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ABSTRACT

Quantitative structure—activity relationship (QSARhalysis for recently synthesized pyrazolyl-thicme
derivatives was studied for their EGFR and HER+2ake inhibitory activities. The statistically sificant 2D-
QSAR models {= 0.9086; d = 0.8370; F test = 49.6789:’rse = 0.1242; §se = 0.1675; pred r= 0.8086;
pred_Fse = 0.1934 and’= 0.9163; d= 0.8702; F test 54.7057?rse= 0.0820; §se=0.1020; pred = 0.8249;
pred_rse = 0.1195) were developed using molecular desifie (VLifeMDS 4.1). The study was performed @6h
compounds (data set) using sphere exclusion ($yitim, random selection and manual selection wedhused
for the division of the data set into training atabt set. Partial least square regression (PLSRhodology with
stepwise (SW) forward-backward variable selecti@ihod was used for building the QSAR models. Thdtseof
the 2D-QSAR models were further compared with 3B odels generated by kNN-MFA, (k-Nearest Neighbor
Molecular Field Analysis) investigating the suhsiiinal requirements for the favorable inhibitorgtaity for
EGFR and HER-2 in tumor growth and providing uséfifibrmation in the characterization and differeation of
their binding sites. The results derived may bdulse further designing novel EGFR and HER-2 kimashibitors
prior to synthesis.

Keywords: pyrazolyl-thiazolinone, EGFR, HER-2, antitumonjagtitative structure-activity relationship, kNN-
MFA

INTRODUCTION

The epidermal growth factor receptor (EGFR; ErbB4ER1 in humans) is the cell-surface receptor fermbers of
the epidermal growth factor family (EGF-family) ektracellular protein ligandd]. The epidermal growth factor
receptor is a member of the ErbB family of recemtar subfamily of four closely related receptobgine kinases:
EGFR (ErbB-1), HER2/c-neu (ErbB-2), Her 3 (ErbBa3)d Her 4 (ErbB-4). Mutations affecting EGFR expres
or activity could result in cancé2]. EGFR exists on the cell surface and is actidaby binding of its specific
ligands, including epidermal growth factor and sf@anming growth facton (TGFa). ErbB2 has no known direct
activating ligand, and may be in an activated statestitutively or become active upon heterodinagian with
other family members such as EGFR. Upon activaliprits growth factor ligands, EGFR undergoes asitam
from an inactive monomeric form to an active homoeli [3].In addition to forming homodimers after ditd
binding, EGFR may pair with another member of tlbBEreceptor family, such as ErbB2/Her2/neu, tatrean
activated heterodimer. EGFR dimerization stimulatgs$ntrinsic intracellular protein-tyrosine kirasctivity. As a
result, autophosphorylation of several tyrosine (¥¥idues in the C-terminal domain of EGFR occliisese
include Y992, Y1045, Y1068, Y1148 and Y1173 [#his autophosphorylation elicits downstream actbratand
signaling by several other proteins that associaith the phosphorylated tyrosines through their own
phosphotyrosine-binding SH2 domains. These dowastreignaling proteins initiate several signal tcamsion
cascades, principally the MAPK, Akt and JNK pathsjdgading to DNA synthesis and cell proliferatjfsh EGFR
overexpression (known as upregulation) or overégtivave been associated with a number of canagchkjding
head and neck, lung, breast, bladder, prostategkidnd anal cancers and glioblastoma multiforfierefore,
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EGFR tyrosin kinase represents the attractive tafigethe development of novel anticancer agentSFE and
HER-2 are the hottest in currant cancer researdhtlagir overexpression or abnormal activation oftanse cell
malignant transformation [6]. Monoclonal antibodggh as panitumumab and cetuximab, erlotinib tigéfj and
lapatinib are the representative drugs have beproapd by US Food and Drug Administration for treaht of
patient with non small cell lung cancer (NSCLC).[7]

Many pyrazole derivatives are acknowledged to msssewide range of bioactivities. The pyrazole yoimakes

up the core structure of numerous biologically\ecitompounds. Thus representatives of this hetel®axhibit

antiviral [8-9], antitumor [10], antibacterial [112], antiinflamatory and analgesic [13-14], antidegsant and
anticonvulsant [15], MAO-B inhibitors in alzheimdisease [16], anti-angiogenic activity [17]. Thid@one and

their derivatives have attracted continuing inteos®r the years because of their varied biologactivities, such as
antimicrobial, antiproliferative, antiviral/anti-M| antidepressant, anticonvulsant, antifungal, antbacterial [18],

antiinflamatory [19], Hai-Liang Zhu et al.2012, mefed that the pyrazole ring along with thiazoliramg, exhibit

synergistic anticancer effect that act as potef@FR and HER-2 kinase inhibitors.

