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ABSTRACT 
 
Quantitative structure–activity relationship (QSAR) analysis for recently synthesized pyrazolyl-thiazolinone 
derivatives was studied for their EGFR and HER-2 kinase inhibitory activities.  The statistically significant 2D-
QSAR models (r2 = 0.9086; q2 = 0.8370; F test = 49.6789; r2 se = 0.1242; q2 se = 0.1675; pred_r2 = 0.8086; 
pred_r2se = 0.1934 and r2 = 0.9163; q2= 0.8702; F test 54.7057; r2 se= 0.0820; q2 se=0.1020; pred_r2 = 0.8249; 
pred_r2se = 0.1195) were developed using molecular design suite (VLifeMDS 4.1). The study was performed with 36 
compounds (data set) using sphere exclusion (SE) algorithm, random selection and manual selection methods used 
for the division of the data set into training and test set. Partial least square regression (PLSR) methodology with 
stepwise (SW) forward-backward variable selection method was used for building the QSAR models. The results of 
the 2D-QSAR models were further compared with 3D-QSAR models generated by kNN-MFA, (k-Nearest Neighbor 
Molecular Field Analysis) investigating the substitutional requirements for the favorable inhibitory activity for 
EGFR and HER-2 in tumor growth and providing useful information in the characterization and differentiation of 
their binding sites. The results derived may be useful in further designing novel EGFR and HER-2 kinase inhibitors 
prior to synthesis.  
 
Keywords: pyrazolyl-thiazolinone, EGFR, HER-2, antitumor, quantitative structure-activity relationship, kNN-
MFA 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

The epidermal growth factor receptor (EGFR; ErbB-1; HER1 in humans) is the cell-surface receptor for members of 
the epidermal growth factor family (EGF-family) of extracellular protein ligands [1]. The epidermal growth factor 
receptor is a member of the ErbB family of receptors, a subfamily of four closely related receptor tyrosine kinases: 
EGFR (ErbB-1), HER2/c-neu (ErbB-2), Her 3 (ErbB-3) and Her 4 (ErbB-4). Mutations affecting EGFR expression 
or activity could result in cancer [2]. EGFR exists on the cell surface and is activated by binding of its specific 
ligands, including epidermal growth factor and transforming growth factor α (TGFα). ErbB2 has no known direct 
activating ligand, and may be in an activated state constitutively or become active upon heterodimerization with 
other family members such as EGFR. Upon activation by its growth factor ligands, EGFR undergoes a transition 
from an inactive monomeric form to an active homodimer [3].In addition to forming homodimers after ligand 
binding, EGFR may pair with another member of the ErbB receptor family, such as ErbB2/Her2/neu, to create an 
activated heterodimer. EGFR dimerization stimulates its intrinsic intracellular protein-tyrosine kinase activity. As a 
result, autophosphorylation of several tyrosine (Y) residues in the C-terminal domain of EGFR occurs. These 
include Y992, Y1045, Y1068, Y1148 and Y1173 [4]. This autophosphorylation elicits downstream activation and 
signaling by several other proteins that associate with the phosphorylated tyrosines through their own 
phosphotyrosine-binding SH2 domains. These downstream signaling proteins initiate several signal transduction 
cascades, principally the MAPK, Akt and JNK pathways, leading to DNA synthesis and cell proliferation [5]. EGFR 
overexpression (known as upregulation) or overactivity have been associated with a number of cancers, including 
head and neck, lung, breast, bladder, prostate, kidney and anal cancers  and glioblastoma multiforme. Therefore, 
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EGFR tyrosin kinase represents the attractive target for the development of novel anticancer agents. EGFR and 
HER-2 are the hottest in currant cancer research and their overexpression or abnormal activation often cause cell 
malignant transformation [6]. Monoclonal antibodies such as panitumumab and cetuximab, erlotinib, gefitinib, and 
lapatinib are the representative drugs have been approved by US Food and Drug Administration for treatment of 
patient with non small cell lung cancer (NSCLC) [7]. 
 
Many pyrazole derivatives are acknowledged to possess a wide range of bioactivities. The pyrazole moiety makes 
up the core structure of numerous biologically active compounds. Thus representatives of this heterocycle exhibit 
antiviral [8-9], antitumor [10], antibacterial [11-12], antiinflamatory and analgesic [13-14], antidepressant and 
anticonvulsant [15], MAO-B inhibitors in alzheimer disease [16], anti-angiogenic activity [17]. Thiazolinone and 
their derivatives have attracted continuing interest over the years because of their varied biological activities, such as 
antimicrobial, antiproliferative, antiviral/anti-HIV, antidepressant, anticonvulsant, antifungal, and antibacterial [18], 
antiinflamatory [19], Hai-Liang Zhu et al.2012, reported that the pyrazole ring along with thiazolinone ring, exhibit 
synergistic anticancer effect that act as potential EGFR and HER-2 kinase inhibitors. 
 
