betweerbib@&tal activity pICsq and selected descriptors, our array data
were subjected to a multiple linear and nonlinegression. Only variables whose coefficients agaiicant were
retained.

MULTIPLE LINEAR REGRESSION OF THE VARIABLE PIC 5, (MLR)

Modeling herbicidal activity pl50 value of all trahg compounds (compounds 16 pyrazinecarboxamides
derivatives) led to the best value correspondingh® linear combination of the following descrigoiMolar
Volume MV, Molecular WeightMW , Molar RefractivityMR, ParachoPc, DensityD, the total energ¥, the
highest occupied molecular orbital eneiysvo, the lowest unoccupied molecular orbital enefgyyo , the total
dipole moment of the molecujg the activation energl,, absorption maximuriy., and factor of oscillatiofyso,.

The resulting equation is:

pIC5=-128.88+2.7& 10X MW +1.89% 10%?x MR -0.59X MV +0.27X Pc-16.03% D+4.82.10°* X E(-16.19%

Enomo-3.52X E | ymo -6.36.10°°X u+0.22X E+2.25X 10%°X A1, +8.48.10°° X f (50 (4)
s
2.5 :.,"
, . '/{Co

g W
= s /,-"'

a5 ",r"/'

) ’ Préd. [plC;,)

Figure 4. Graphical representation of calculated ad observed plG, by MLR

For our 16 compounds, the correlation between éxgertal and calculated pigdne based on this model are quite
significant (Figure 4) as indicated by statisticalues:

N =16 R =0.98 R0.96 RMSE =0.19
The figure 4 shows a very regular distribution 43 values depending on the experimental values.
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MULTIPLE NONLINEAR REGRESSION OF THE VARIABLE PIC 5, (MNLR)
We have used also the technique of nonlinear reigresnodel to improve the predicted gi@ a quantitative way.
It takes into account several parameters. Thisasiiost common tool for the study of multidimensioata.

The resulting equation is:
pIC 5o = -118.584+2.08% 10X MW +12.975¢ MR -0.594X MV +0.254X Pc-15.626% D-32.323 o + 5.071X 10

%X E,-16.913X Epiomo-3.633% Eumo -0.110% p+0.153% E,-5.802% 109X hypayt2.126X f 50 (5)
3,5 -
o ’
3 ',.“’
3 "J' 'ﬁ .
CE .
2 -’,' d
P
15 b~ ’
1,5 2 2.5 3 3.5
Prad{plC50)

Figure 5. Graphical representation of calculated ad observed plGo by MNLR

The obtained parameters describing the topologictiaa electronic aspects of the studied molecules a
N =16 R =0.98 R 0.96 RMSE=0.31

The plCso value predicted by this model is somewhat simitathat observed. The fig. 5 shows a very regular
distribution of I1G values based on the observed values.

As part of this conclusion, we can say that theébicgtal activity values obtained from MLR and RNIlaRe highly
correlated to that of the observed herbicidal @gtiv

True predictive power of a QSAR model is to tesirtlbility to predict accurately the activitiesefmpounds from
an external test set (compounds which were not faeithe model development), the activities of thmained set

of 3 compounds (1-3) are deduced from the quaivitanhodel proposed with the 16 molecules (trainset) by
MLR and MNLR.

The comparison of the valuesmlfC 54 (test) toplC 5o (0bs.) shows that a good prediction has been adateor the 3
compounds:

MLR N=3 Ris=0.85 Rest=0.73
MNLR N=3 3= 0.94 Res = 0.88
ARTIFICIAL NEURAL NETWORKS (ANN)
Artificial Neural Networks (ANN) can be used to geate predictive models of quantitative structurgvity

relationships (QSAR) between a set of moleculacuiet®rs obtained from the MLR and observed agtivit

The correlations coefficients and Standard ErroEsfimate, obtained with the Neural Network, shdwat tthe
selected descriptors by MLR are pertinent andtti@model proposed to predict activity is relevant.

The values of predicted activities and the obsematdes are given in table 4.

The obtained squared correlation coefficienf) (Ralue confirms that the ANN results were the kesbuild the
guantitative structure activity relationship models

In this part, we investigated the best linear QSAfression equations established in this studyedas this result,
a comparison of the quality of ACP, MLR, MNLR an®NN models shows that the ANN models have substgntia
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better predictive capability because the MNLR apptogives better results than MLR, and MNLR. ANNsvedle
to establish a satisfactory relationship betweemtblecular descriptors and the activity of thel&td compounds.

The values of predicted activities calculated ugMNiN and the observed values are illustrated inrig6.