Traditional computer-assisted quantitative struestactivity relationship (QSAR) studies pioneereddyHansch et
al.1962 [20] have been proved to be one of theulispproaches for accelerating the drug designgzgizl] which

help to correlate the bioactivity of compounds wéinuctural descriptors [22]. Recently synthesipgdazolyl-
thiazolinone derivatives were discovered with tteHR and HER-2 kinase inhibitors which may have ipiaé
utility in treating cancer cells. To gain furthersights into the structure—activity relationshigstese derivatives
and understand the mechanism of their substitutispacificity, we have performed 2D and 3D-QSAR on
pyrazolyl-thiazolinone derivatives using Partial asé Squares Regression (PLSR) and k-Nearest Neaighbo
Molecular Field Analysis (KNN MFA), respectivelyh& significance of the QSAR models was evaluatédgus
cross-validation tests, randomization tests andreat test set prediction. The robust 2D/3D-modedsy be useful

in further designing new candidates as potentidFE@nd HER-2 kinase inhibitors prior to synthesis.

Ry

o]
Figure 1: Basic structures of pyrazolyl-thiazolinore derivative

Table 1: structures of pyrazolyl-thiazolinone deriative

compounds| R| R compounds R R,
E1l H H E19 Br H
E2 H F E20 Br F
E3 H Cl E21 Br Cl
E4 H Br E22 Br Br
E5 H| Me E23 Br Me
E6 H | OMe E24 Br OMe
E7 F H E25 Me H
E8 F F E26 Me F
E9 F Cl E27 Me Cl
E10 F Br E28 Me Br
E1l F Me E29 Me Me
E12 F | OMe E30 Me| OMe
E13 Cl H E31 OMe H
El4 Cl F E32 OMe| F
E15 Cl Cl E33 OMe| CI
E16 Cl Br E34 OMe Br
E17 Cl| Me E35 OMe| Me
E18 Cl| OMe E36 OMe OMg
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MATERIALS AND METHODS

2.1. Selection of molecules

Data set of 36 pyrazolyl-thiazolinone derivativ@alfle 1) collected from published literature [2&jre taken for
the present study. The affinity data of inhibitoagtivities were converted into pKi values to geé tinear
relationship in equation using the following formupKi= -log Ki, where Ki value represents inhibitcactivity in

ICso (UM) (Table 2). Molecules were rationally divideata the training set and test set based on theestiggs
given by Alexander Tropsha et al. [24].

Table 2: Kil (uM) and Ki2 (uM) represent inhibition activities of compounds E1- E2 against EGFR and HE-2 respectively. All
inhibitory activities are expressed as —log (Ki), Wich is pKi

Compounds| Kil(uM)| Actual pKil] Ki2(uM) Actual pKiZ
El 3.38 0.529 5.12 0.709
E2 4.86 0.687 6.35 0.803
E3 3.49 0.543 4.83 0.684
E4 1.35 0.130 3.05 0.484
E5 3.03 0.481 4.64 0.667
E6 4.27 0.63 6.21 0.793
E7 8.14 0.911 10.53 1.022
E8 16.92 1.228 18.12 1.258
E9 10.92 1.038 13.16 1.119
E10 4.79 0.68 6.24 0.795
E1l 8.36 0.922 10.26 1.011
E12 10.69 1.029 12.43 1.094
E13 5.34 0.728 7.05 0.848
E14 14.21 1.153 16.42 1.215
E15 8.16 0.912 9.96 0.998
E16 2.28 0.358 3.84 0.584
E17 6.67 0.824 8.13 0.91
E18 8.58 0.933 10.34 1.015
E19 3.20 0.505 4.87 0.688
E20 6.48 0.812 8.14 0.911
E21 4.12 0.615 5.87 0.769
E22 2.03 0.307 3.65 0.562
E23 5.58 0.747 7.04 0.848
E24 7.96 0.901 9.27 0.967
E25 1.08 0.033 2.24 0.35
E26 2.01 0.303 3.53 0.548
E27 1.66 0.22 3.11 0.493
E28 0.24 -0.62 1.07 0.029
E29 1.16 0.064 2.52 0.401
E30 4.24 0.627 6.23 0.794
E31 2.37 0.375 4.12 0.615
E32 5.95 0.775 8.04 0.905
E33 5.35 0.728 7.59 0.88
E34 1.26 0.1 2.75 0.439
E35 5.49 0.737 7.35 0.866
E36 8.89 0.949 10.48 1.02

2.2. Molecular modeling

All computational experiments were performed usimgHCL computer having genuine Intel Pentium DuateC
Processor and Windows XP operating system usingsdfisvare Molecular Design Suite (vlifeMDS 4.1) 125
Structures were drawn using the 2D draw applicatiod converted to 3D structures and subjected tenangy
minimization and geometry optimization using Meidblecular Force Field, force field and chargesdaid by
Austin Model-1 with 10000 as maximum number of eg¢l0.01 as convergence criteria (root mean saquackent)
and 1.0 as constant (medium’s dielectric constdmthwis 1 for in vacuo) in dielectric propertieherdefault values
of 30.0 and 10.0 Kcal/mol were used for electristatd steric energy cutoff.