Traditional computer-assisted quantitative structure–activity relationship (QSAR) studies pioneered by C. Hansch et 
al.1962 [20] have been proved to be one of the useful approaches for accelerating the drug design process [21] which 
help to correlate the bioactivity of compounds with structural descriptors [22]. Recently synthesized pyrazolyl-
thiazolinone derivatives were discovered with the EGFR and HER-2 kinase inhibitors which may have potential 
utility in treating cancer cells. To gain further insights into the structure–activity relationships of these derivatives 
and understand the mechanism of their substitutional specificity, we have performed 2D and 3D-QSAR on 
pyrazolyl-thiazolinone derivatives using Partial Least Squares Regression (PLSR) and k-Nearest Neighbor 
Molecular Field Analysis (kNN MFA), respectively. The significance of the QSAR models was evaluated using 
cross-validation tests, randomization tests and external test set prediction. The robust 2D/3D-models may be useful 
in further designing new candidates as potential EGFR and HER-2 kinase inhibitors prior to synthesis. 
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Figure 1: Basic structures of pyrazolyl-thiazolinone derivative 

 
Table 1: structures of pyrazolyl-thiazolinone derivative 

 
compounds R1 R2 compounds R1 R2 

E1 H H E19 Br H 
E2 H F E20 Br F 
E3 H Cl E21 Br Cl 
E4 H Br E22 Br Br 
E5 H Me E23 Br Me 
E6 H OMe E24 Br OMe 
E7 F H E25 Me H 
E8 F F E26 Me F 
E9 F Cl E27 Me Cl 
E10 F Br E28 Me Br 
E11 F Me E29 Me Me 
E12 F OMe E30 Me OMe 
E13 Cl H E31 OMe H 
E14 Cl F E32 OMe F 
E15 Cl Cl E33 OMe Cl 
E16 Cl Br E34 OMe Br 
E17 Cl Me E35 OMe Me 
E18 Cl OMe E36 OMe OMe 
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MATERIALS AND METHODS 
 

2.1. Selection of molecules 
Data set of 36 pyrazolyl-thiazolinone derivatives (Table 1) collected from published literature [23] were taken for 
the present study. The affinity data of inhibitory activities were converted into pKi values to get the linear 
relationship in equation using the following formula: pKi= -log Ki, where Ki value represents inhibitory activity in 
IC50 (µM) (Table 2). Molecules were rationally divided into the training set and test set based on the suggestions 
given by Alexander Tropsha et al. [24]. 

 
Table 2: Ki1 (µM) and Ki2 (µM) represent inhibition activities of compounds E1- E2 against EGFR and HER-2 respectively. All 

inhibitory activities are expressed as –log (Ki), which is pKi 
 

Compounds Ki1(µM) Actual pKi1 Ki2(µM) Actual pKi2 
E1 3.38 0.529 5.12 0.709 
E2 4.86 0.687 6.35 0.803 
E3 3.49 0.543 4.83 0.684 
E4 1.35 0.130 3.05 0.484 
E5 3.03 0.481 4.64 0.667 
E6 4.27 0.63 6.21 0.793 
E7 8.14 0.911 10.53 1.022 
E8 16.92 1.228 18.12 1.258 
E9 10.92 1.038 13.16 1.119 
E10 4.79 0.68 6.24 0.795 
E11 8.36 0.922 10.26 1.011 
E12 10.69 1.029 12.43 1.094 
E13 5.34 0.728 7.05 0.848 
E14 14.21 1.153 16.42 1.215 
E15 8.16 0.912 9.96 0.998 
E16 2.28 0.358 3.84 0.584 
E17 6.67 0.824 8.13 0.91 
E18 8.58 0.933 10.34 1.015 
E19 3.20 0.505 4.87 0.688 
E20 6.48 0.812 8.14 0.911 
E21 4.12 0.615 5.87 0.769 
E22 2.03 0.307 3.65 0.562 
E23 5.58 0.747 7.04 0.848 
E24 7.96 0.901 9.27 0.967 
E25 1.08 0.033 2.24 0.35 
E26 2.01 0.303 3.53 0.548 
E27 1.66 0.22 3.11 0.493 
E28 0.24 -0.62 1.07 0.029 
E29 1.16 0.064 2.52 0.401 
E30 4.24 0.627 6.23 0.794 
E31 2.37 0.375 4.12 0.615 
E32 5.95 0.775 8.04 0.905 
E33 5.35 0.728 7.59 0.88 
E34 1.26 0.1 2.75 0.439 
E35 5.49 0.737 7.35 0.866 
E36 8.89 0.949 10.48 1.02 