Obs.[plCE0)
il
[%]

15

L5

2,5
Prad.[pIC50]

35

Figure 6. Correlations of observed and predicted aivities calculated using ANN

The values of predicted activities calculated ugMNN and the observed values are given in table 4.

In the above these QSAR models, ANN is the bestaidtat indicate the effects of these descriptorsthe
herbicidal activity of the studied pyrazinecarboix@denderivatives. A unified ANN models with high ssical
quality (R = 0.997, R= 0.994) was obtained from the pool of all typedefcriptors. In order to validate the
generated ANN models leave one out (LOO) methodugasl to check their predictivity and robustnesst, $ets of
new compounds, not included in the model developraety must be used. The LOO is an approach pkatigu
well adapted to the estimation of that ability.this procedure, one compound is removed from tha det, the
network is trained with the remaining compounds asédd to predict the discarded compound. The psoises
repeated in turn for each compound in the datasehis paper the ‘leave-one-out’ procedure wadus evaluate

the predictive ability of the ANN.

N =16

R =0.997

f-0.994

Roo = 0.999

Roo =0.998

Table 4. Observed, predicted activities and residuaccording to different methods

pICso
MLR MNLR ANN
N | Observed Pred. | Resid.| Pred. | Resid.| Pred. | Resid.
4 2.11 2.186| -0.076| 2.188| -0.078| 2.109| 0.001
5 3.17 3.107| 0.063| 3.101| 0.069 | 3.155| 0.015
6 2.79 2.680| 0.110| 2.695| 0.095 | 2.749| 0.041
7 2.58 2.737( -0.157| 2.707| -0.127| 3.130] -0.550
8 2.74 2.721| 0.019| 2.709| 0.031 | 2.742| -0.002
9 2.36 2.359| 0.001 | 2.361| -0.001| 2.255| 0.105
10 3.18 3.134| 0.046 | 3.166| 0.014 | 3.175| 0.005
11 2.72 2.665| 0.055| 2.689| 0.031| 2.713| 0.007
12 1.74 1.764| -0.024| 1.793| -0.053| 1.718| 0.022
13 2.45 2.331| 0.119| 2.299| 0.151| 2.423| 0.027
14 2.21 2.343| -0.133| 2.331| -0.121| 1.981| 0.229
15 2.79 2.898| -0.108| 2.886| -0.096| 2.708| 0.082
16 2.01 1.930| 0.080 | 1.924| 0.086 | 2.001| 0.009
17 2.31 2.310| 0.000 | 2.310| 0.000| 1.735| 0.575
18 2.24 2.269| -0.029| 2.286| -0.046| 2.223| 0.017
19 1.86 1.825| 0.035| 1.815| 0.045| 1836 | 0.001

In this part, we investigated the best linear QSAfression equations established in this studyedas this result,
a comparison of the quality of the CPA, MLR, MNLRda ANN models shows that the ANN model has
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substantially better predictive capability becatits® ANN approach gives better results than MLR &dLR.
ANN was able to establish a satisfactory relatigmdbetween the molecular descriptors and the agtiof the
studied compounds.

From the values of correlation coefficient of theet compounds (test set))R), the ‘leave one out’ (LOO) cross-
validated coefficient (Roo) and other statistical parameters of these mettidti®, MNLR and ANN), it is clear
that the predictive power of this model is high.

The predicted activity values, pyrazinecarboxamidesivatives of this set, obtained from above th@®8AR
models are listed in Table 4 along with their oliedractivity.

CONCLUSION

In this study, QSAR models were used to searcmflecular descriptors closely related to the hédbicactivity of
pyrazinecarboxamides derivatives. Furthermore,riafeand external validations were conducted tockhihe
reliability and the stability of the QSAR modelsalebrated by the MLR, MNLR and ANN methods, and the
resulting models were compared. This results sh@t the artificial neural network ANN had a goockdictive
ability and strong robustness than the MLR and MINYields a regression model with improved predetpower,
we have established a relationship between sedesgriptors and the herbicidal activity of pyraziadoxamides
derivatives. Thus, the model could be efficientlynpboyed for estimating the herbicidal activity of
pyrazinecarboxamides derivatives and for selectdéscriptors which have a impact on this activityd aare
sufficiently rich in chemical, electronic and topgical information to encode the structural featumay be used
with other descriptors for the development of préde QSAR models.

The QSAR model is statistically significant, robasid can be used for prediction purposes, it mayelye full for a
better understanding of the activity of this cla$scompounds and useful as a guidance for the padpaf new
herbicidal agents.
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