2.3. 2D-QSAR analysis

2.3.1. Calculation of descriptors

Number of descriptors was calculated after optitioraor minimization of the energy of the data seilecules.
Various types of physicochemical descriptors weilewtated: Individual (Molecular weight, H-Acceptoount, H-
Donor count, XlogP, slogP, SMR, polarisablity, gteetention index (Chi), atomic valence connetyivindex
(ChiV), Path count, Chi chain, ChiV chain, Chairthi@ount, Cluster, Pathcluster, Kappa, Element codniN, C,
S count etc.), Distance based topological (DistTofonnectivitylndex, Wienerindex, Balaban Index)ktdte
numbers (SsCH3count, SACH2count, SssCH2count, St@ticetc.), Estate contribution (SsCH3-index., BAC
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index, SssCH2-index , StCH index), Information tyebased (Ipc, Id etc.) and Polar surface area.eMioan 200
alignment independent descriptors were also cdkuilaising the following attributes. A few examplase
T207, TNNJ5 T226, TCO 1, T O CI 5 ethe Tnvariable descriptors (the descriptors that are
constant for all the molecules) were removed, ag tlo not contribute to QSAR.

2.3.2. Generation of training and test sets:

In order to evaluate the QSAR model, data set wadet! into training and test set using sphere sioh, random
selection and manual selection method. Trainingisetsed to develop the QSAR model for which bialab
activity data are known. Test set is used to chghethe QSAR model developed based on the trasehtp assess
the predictive power of the model which is not ut#d in model generation.

Sphere Exclusion methoth this method initially data set were divided irttaining and test set using sphere
exclusion method. In this method dissimilarity v@alwrovides an idea to handle training and tessiget It needs to
be adjusted by trial and error until a desiredslon of training and test set is achieved. Increasgissimilarity
value results in increase in number of moleculabéntest set.

Random Selection Methobh order to construct and validate the QSAR modadsh internally and externally, the
data sets were divided into training [90%-60% (9®%%6, 80%, 75%, 70%, 65% and 60%) of total dathesad
test sets [10%-40% (10%, 15%, 20%, 30%, 35% and)43%tal data set] in a random manner. 10 tnedse run
in each case.

Manual data selection methoB®ata set is divided manually into training and tests on the basis of the result
obtained in sphere exclusion method and randonstsabemethod.

2.3.3. Generation of 2D-QSAR models:

PLSR was used for model generation. PLSR is anresipa of the multiple linear regression (MLR) maddh its
simplest form, a linear model specifies the (lineafationship between a dependent (response)blaréand a set of
predictor variables. PLSR extends MLR without impgsthe restrictions employed by discriminant asly
principal component regression (PCR) and canomicgklation. In PLSR, prediction functions are esgmted by
factors extracted from the Y'XX'Y matrix. The numbef such prediction functions that can be extradgically
will exceed the maximum of the number of Y and Xiables. PLSR is probably the least restrictivehef various
multivariate extensions of the multiple linear reggion models. This flexibility allows it to be dsm situations
where the use of traditional multivariate methagisaverely limited, such as when there are fewsemiations than
predictor variables. PLSR can be used as an explgranalysis tool to select suitable predictoriatales and to
identify outliers before classical linear regressi@ll the calculated descriptors were considersdnalependent
variable and biological activity as dependent \zdga

2.4. 3D-QSAR analysis:

2.4.1. kKNN-MFA

kNN-MFA is novel methodology, unlike conventionalSAR regression methods; this methodology can handle
nonlinear relationships of molecular field desaigt with biological activity, thus making it a moeecurate
predictor of biological activity. Conventional celation methods try to generate linear relationshifh the
activity, where as kNN is inherently non-linear hmed and is better able to explain activity trentilee kNN
technique is a conceptually simple approach tepattecognition problems. In this method, an unkmgattern is
classified according to the majority of the classnmberships of its k nearest neighbors in the tngirset. The
nearness is measured by an appropriate distanc& rf@eg. a molecular similarity measure, calcudatsing field
interactions of molecular structures). The standd¥®l method is implemented simply as follows: (glaulate
distances between an unknown object (u) and albbijects in the training set; (ii) select k objefttan the training
set most similar to object u, according to the walied distances, (iii) classify object u with th@up to which a
majority of the k objects belong. An optimal k valis selected by the optimization through the diassion of a
test set of samples or by the leave-one out craldation. The variables and optimal k values dresen using
different variable selection methods as descrildvia

kNN-MFA with Simulated Annealing

Simulated Annealing (SA) is another stochastic metfor function optimization employed in QSAR. Siated
annealing (SA) is the simulation of a physical ms% ‘annealing’, which involves heating the systena high
temperature and then gradually cooling it down tpraset temperature (e.g., room temperature). Qutiis
process, the system samples possible configuratimtisbuted according to the Boltzmann distribaotieo that at
equilibrium, low energy states are the most popedlat