 
2.2. Molecular modeling 
All computational experiments were performed using on HCL computer having genuine Intel Pentium Dual Core 
Processor and Windows XP operating system using the software Molecular Design Suite (vlifeMDS 4.1) [25]. 
Structures were drawn using the 2D draw application and converted to 3D structures and subjected to an energy 
minimization and geometry optimization using Merck Molecular Force Field, force field and charges followed by 
Austin Model-1 with 10000 as maximum number of cycles, 0.01 as convergence criteria (root mean square gradient) 
and 1.0 as constant (medium’s dielectric constant which is 1 for in vacuo) in dielectric properties. The default values 
of 30.0 and 10.0 Kcal/mol were used for electrostatic and steric energy cutoff. 
 
2.3. 2D-QSAR analysis 
2.3.1. Calculation of descriptors 
Number of descriptors was calculated after optimization or minimization of the energy of the data set molecules. 
Various types of physicochemical descriptors were calculated: Individual (Molecular weight, H-Acceptor count, H-
Donor count, XlogP, slogP, SMR, polarisablity, etc.), retention index (Chi), atomic valence connectivity index 
(ChiV), Path count, Chi chain, ChiV chain, Chain PathCount, Cluster, Pathcluster, Kappa, Element count (H, N, C, 
S count etc.), Distance based topological (DistTopo, ConnectivityIndex, WienerIndex, Balaban Index), Estate 
numbers (SsCH3count, SdCH2count, SssCH2count, StCHcount, etc.), Estate contribution (SsCH3-index., SdCH2-
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index, SssCH2-index , StCH index), Information theory based (Ipc, Id etc.) and Polar surface area. More than 200 
alignment independent descriptors were also calculated using the following attributes. A few examples are 
T_2_O_7, T_N_N_5, T_2_2_6, T_C_O_1, T_O_Cl_5 etc. The invariable descriptors (the descriptors that are 
constant for all the molecules) were removed, as they do not contribute to QSAR. 
 
2.3.2. Generation of training and test sets: 
In order to evaluate the QSAR model, data set was divided into training and test set using sphere exclusion, random 
selection and manual selection method. Training set is used to develop the QSAR model for which biological 
activity data are known. Test set is used to challenge the QSAR model developed based on the training set to assess 
the predictive power of the model which is not included in model generation. 
 
Sphere Exclusion method: In this method initially data set were divided into training and test set using sphere 
exclusion method. In this method dissimilarity value provides an idea to handle training and test set size. It needs to 
be adjusted by trial and error until a desired division of training and test set is achieved. Increase in dissimilarity 
value results in increase in number of molecules in the test set. 
 
Random Selection Method: In order to construct and validate the QSAR models, both internally and externally, the 
data sets were divided into training [90%-60% (90%, 85%, 80%, 75%, 70%, 65% and 60%) of total data set] and 
test sets [10%-40% (10%, 15%, 20%, 30%, 35% and 40%) of total data set] in a random manner. 10 trials were run 
in each case. 
 
Manual data selection method: Data set is divided manually into training and test sets on the basis of the result 
obtained in sphere exclusion method and random selection method. 
 
2.3.3. Generation of 2D-QSAR models: 
PLSR was used for model generation. PLSR is an expansion of the multiple linear regression (MLR) models. In its 
simplest form, a linear model specifies the (linear) relationship between a dependent (response) variable and a set of 
predictor variables. PLSR extends MLR without imposing the restrictions employed by discriminant analysis, 
principal component regression (PCR) and canonical correlation. In PLSR, prediction functions are represented by 
factors extracted from the Y’XX’Y matrix. The number of such prediction functions that can be extracted typically 
will exceed the maximum of the number of Y and X variables. PLSR is probably the least restrictive of the various 
multivariate extensions of the multiple linear regression models. This flexibility allows it to be used in situations 
where the use of traditional multivariate methods is severely limited, such as when there are fewer observations than 
predictor variables. PLSR can be used as an exploratory analysis tool to select suitable predictor variables and to 
identify outliers before classical linear regression. All the calculated descriptors were considered as independent 
variable and biological activity as dependent variable. 
 