kKNN-MFA with Stepwise (SW) Variable Selection
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This method employs a stepwise variable selectionguiure combined with kNN to optimize the numblenearest
neighbors (k) and the selection of variables fromdriginal pool as described in simulated anngalin

kNN-MFA with Genetic Algorithm

Genetic algorithms (GA) first described by Hollamiimic natural evolution by modeling a dynamic paidn of
solutions. The members of the population, refetceds chromosomes, encode the selected featureseridoding
usually takes form of bit strings with bits corresding to selected features set and others cledadh
chromosome leads to a model built using the encéegdres. By using the training data, the errothef model is
guantified and serves as a fitness function. Dutimg course of evolution, the chromosomes are stdgeto
crossover and mutation. By allowing survival angrogluction of the fittest chromosomes, the algamigffectively
minimizes the error function in subsequent genenati

2.4.2. Alignment rules:

Molecular alignment was used to visualize the $tmad diversity in the given set of molecules. Thias followed

by generation of common rectangular grid around th@ecules. The template structure, i.e. unsulietitu
pyrazolyl-thiazolinone was used for alignment bysidering the common elements of the series asmshowigure

2. The reference molecule 28 is chosen high intripieffect which made it a valid lead molecule éimerefore was
chosen as a reference molecule. After optimizihg, template structure and the reference molecute wsed to
superimpose all molecules from the series usingtémeplate alignment method. kKNN-MFA method requires
suitable alignment of given set of molecules aftptimization; alignment was carried out by templatesed
alignment method. Stereoview of aligned molecutetsdining set and test set is shown in Figure 3.

Figure 2: Template molecule

Figure 3: Stereoview of aligned molecules
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2.4.3. Creation of interaction energies

Methyl probe with charge 1 and energy cut-off feceostatic 10 Kcal/mol and for steric 30 Kcal/mdielectric
constant 1 and charge type Gasteiger-marsili weeel to calculate steric and electrostatic fieldse Tields were
computed at each lattice intersection of a regyisphced grid of 2.0 Awithin defined three-dimensional region.

2.4.4. Generation of training and test sets

In order to evaluate the QSAR model, data set wadet! into training and test set using sphere sioh, random
selection and Manual selection method. Trainingisaised to develop the QSAR model for which bialab
activity data are known. Test set is used to chghethe QSAR model developed based on the trasehtp assess
the predictive power of the model which is not ut#d in model generation.

RESULTS AND DISCUSSION

3.1 2D-QSAR models

Different sets of 2D-QSAR models were generatadguthe PLSR analysis in conjunction with stepwisevard-

backward variable selection method. Different tiragnand test set were constructed using sphereggad, random
and manual selection method. Training and testware selected if they follow the unicolumn statistii.e.,
maximum of the test is less than maximum of trajréet and minimum of the test set is greater tHidraiming set,
which is prerequisite for further QSAR analysisisTiesult shows that the test is interpolative derived from the
min-max range of training set. The mean and stahdaviation of the training and test set providesght to the
relative difference of mean and point density distiion of the two sets. The statistical signifité&D-QSAR

models for pKil and pKi2 are givenirable 3.

Table 3: Statistical evaluation of 2D-QSAR modelsof pKil and pKi2

Models r? g2 r’se g’se | pred r? | Ftest

pKil
1 0.9086| 0.833 0.124P2 0.1675 0.8086 49.6Y89
2 0.8583| 0.713§ 0.1576 0.2188 0.8896  29.0050
3 0.8410| 0.7522 0.1679 0.2096 0.7704 37.0280
4 0.8637| 0.7861] 0.1195 0.1497 0.7278 44.3586
5 0.8408| 0.7601] 0.1671 0.2052 0.7221 42.2478

pKi2
1 0.9163| 0.8702 0.0820 0.1020 0.8249 54.7057
2 0.7548| 0.6471 0.1422 0.1706 0.4907 17.6988
3 0.7981| 0.6997 0.133p 0.1628 0.7008 19.7688
4 0.8798| 0.8345 0.1019 0.1196 -0.3342 49.3884
5 0.6201| 0.5249 0.1750 0.1958 0.0718 14.6923

The selection of the best model is based on theesadf f (squared correlation coefficient)? (cross-validated
correlation coefficient), pred? (predicted correlation coefficient for the extdrtest set)F (Fisher ratio) reflects
the ratio of the variance explained by the model e variance due to the error in the regressiigh values of
the F—test indicate that the model is statisticsigynificant. fse, dse and pred’se are the standard errors terms for
r?, of and pred_% respectively. The statistically significant 2D-&% model is shown as follows.