2.4. 3D-QSAR analysis: 
2.4.1. kNN-MFA 
kNN-MFA is novel methodology, unlike conventional QSAR regression methods; this methodology can handle 
nonlinear relationships of molecular field descriptors with biological activity, thus making it a more accurate 
predictor of biological activity. Conventional correlation methods try to generate linear relationship with the 
activity, where as kNN is inherently non-linear method and is better able to explain activity trends. The kNN 
technique is a conceptually simple approach to pattern recognition problems. In this method, an unknown pattern is 
classified according to the majority of the class memberships of its k nearest neighbors in the training set. The 
nearness is measured by an appropriate distance metric (e.g. a molecular similarity measure, calculated using field 
interactions of molecular structures). The standard kNN method is implemented simply as follows: (i) calculate 
distances between an unknown object (u) and all the objects in the training set; (ii) select k objects from the training 
set most similar to object u, according to the calculated distances, (iii) classify object u with the group to which a 
majority of the k objects belong. An optimal k value is selected by the optimization through the classification of a 
test set of samples or by the leave-one out cross-validation. The variables and optimal k values are chosen using 
different variable selection methods as described below. 
 
kNN-MFA with Simulated Annealing 
Simulated Annealing (SA) is another stochastic method for function optimization employed in QSAR. Simulated 
annealing (SA) is the simulation of a physical process, ‘annealing’, which involves heating the system to a high 
temperature and then gradually cooling it down to a preset temperature (e.g., room temperature). During this 
process, the system samples possible configurations distributed according to the Boltzmann distribution so that at 
equilibrium, low energy states are the most populated. 
kNN-MFA with Stepwise (SW) Variable Selection 
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This method employs a stepwise variable selection procedure combined with kNN to optimize the number of nearest 
neighbors (k) and the selection of variables from the original pool as described in simulated annealing. 
 
kNN-MFA with Genetic Algorithm 
Genetic algorithms (GA) first described by Holland mimic natural evolution by modeling a dynamic population of 
solutions. The members of the population, referred to as chromosomes, encode the selected features. The encoding 
usually takes form of bit strings with bits corresponding to selected features set and others cleared. Each 
chromosome leads to a model built using the encoded features. By using the training data, the error of the model is 
quantified and serves as a fitness function. During the course of evolution, the chromosomes are subjected to 
crossover and mutation. By allowing survival and reproduction of the fittest chromosomes, the algorithm effectively 
minimizes the error function in subsequent generations. 
 
2.4.2. Alignment rules: 
Molecular alignment was used to visualize the structural diversity in the given set of molecules. This was followed 
by generation of common rectangular grid around the molecules. The template structure, i.e. unsubstituted 
pyrazolyl-thiazolinone was used for alignment by considering the common elements of the series as shown in Figure 
2. The reference molecule 28 is chosen high inhibitory effect which made it a valid lead molecule and therefore was 
chosen as a reference molecule. After optimizing, the template structure and the reference molecule were used to 
superimpose all molecules from the series using the template alignment method. kNN-MFA method requires 
suitable alignment of given set of molecules after optimization; alignment was carried out by template based 
alignment method. Stereoview of aligned molecules in training set and test set is shown in Figure 3. 
 

 
 

Figure 2: Template molecule 
 

 
 

Figure 3: Stereoview of aligned molecules 
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2.4.3. Creation of interaction energies 
Methyl probe with charge 1 and energy cut-off for electrostatic 10 Kcal/mol and for steric 30 Kcal/mol, dielectric 
constant 1 and charge type Gasteiger-marsili were used to calculate steric and electrostatic fields. The fields were 
computed at each lattice intersection of a regularly spaced grid of 2.0 A° within defined three-dimensional region. 
 
2.4.4. Generation of training and test sets 
In order to evaluate the QSAR model, data set was divided into training and test set using sphere exclusion, random 
selection and Manual selection method. Training set is used to develop the QSAR model for which biological 
activity data are known. Test set is used to challenge the QSAR model developed based on the training set to assess 
the predictive power of the model which is not included in model generation. 
 

RESULTS AND DISCUSSION 
 

3.1 2D-QSAR models 
 Different sets of 2D-QSAR models were generated using the PLSR analysis in conjunction with stepwise forward-
backward variable selection method. Different training and test set were constructed using sphere exclusion, random 
and manual selection method. Training and test set were selected if they follow the unicolumn statistics, i.e., 
maximum of the test is less than maximum of training set and minimum of the test set is greater than of training set, 
which is prerequisite for further QSAR analysis. This result shows that the test is interpolative i.e., derived from the 
min-max range of training set. The mean and standard deviation of the training and test set provides insight to the 
relative difference of mean and point density distribution of the two sets. The statistical significant 2D-QSAR 
models for pKi1 and pKi2 are given in Table 3.  

 
Table 3: Statistical evaluation of 2D-QSAR models for pKi1 and pKi2 

 
 

Models 
 

r 2 
 

q2 
 

r 2se 
 

q2se 
 

pred_r2 
 

F test 
pKi1       

1 0.9086 0.8336 0.1242 0.1675 0.8086 49.6789 
2 0.8583 0.7138 0.1576 0.2188 0.8896 29.0050 
3 0.8410 0.7522 0.1679 0.2096 0.7704 37.0280 
4 0.8637 0.7861 0.1195 0.1497 0.7278 44.3586 
5 0.8408 0.7601 0.1671 0.2052 0.7221 42.2478 

pKi2       
1 0.9163 0.8702 0.0820 0.1020 0.8249 54.7057 
2 0.7548 0.6471 0.1422 0.1706 0.4907 17.6988 
3 0.7981 0.6997 0.1335 0.1628 0.7008 19.7688 
4 0.8798 0.8345 0.1019 0.1196 -0.3342 49.3884 
5 0.6201 0.5246 0.1751 0.1958 0.0718 14.6923 

 
The selection of the best model is based on the values of r2 (squared correlation coefficient), q2 (cross-validated 
correlation coefficient), pred_r2 (predicted correlation coefficient for the external test set), F (Fisher ratio) reflects 
the ratio of the variance explained by the model and the variance due to the error in the regression. High values of 
the F–test indicate that the model is statistically significant. r2se, q2se and pred_r2se are the standard errors terms for 
r2, q2 and pred_r2  respectively. The statistically significant 2D-QSAR model is shown as follows. 
 
Model-1 (Test set: 5,6,7,8,9,12,14,19,30,35,36) 
pKi1  =  -0.5365 (T_2_C_6);   + 0.5307 (H-AcceptorCount)  
             +0.1426 (T_T_Cl_7); + 0.1233 (T_2_C_7)  
              -0.0979 (T_2_T_7) + 22.3512 
 
Statistics:  
[Optimum Components= 4; n= 25; Degree of freedom= 20;  
r2 = 0.9086; q2= 0.8336; F test= 49.6789; r2se= 0.1242;  
q2se= 0.1675; pred_r2= 0.8086; pred_r2se = 0.1934] 
 
Model-2 (Test size:1,6,11,13,18,19,22,28,30,31,33) 
pKi2  = +0.3810 (H-AcceptorCount);   -0.3070 (T_2_C_6)  
             +0.2479 (ChlorinesCount);     + 0.0873 (T_2_C_7)  
              -0.0664 (T_2_T_7) +12.9440;   
 
Statistics:  
[Optimum Components= 4; n= 25; Degree of freedom = 20;  
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r2= 0.9163; q2= 0.8702, F test= 54.7057; r2se= 0.0820;  
q2se= 0.1195; pred_r2= 0.8249; pred_r2se= 0.1195] 
 
In the above QSAR equations, n is the number of molecules (Training set) used to derive the QSAR model, r2 is the 
squared correlation coefficient, q2 is the cross-validated correlation coefficient, pred_r2 is the predicted correlation 
coefficient for the external test set, F is the Fisher ratio, reflects the ratio of the variance explained by the model and 
the variance due to the error in the regression. High values of the F-test indicate that the model is statistically 
significant. r2se, q2se and pred_r2se are the standard errors terms for r2, q2 and pred_r2 (smaller is better).  
 