Model-1 (Test set: 5,6,7,8,9,12,14,19,30,35,36)

pKil = -0.5365 (T_2_C_6); + 0.5307 (H-AcceptorCount)
+0.1426 (T_T_Cl_7); +0.1233(T_2 C 7)
-0.0979 (T_2_T_7) +22.3512

Statistics:

[Optimum Components= 4; n= 25; Degree of freedo= 2
r? = 0.9086; G 0.8336; F test= 49.678Fse= 0.1242;
o’se= 0.1675; pred’x 0.8086; pred *se = 0.1934]

Model-2 (Test size:1,6,11,13,18,19,22,28,30,31,33)

pKi2 = +0.3810 (H-AcceptorCount); -0.3070 (T_2_C_6)
+0.2479 (ChlorinesCount); + 0.08732_C _7)
-0.0664 (T_2_T_7) +12.9440;

Statistics:
[Optimum Components= 4; n= 25; Degree of freedodd;=
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r’= 0.9163; ¢= 0.8702, F test= 54.7057se= 0.0820;
o’se= 0.1195; predx 0.8249; pred *se= 0.1195]

In the above QSAR equations, n is the number oemaés (Training set) used to derive the QSAR madia the
squared correlation coefficient? & the cross-validated correlation coefficienedrf is the predicted correlation
coefficient for the external test s€tjs the Fisher ratio, reflects the ratio of the aade explained by the model and
the variance due to the error in the regressioghHialues of the F-test indicate that the modedtagistically
significant. fse, dse and pred?se are the standard errors terms fpgfrand pred_“(smaller is better).

Interpretation of the Models:

Model-1

From equation, model 1 explains 90.86 % (0.9086) of the total variance in the training astwell as it has
internal () and external (pred®rpredictive ability of 83.36 % and 80.86 % respatdy. The F test shows the
statistical significance of 99.99 % of the modelathmeans that probability of failure of the moael in 10000. In
addition, the randomization test shows confiderfc@3999 (Alpha Rand Pred R*2 = 0.00000) thatgbweerated
model is not random and hence chosen as the QSAdImerom QSAR model 1, negative coefficient vatiie
T_2_C_6 [count of number of double bonded atones &ny double bonded atom, T_2) separated frononaatom
by 6 bonds],T_2_T_7 [count of any bond separatechfany atom by 7 bonds] on the biological actiwigicated
that lower values leads to good inhibitory activithile higher value leads to reduced inhibitoryiatt while
positive coefficient value of H-AcceptorCount [niben of hydrogen bond acceptor atoms], T_T_CI_7 fitad any
atom (represented as T) separated from CI atom lbgnds], T_2_C_7 [count of number of double bondtxins
(i.e. any double bonded atom, T_2) separated frarpon atom by 7 bonds], on the inhibitory activitgicated that
higher value leads to better inhibitory activityevbas lower value leads to decrease inhibitoryiagti

Contribution chart for model 1 is represented igufe 4 reveals that the descriptors H-AcceptorGount_Cl_7,
T 2 C_7, contributing 53.07 %, 14.26 % and 12.38%pectively. Two more descriptors T 2 C 6 and T_Z_
are contributing inversely 53.65 %, 9.79 % respetyito biological activity.

Contribution{2o)
- =

O | E [‘H.I ["-hl ["-H.I
ul = GI ul I—I
o = - o s
[ = = —

]
;?E
T

Descriptors
Figure 4: Contribution chart for model-1 showing contribution of different descriptors

Data fitness plot for model 1 is shown in Figurel'Be plot of observed vs predicted activity progida idea about
how well the model was trained and how well it pcegithe activity of external test set.
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Figure 5: Data fitness plot for model-1

The graph of observed vs. predicted activity ofirgg and test sets for model 1 is shown in Fid, it reveals that
the model is able to predict the activity of tramiset quite well as well as external test set, iding confidence o
model. Result of thelserved and predicted inhibitc activity for the training and test compounds foe todel 1
is shown in Table 5.
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Figure 6: Graph between actual and predicted biological actity of training and test set for Mode-1.

Model-2

From equationModel 2 explains 91.63 %= 0.9163) of the total variance in the training astwell as it ha
internal (d) and external (pred?)rpredictive ability of 87.02% and 82.49% respesijv From QSAR model 2, it
was observed that the positigeefficient value oH-AcceptorCount fiumber of hydrogen bond acceptor at],
ChlorinesCounfnumber of chlorine atoms in compot], T_2_C_7[count of number of double bonded atoms !
any double bonded atori, 2) separted from carbon atom by 7 bondsh the biologial activity indicated that
higher value leads to better ibitory activity whereas lower value Ida to decrease inhibitc activity. Negative
coefficient value of T_2_C_@count of number of double bonded atoms (i.e. anyble bonded atom, T_
separated from carbon atom by 6 bo, T_2_T_7[count of any bond separated from any atom by & on the
biological activity indicated that lower valt leads to good inhibitory activitwhile higher value lads to reduced
inhibitory activity.
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Contribution chart for model 2 is represented iguré 7,it reveals that the descriptors H-AcceptorCount,
ChlorinesCount, T_2 C_7 contributing 38.10%, 24.788d 8.73 % respectively. Two more descriptors T 5 _
and T_2 T_7 are contributing inversely 30.70 %46/&respectively to biological activity.
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a UI a ul |—I
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Figure 7: Contribution chart for model-2 showing cantribution of different descriptors

Data fitness plot for model 2 is shown in Figuret plot of observed vs predicted activity progide idea about
how well the model was trained and how well it peegithe activity of external test set.
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Figure 8: Data fitness plot for model-2

The graph of observed vs. predicted activity ahiray and test sets for model 2 is shown in Fiduyreeveals that
the model is able to predict the activity of traipiset quite well as well as external test setyigdhog confidence of
model. Result of the observed and predicted inhipiactivity for the training and test compoundstfee Model 2
is shown in Table 5.
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Figure 9: Graph between actual and predicted biological actity of training and test set for Model-2.