Interpretation of the Models: 
Model-1 
From equation, model 1 explains 90.86 % (r2= 0.9086) of the total variance in the training set as well as it has 
internal (q2) and external (pred_r2) predictive ability of 83.36 % and 80.86 % respectively. The F test shows the 
statistical significance of 99.99 % of the model which means that probability of failure of the model is 1 in 10000. In 
addition, the randomization test shows confidence of 99.9999 (Alpha Rand Pred R^2 = 0.00000) that the generated 
model is not random and hence chosen as the QSAR model. From QSAR model 1, negative coefficient value of  
T_2_C_6 [count of number of double bonded atoms (i.e. any double bonded atom, T_2) separated from carbon atom 
by 6 bonds],T_2_T_7 [count of any bond separated from any atom by 7 bonds]  on the biological activity indicated 
that lower values leads to good inhibitory activity while higher value leads to reduced inhibitory activity while 
positive coefficient value of  H-AcceptorCount [number of hydrogen bond acceptor atoms], T_T_Cl_7 [count of any 
atom (represented as T) separated from Cl atom by 7 bonds], T_2_C_7 [count of number of double bonded atoms 
(i.e. any double bonded atom, T_2) separated from carbon atom by 7 bonds], on the inhibitory activity indicated that 
higher value leads to better inhibitory activity whereas lower value leads to decrease inhibitory activity. 
 
Contribution chart for model 1 is represented in Figure 4 reveals that the descriptors H-AcceptorCount, T_T_Cl_7, 
T_2_C_7, contributing 53.07 %, 14.26 % and 12.33 % respectively. Two more descriptors T_2_C_6 and T_2_T_7 
are contributing inversely 53.65 %, 9.79 % respectively to biological activity.  
 

 
Figure 4: Contribution chart for model-1 showing contribution of different descriptors 

 
Data fitness plot for model 1 is shown in Figure 5. The plot of observed vs predicted activity provides an idea about 
how well the model was trained and how well it predicts the activity of external test set. 
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The graph of observed vs. predicted activity of training and test sets for model 1 is shown in Figure 6
the model is able to predict the activity of training set quite well as well as external test set, providing confidence of 
model. Result of the observed and predicted inhibitory
is shown in Table 5.  
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Figure 6: Graph between actual and predicted biological activity of 
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Figure 5: Data fitness plot for model-1 

The graph of observed vs. predicted activity of training and test sets for model 1 is shown in Figure 6
he model is able to predict the activity of training set quite well as well as external test set, providing confidence of 

bserved and predicted inhibitory activity for the training and test compounds for the Model 1 
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Graph between actual and predicted biological activity of training and test set for Model

Model 2 explains 91.63 % (r2= 0.9163) of the total variance in the training set as well as it has 
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The graph of observed vs. predicted activity of training and test sets for model 1 is shown in Figure 6, it reveals that 
he model is able to predict the activity of training set quite well as well as external test set, providing confidence of 

activity for the training and test compounds for the Model 1 

training and test set for Model-1. 

= 0.9163) of the total variance in the training set as well as it has 
) predictive ability of 87.02% and 82.49% respectively. From QSAR model 2, it 
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Contribution chart for model 2 is represented in Figure 7, it reveals that the descriptors H-AcceptorCount, 
ChlorinesCount, T_2_C_7 contributing 38.10%, 24.79% and 8.73 % respectively. Two more descriptors T_2_C_6 
and T_2_T_7 are contributing inversely 30.70 %, 6.64 % respectively to biological activity.  
 

 
Figure 7: Contribution chart for model-2 showing contribution of different descriptors 

 
Data fitness plot for model 2 is shown in Figure 8; the plot of observed vs predicted activity provides an idea about 
how well the model was trained and how well it predicts the activity of external test set. 
 

 
Figure 8: Data fitness plot for model-2 

 
The graph of observed vs. predicted activity of training and test sets for model 2 is shown in Figure 9, reveals that 
the model is able to predict the activity of training set quite well as well as external test set, providing confidence of 
model. Result of the observed and predicted inhibitory activity for the training and test compounds for the Model 2 
is shown in Table 5.  
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Training set                                                       Test set 

 
Figure 9: Graph between actual and predicted biological activity of training and test set for Model-2. 

 
3.2. 3D-QSAR model 
kNN-MFA samples the steric and electrostatic fields surrounding a set of ligands and constructs 3D-QSAR models 
by correlating these 3D fields with the corresponding biological activities. The statistical significant 3D-QSAR 
models for pKi1 and pKi2 are given in Table 4. 

 
Table 4: Statistical evaluation of 3D-QSAR models for pKi1 and pKi2 

 
Models kNN DOF q2 q2_se pred_r2 pred_r2se 
pKi1       

1 2 24 0.7194 0.1728 0.5587 0.3675 
2 2 25 0.5148 0.2695 0.6807 0.2113 
3 3 26 0.6285 0.2465 -0.1647 0.2983 
4 2 18 0.6749 0.1904 0.3171 0.3591 
5 2 29 0.6596 0.2301 -1.0269 0.2779 

pKi2       
1 2 25 0.7034 0.1517 0.5080 0.1466 
2 2 23 0.4922 0.1712 0.1636 0.2806 
3 2 21 0.8281 0.1053 -0.2003 0.3223 
4 2 21 0.6176 0.1486 0.1312 0.2860 
5 2 23 0.7003 0.1378 -0.3363 0.3572 

 
The selection of the best model is based on the values of q2 (internal predictive ability of the model) and that of 
pred_r2 (the ability of the model to predict the activity of external test set). The statistical significant 3D-QSAR 
models for pKi (model-3) and pKi2 (model-4) are given below. 
 