3.2. 3D-QSAR model

kNN-MFA samples the steric and electrostatic fieddsrounding a set of ligands and constructs 3D-R%#odels
by correlating these 3D fields with the correspogdbiological activities. The statistical signifita3D-QSAR
models for pKil and pKi2 are given in Table 4.

Table 4: Statistical evaluation of 3D-QSAR modelsof pKil and pKi2

Models | kNN | DOF o g2 _se | pred F [ pred r’se
pKil
1 2 24 0.7194] 0.1728 0.5587 0.367
2 2 25 0.5148| 0.269% 0.680F 0.211
3 3 26 0.6285] 0.246% -0.164[7 0.298
4 2 18 0.6749] 0.1904 0.3171 0.3591
5 2 29 0.6596] 0.2301 -1.0269 0.2779
pKi2
1 2 25 0.7034| 0.1517 0.5080 0.146¢
2 2 23 0.4922| 0.1712 0.1636 0.280¢
3 2 21 0.8281] 0.105 -0.2008 0.322
4 2 21 0.6176] 0.148¢ 0.1312 0.2860
5 2 23 0.7003] 0.137 -0.3363 0.3571!

The selection of the best model is based on theesabf § (internal predictive ability of the model) and that
pred_f (the ability of the model to predict the activiby external test set). The statistical signific8m-QSAR
models for pKi (model-3) and pKi2 (model-4) areaivbelow.

Model-3
pKil = E_709 (0.0702 0.0745); S_391 (-0.1301 -0.1222)
S_784 (-0.0179 -0.0172)

Statistics:
[KNN= 2; n= 28; Degree of freedom= 24=0.7194;
o°_se= 0.1728; pred’¥ 0.5587; pred *se= 0.3675

The model 3 explains values of k (25, (@.7194), pred *r(0.5587), q_se (0.1728), and pred se (0.3675) prove
that QSAR equation so obtained is statisticallyndigant and shows the predictive power of the nhéslé1.94%
(internal validation). Table Eepresents the predicted inhibitory activity by thedel 3 for training and test set.

The data fitness plot for model 3 is shown in Fegli®.The plot of observed vs predicted activity providésidea
about how well the model was trained and how wvtgdtédicts the activity of the external test set.
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Figure 10: Data fitness plot for model-3

From figure 11 it can be seen that the model is &blpredict the activity of the training set quiegll as well as
external test set, providing confidence of the nhode

Training set Test set
T /i L EEeNRRT
1\\ 24 .": 3
A I R e W i B!
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45.' 00 05\ 10
5, \ ) ; //
.\_\ s
W, £
NG >

B Actual ® Predicted B Actual ®Pedicted

Figure 11: Graph between actual and predicted biolgical activity of training and test set for Model-3

Result plot in which 3D-alignment of molecules wille important steric and electrostatic points dbating in the
model-3 with ranges of values shown in the paresisheepresented in Figure 12. It shows the relgivstion and
ranges of the corresponding important steric arttedstatic fields in the model provides guideliioe new
molecule design as follows-

(a) Electrostatic field, E_709 (0.0702 0.0745) has tpasirange indicates that positive electrostatiteptal is
favorable for increase in the activity and henes lelectronegative substituent group is prefemetat region.

(b) Steric filed, S_391 (-0.1301 -0.1222) has negatareye indicates that negative steric potentiaai®fable for
increase in the activity and hence less bulky stulestt group is preferred in that region.

(c) Steric filed, S_784 (-0.0179 -0.0172) also has tieg@ange indicates that negative steric potergifvorable
for increase in the activity and hence less bulklyssituent group is preferred in that region.
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Figure 12: 3D-alignment of molecules with the impadant steric and electrostatic points contributing nodel-3 with ranges of values shown
in parenthesis.

Table 5: Actual and predicted activities for 36 corpounds based on the best 2D/3D-QSAR models

3D-QSAR
Compounds| Actual pKil 2D—Q§AR'(m0deI—1) 3D-QSAR (model-3)| pKi2 2D-QSAR (model-2) (mo(gel—4)
redicted Predicted Predicted .
Predicted
El 0.529 0.4834 0.2571 0.709 0.6680 0.6389
E2 0.687 0.7204 0.3443 0.803 0.8499 0.7332
E3 0.543 0.6176 0.3174 0.684 0.7168 0.6729
E4 0.130 0.1897 0.3216 0.484 0.4689 0.6270
E5 0.481 0.5596 0.2968 0.667 0.7307 0.5954
E6 0.63 0.7204 0.6474 0.793 0.8499 0.7369
E7 0.911 0.7761 1.022 1.0491 1.0142
E8 1.228 1.2512 1.0273 1.258 1.2310 1.0524
E9 1.038 1.1483 0.9304 1.119 1.0979 1.1167
E10 0.68 0.7204 0.6210 0.795 0.8499 0.8787
E11 0.922 1.0904 0.7895 1.011 1.1118 1.1750
E12 1.029 1.2512 0.9177 1.094 1.2310 1.1330
E13 0.728 0.7686 0.7375 0.848 0.9160 0.7156
E14 1.153 1.0057 1.0650 1.215 1.0979 1.0680
E15 0.912 0.9029 0.9937 0.998 0.9648 0.8392
E16 0.358 0.4749 0.7640 0.584 0.7168 0.8078
E17 0.824 0.8449 0.8198 0.91 0.9787 0.9635
E18 0.933 1.0057 1.0270 1.015 1.0979 0.9104
E19 0.505 0.4834 0.4234 0.688 0.6680 0.8769
E20 0.812 0.7204 1.0645 0.911 0.8499 0.9628
E21 0.615 0.6176 0.6535 0.769 0.7168 0.7120
E22 0.307 0.1897 0.4650 0.562 0.4689 0.7412
E23 0.747 0.5596 0.728 0.848 0.7307 0.9101
E24 0.901 0.7204 1.1905 0.967 0.8499 1.0670
E25 0.033 -0.0531 0.2965 0.35 0.3610 0.2548
E26 0.303 0.1839 0.4666 0.548 0.5429 0.6372
E27 0.22 0.0811 0.1834 0.493 0.4098 0.4004
E28 -0.62 -0.3468 0.1753 0.029 0.1619 0.4226
E29 0.064 0.0231 0.2568 0.401 0.4237 0.5343
E30 0.627 0.1839 0.6475 0.794 0.5429 0.6279
E31 0.375 0.5030 0.4032 0.615 0.7630 0.8434
E32 0.775 0.7401 0.6799 0.905 0.9448 0.9535
E33 0.728 0.6374 0.7374 0.88 0.8117 0.7216
E34 0.1 0.2093 0.5239 0.439 0.5638 0.7478
E35 0.737 0.5793 0.8209 0.866 0.8256 1.0157
E36 0.949 0.7401 0.9798 1.02 0.9448 0.8928
Model-4
pKi2 = E_591 (5.1470 5.1578); E_253 (-0.0888 -0.0734)
Statistics:
[KNN= 2; n= 28; Degree of freedom= 25=0.7034;
q2_se= 0.1517; predf=r0.5080; pred *se= 0.1466]
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In model 4, values of k (2)2q0.7034), pred *r(0.5080), §_se (0.1517), and pred se (0.1466) prove that QSAR
equation so obtained is statistically significantdahows the predictive power of the model is 7@ 3dnternal
validation). Table Sepresents the predicted inhibitory activity by thedel-4 for training and test set.

The data fitness plot for model 4 is shown in FggiB. The plot of observed vs predicted activityvjples an idea
about how well the model was trained and how wvtgdtédicts the activity of the external test set.
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Figure 13: Data fitness plot for model-4

From figure 14it can be seen that the model is able to predettttivity of the training set quiet well as wedl a
external test set, providing confidence of the nhode

Training set Test set

W ictual ®Predicted

B Actual ®Predicted

Figure 14: Graph between actual and predicted biolgical activity of training and test set for Model-4

Result plot in which 3D-alignment of molecules wille important steric and electrostatic points Kbating in the
model with ranges of values shown in the parenshexpresented in figure 18.shows the relative position and
ranges of the corresponding important steric amgttedstatic fields in the model provides guideliioe new
molecule design as follows-

(a) Electrostatic field, E_591 (5.1470 5.1578) has fpasirange indicates that positive electrostatiteptal is
favorable for increase in the activity and henss lelectronegative substituent group is prefemetat region.

(b) Electrostatic field, E_253 (-0.0888 -0.0734) hagatize range indicates that negative electrosfaitential is
favorable for increase in the activity and henceeraectronegative substituent group is prefemetthat region.
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Figure 15: 3D-alignment of molecules with the impadant steric and electrostatic points contributing nodel-4 with ranges of values shown
in parenthesis

CONCLUSION

Statistically significant 2D/3D-QSAR models werengeated with the purpose of deriving structuraluisgments
for the inhibitory activities of some pyrazolyl-#zolinone derivatives against EGFR and HER-2 kindde
validation of 2D-QSAR models was done by the cngdation test, randomization tests and extereat set
prediction. The best 2D-QSAR models indicate thmg tescriptors of H-AcceptorCount, T 2 C 7, T_. 2 C 6
T 2 T 7 influenced the both EGFR and HER-2 inhilpitiactivity while T_T_CI_7 influenced only EGFR
inhibition activity and ChlorinesCount controlledlp HER-2 inhibition activity.