Model-3 
pKi1  = E_709 (0.0702 0.0745);  S_391 (-0.1301 -0.1222)  
            S_784 (-0.0179 -0.0172) 
 
Statistics:  
[kNN= 2; n= 28; Degree of freedom= 24; q2= 0.7194;  
q2_se= 0.1728; pred_r2= 0.5587; pred_r2se= 0.3675 
 
The model 3 explains values of k (2), q2 (0.7194), pred_r2 (0.5587), q2_se (0.1728), and pred_r2 se (0.3675) prove 
that QSAR equation so obtained is statistically significant and shows the predictive power of the model is 71.94% 
(internal validation). Table 5 represents the predicted inhibitory activity by the model 3 for training and test set.  
 
The data fitness plot for model 3 is shown in Figure 10. The plot of observed vs predicted activity provides an idea 
about how well the model was trained and how well it predicts the activity of the external test set.  
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Figure 10: Data fitness plot for model-3 

 
From figure 11 it can be seen that the model is able to predict the activity of the training set quiet well as well as 
external test set, providing confidence of the model. 
 

Training set                                                                               Test set 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 11: Graph between actual and predicted biological activity of training and test set for Model-3. 

 
Result plot in which 3D-alignment of molecules with the important steric and electrostatic points contributing in the 
model-3 with ranges of values shown in the parenthesis represented in Figure 12. It shows the relative position and 
ranges of the corresponding important steric and electrostatic fields in the model provides guideline for new 
molecule design as follows- 
 
(a) Electrostatic field, E_709 (0.0702 0.0745) has positive range indicates that positive electrostatic potential is 
favorable for increase in the activity and hence less electronegative substituent group is preferred in that region. 
(b) Steric filed, S_391 (-0.1301 -0.1222) has negative range indicates that negative steric potential is favorable for 
increase in the activity and hence less bulky substituent group is preferred in that region. 
(c) Steric filed, S_784 (-0.0179 -0.0172) also has negative range indicates that negative steric potential is favorable 
for increase in the activity and hence less bulky substituent group is preferred in that region. 
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Figure 12: 3D-alignment of molecules with the important steric and electrostatic points contributing model-3 with ranges of values shown 
in parenthesis. 

 
Table 5: Actual and predicted activities for 36 compounds based on the best 2D/3D-QSAR models 

 

Compounds Actual pKi1 2D-QSAR (model-1) 
Predicted 

3D-QSAR (model-3) 
Predicted Actual pKi2 2D-QSAR (model-2) 

Predicted 

3D-QSAR 
(model-4) 
Predicted 

E1 0.529 0.4834 0.2571 0.709 0.6680 0.6389 
E2 0.687 0.7204 0.3443 0.803 0.8499 0.7332 
E3 0.543 0.6176 0.3174 0.684 0.7168 0.6729 
E4 0.130 0.1897 0.3216 0.484 0.4689 0.6270 
E5 0.481 0.5596 0.2968 0.667 0.7307 0.5954 
E6 0.63 0.7204 0.6474 0.793 0.8499 0.7369 
E7 0.911  0.7761 1.022 1.0491 1.0142 
E8 1.228 1.2512 1.0273 1.258 1.2310 1.0524 
E9 1.038 1.1483 0.9304 1.119 1.0979 1.1167 
E10 0.68 0.7204 0.6210 0.795 0.8499 0.8787 
E11 0.922 1.0904 0.7895 1.011 1.1118 1.1750 
E12 1.029 1.2512 0.9177 1.094 1.2310 1.1330 
E13 0.728 0.7686 0.7375 0.848 0.9160 0.7156 
E14 1.153 1.0057 1.0650 1.215 1.0979 1.0680 
E15 0.912 0.9029 0.9937 0.998 0.9648 0.8392 
E16 0.358 0.4749 0.7640 0.584 0.7168 0.8078 
E17 0.824 0.8449 0.8198 0.91 0.9787 0.9635 
E18 0.933 1.0057 1.0270 1.015 1.0979 0.9104 
E19 0.505 0.4834 0.4234 0.688 0.6680 0.8769 
E20 0.812 0.7204 1.0645 0.911 0.8499 0.9628 
E21 0.615 0.6176 0.6535 0.769 0.7168 0.7120 
E22 0.307 0.1897 0.4650 0.562 0.4689 0.7412 
E23 0.747 0.5596 0.728 0.848 0.7307 0.9101 
E24 0.901 0.7204 1.1905 0.967 0.8499 1.0670 
E25 0.033 -0.0531 0.2965 0.35 0.3610 0.2548 
E26 0.303 0.1839 0.4666 0.548 0.5429 0.6372 
E27 0.22 0.0811 0.1834 0.493 0.4098 0.4004 
E28 -0.62 -0.3468 0.1753 0.029 0.1619 0.4226 
E29 0.064 0.0231 0.2568 0.401 0.4237 0.5343 
E30 0.627 0.1839 0.6475 0.794 0.5429 0.6279 
E31 0.375 0.5030 0.4032 0.615 0.7630 0.8434 
E32 0.775 0.7401 0.6799 0.905 0.9448 0.9535 
E33 0.728 0.6374 0.7374 0.88 0.8117 0.7216 
E34 0.1 0.2093 0.5239 0.439 0.5638 0.7478 
E35 0.737 0.5793 0.8209 0.866 0.8256 1.0157 
E36 0.949 0.7401 0.9798 1.02 0.9448 0.8928 

 
Model-4 
pKi2 = E_591 (5.1470 5.1578); E_253 (-0.0888 -0.0734) 
Statistics:  
[kNN= 2; n= 28; Degree of freedom= 25; q2= 0.7034;  
q2_se= 0.1517; pred_r2= 0.5080; pred_r2se= 0.1466] 
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In model 4, values of k (2), q2 (0.7034), pred_r2 (0.5080), q2_se (0.1517), and pred_r2 se (0.1466) prove that QSAR 
equation so obtained is statistically significant and shows the predictive power of the model is 70.34% (internal 
validation). Table 5 represents the predicted inhibitory activity by the model-4 for training and test set.  
 
The data fitness plot for model 4 is shown in Figure 13.  The plot of observed vs predicted activity provides an idea 
about how well the model was trained and how well it predicts the activity of the external test set.  

 
Figure 13: Data fitness plot for model-4 

 
From figure 14 it can be seen that the model is able to predict the activity of the training set quiet well as well as 
external test set, providing confidence of the model.  
 
Training set                                                                                             Test set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 14: Graph between actual and predicted biological activity of training and test set for Model-4 
 
Result plot in which 3D-alignment of molecules with the important steric and electrostatic points contributing in the 
model with ranges of values shown in the parenthesis represented in figure 15. It shows the relative position and 
ranges of the corresponding important steric and electrostatic fields in the model provides guideline for new 
molecule design as follows- 
 
(a) Electrostatic field, E_591 (5.1470 5.1578) has positive range indicates that positive electrostatic potential is 
favorable for increase in the activity and hence less electronegative substituent group is preferred in that region. 
(b) Electrostatic field, E_253 (-0.0888 -0.0734) has negative range indicates that negative electrostatic potential is 
favorable for increase in the activity and hence more electronegative substituent group is preferred in that region. 
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Figure 15: 3D-alignment of molecules with the important steric and electrostatic points contributing model-4 with ranges of values shown 
in parenthesis 

 
CONCLUSION 

 
Statistically significant 2D/3D-QSAR models were generated with the purpose of deriving structural requirements 
for the inhibitory activities of some pyrazolyl-thiazolinone derivatives against EGFR and HER-2 kinase. The 
validation of 2D-QSAR models was done by the cross-validation test, randomization tests and external test set 
prediction. The best 2D-QSAR models indicate that the descriptors of H-AcceptorCount, T_2_C_7, T_2_C_6, 
T_2_T_7 influenced the both EGFR and HER-2 inhibition activity while T_T_Cl_7 influenced only EGFR 
inhibition activity and ChlorinesCount controlled only HER-2 inhibition activity. 
 
kNN-MFA investigated the substitutional requirements for the receptor-drug interaction and constructed the best 
3D-QSAR models by PLSR method, providing useful information in characterization and differentiation of their 
binding sites. In conclusion, the information provided by the robust 2D/3D-QSAR models use for the design of new 
molecules and hence, this method is expected to provide a good alternative for the drug design. 
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