KNN-MFA investigated the substitutional requirengefdr the receptor-drug interaction and construdhed best
3D-QSAR models by PLSR method, providing usefubinfation in characterization and differentiationtoéir
binding sites. In conclusion, the information pied by the robust 2D/3D-QSAR models use for thégdesf new
molecules and hence, this method is expected Wde@ good alternative for the drug design.

REFERENCES

[1] R. Herbst|nt. J. Radiat. Oncol. Biol. Phy2004 59 (2), 21-26.

[21H. Zhang, A. Berezov, Q. Wang, Z. Zhang, J. Drelstn,Murali, M. Greene, J. Clin. Invest 2007, 117
(8),2051-2058.

[3]Y. Yarden, J. SchlessingdBiochemistry1987, 26 (5), 1443-1451.

[4]J. Downward, P. Parker, M. Waterfieature 1984 311 (5985), 483-485.

[5] K. Oda, Y. Matsuoka, A. Funahashi, H. Kitahol. Syst. Biol,2005 1 (1), 2005-2010.

[6] F. Ciardiello, G. Tortorakuropean Journal of Canceg2003 39 (10), 1348-1354.

[7]1 R. Dienstmann, S. De Dosso, E. Felip, J. Tabernstalecular oncology20126 (1), 15-26.

[8] G. Ouyang, Z. Chen, X. Cai, B. Song, P. Bhaduryy&hg, et al. Bioorganic & medicinal chemistry2008 16
(22), 9699-9707.

[9] O. el-Sabbagh, M. Baraka, S. Ibrahim, C. Panneauqd. Andrei, R. Snoeck, J. Balzarini, et Buropean
journal of medicinal chemistr2009 44 (9), 3746-3753.

[10]G. Nitulescu, C. Draghici, A. MissiEuropean journal of medicinal chemist010,45 (11), 4914-4919.
[11]R. Mitchell, D. Greenwood, V. Sarojirfbhytochemistry2008,69 (15), 2704-2707.

[12]D. Castagnolo, A. De Logu, M. Radi, B. Bechi, Famétti, M. Magnani, S. Supino, et aBioorganic &
medicinal chemistry2008,16 (18), 8587-8591.

[13]A. Bekhit, H. Ashour, Y. Abdel Ghany, A. Bekhit, akt, European journal of medicinal chemisti3008 43
(3), 456-463.

[14]A. Bekhit, T. Abdel-AziemBioorganic & medicinal chemistr2004 12 (8), 1935-1945.

[15] M. Abdel-Aziz, G. Abuo-Rahma, A. Hassaauropean journal of medicinal chemistr2009 44 (9), 3480-
3487.

[16]N. Gokhan-Kelekgi, S. Yabagt, E. Kupeli, U. Salgin, O. Ozgen, G. Ucar, Esiada, et al. Bioorganic &
medicinal chemistry2007, 15 (17), 5775-5786.

120
Available online at www.scholarsresearchlibrary.com



Anwar R. Shaikh et al J. Comput. Methods Mal. Des., 2012, 2 (3):107-121

[17] M. Christodoulou, S. Liekens, K. Kasiotis, S. Hatmunian,Bioorganic & medicinal chemistr201Q 18 (12),
4338-4350.

[18]A. Jain, A. Vaidya, V. Ravichandran, S. Kashaw,Agrawal, Bioorganic & medicinal chemistny2012 20
(11), 3378-3395.

[19]S. Barzen, C. Rédl, A. Lill, D. Steinhilber, H.StaB. HofmannBioorganic & medicinal chemistr2012 20
(11), 3575-3583.

[20]C. Hansch, A. Kurup, R. Garg, H. Gadhem-Bioinformatics and QSAR: A Review of QSAR kg Positive
Hydrophobic TermsChem. Rey2001,101, 619-672

[21] M. Lill, (2007). Multi-dimensional QSAR in drug dievery, Drug Discovery Today2007, 12, 1013-1017.
[22]G. Yang, X. HuangCurr. Pharm. Des 2006 12, 4601-4611.

[23]K. Qiu, H. Wang, L. Wang, Y. Luo, X. Yang, X. Wandd. Zhu,Bioorganic & medicinal chemistn2012 20
(6), 2010-2018.

[24]A. Golbraikh, M. Shen, Z. Xiao, Y. Xiao, K. Lee, Aropsha,Journal of computer-aided molecular design
2003 17 (2-4), 241-253.

[25]VLifeMDS 4.1, Molecular Design Suite, Vlife SciersceTechnologies Pvt. Ltd., Pune, Ind2012
www.vlifesciences.com.

121
Available online at www.scholarsresearchlibrary.com



