
Available online at www.scholarsresearchlibrary.com 
 

 
 

 
 

 
Scholars Research Library 

 
Der Pharmacia Lettre,  2014, 6 (6):289-296  

(http://scholarsresearchlibrary.com/archive.html) 

 

 
       ISSN 0975-5071 
USA CODEN: DPLEB4 

 

289 
Scholar Research Library 

3D-QSAR and molecular docking studies of quinazoline derivatives as 
glycogen synthase kinase-3β (Gsk-3β) inhibitors 

 
Srinivas Sangu1*, Aparna Vema2 and Rajkamal Bigala1 

 
1Department of Pharmaceutical Chemistry, Ganga Pharmacy College, Das Nagar, Nizamabad, T.S, India 

2Department of Pharmaceutical Chemistry, Sree Chaithanya Institute of Pharmaceutical Sciences, LMD Colony, 
Karimnagar, T.S, India 

_____________________________________________________________________________________________ 
 
ABSTRACT 
 
The discovery of glycogen synthase kinase-3β (GSK3β) inhibitors has proven to be challenging task to identify novel 
and potent gsk3β inhibitors. The quantitative structure activity relationship (QSAR) and docking approach became 
very useful and largely widespread technique for ligand-based drug design. The computational study deals with 
development of 3D QSAR models for 85 selected quinazoline derivatives using the stepwise variable selection k-
nearest neighbor molecular field analysis approach; a leave-one-out cross validation  method. The developed model 
showed satisfactory statistical significance r2 (Regression) with 0.75 and q2 (Correlation coefficient) 0.81. Further 
we have carried out molecular docking studies with the x-ray crystal structure of glycogen synthase kinase domain. 
These studies showed that quinazoline scaffold can be utilized for designing of novel GSK-3β inhibitors. 
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INTRODUCTION 
 

The glycogen synthase kinase3β was originally identified and studied for its functions in the regulation of glycogen 
synthase as the rate limiting enzyme in glycogen biosynthesis [1]. It is serine /threonine kinase comprising two 
isoforms (α and β) in mammals. These isoforms share high homology (>90%) at the catalytic domain and expressed 
ubiquitously in cellular system and have similar biochemical properties [2]. GSK3β has multiple substrates and 
plays a critical role in glucose homeostasis, CNS function [3], circadian rhythm, controlling cell cycle, neuro 
degeneration, chronic inflammatory diseases and cancer [4-5]. The literature reveals that   the maleimides of 
inhibitors (bisaryl maleimides) [ 4], anilino maleimides [5], bisindolyl maleimides [6], azaindolyl maleimides [7-9] 

have been reported to show a degree of selectivity toward GSK3β. Although, a number of diverse classes of GSK3β 
inhibitor have been reported so far, the selectivity problem appears to hamper all efforts. This at least in part, stems 
from the fact that the kinase has the same natural substrates, ATP and most of the ligands act through competition 
with ATP. This calls for methodologies that tackle the non selectivity to address the design of potential drug 
candidates of GSK3β inhibitors. In the present study the quinazoline derivatives were (85) selected to develop the 
3D-QSAR and molecular docking studies. 
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MATERIALS AND METHODS 
 

Synthesis of molecules:  
All molecules (85) under study were taken from previously published work and IC50 (nM) values converted in to –
log10 (pIC50) values used in the present study were shown in Table1.[10] 
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Table1 Showing the compounds under present study 

 
Compound X Y R1 R2 Activity (pIC50) 

1 H H H H 6.02 

2 H H H o-Cl 6.29 

3 H H H p-Cl 6.43 

4 H H H p-Me 6.13 

5 H H H 2,3-Me2 7.02 

6 H H H 2,4-Me2 6.19 

7 H H H 3,4-Me2 5.95 

8 H H H o-OMe 7.09 

9 H H H m-OMe 5.58 

10 H H H p-OMe 6.14 

11 H H H o-OEt 7.34 

12 H H H p-NO2 5 

13 H H H p-Ac 6.02 

14 H H p-F H 6.16 

15 H H p-F 2,4-Me2 6.3 

16 H H p-F 2,6-Me2 6.3 

17 H H p-F p-OMe 5.6 

18 H H p-F o-OEt 5.88 

19 H H p-F p-NO2 5.13 

20 H H H H 6.18 

21 H H H o-F 6.39 

22 H H H p-F 5.61 

23 H H H o-Cl 6.88 

24 H H H m-Cl 6.95 

25 H H H p-Cl 6.34 

26 H H H 3,4-Cl2 6.79 

27 H H H 2,3-Me2 6.33 

28 H H H 2,4-Me2 6.16 

29 H H H 2,5-Me2 6.37 

30 H H H 3,4-Me2 6.69 

31 H H H o-OMe 7.67 

32 H H H m-OMe 5 

33 H H H p-OMe 5.69 

34 H H H o-OEt 7.58 

35 H H H m-CF3 6.45 

36 H H H p-Ac 5 

37 H F H H 6.03 

38 H F H o-F 6.11 

39 H F H p-F 6.11 

40 H F H o-Cl 7.28 

41 H F H m-Cl 6.72 

42 H F H p-Cl 5.65 

43 H F H 3,4-Cl2 6.34 

44 H F H 2,3-Me2 7.12 

45 H F H 2,4-Me2 6.02 

46 H F H 2,5-Me2 5.82 
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47 H F H 3,4-Me2 6.22 

48 H F H o-OMe 7.07 

49 H F H m-OMe 5 

50 H F H p-OMe 5.95 

51 H F H o-OEt 7.72 

52 H F H m-CF3 7.03 

53 H F H p-Ac 6.16 

54 F H H H 6.32 

55 F H H o-F 6 

56 F H H p-F 6.37 

57 F H H o-Cl 6.69 

58 F H H m-Cl 6.88 

59 F H H p-Cl 5.92 

60 F H H 3,4-Cl2 6.56 

61 F H H 2,3-Me2 7.25 

62 F H H 2,4-Me2 6.2 

63 F H H 2,5-Me2 6.69 

64 F H H 3,4-Me2 6.58 

65 F H H o-OMe 6.92 

66 F H H m-OMe 6.03 

67 F H H p-OMe 6.45 

68 F H H o-OEt 7.92 

69 F H H m-CF3 7.13 

70 F H H p-Ac 6.22 

71 H H o-OMe o-OMe 6.67 

72 H H o-OMe o-OEt 7.53 

73 H F o-OMe o-OEt 6.95 

74 F H o-OMe o-OMe 7.1 

75 F H o-OMe o-OEt 7.31 

76 H H m-OMe o-OMe 7 

77 H H m-OMe o-OEt 7.25 

78 H F m-OMe o-OEt 7.04 

79 F H m-OMe o-OMe 6.63 

80 F H m-OMe o-OEt 7.79 

81 H H p-OMe o-OMe 7.01 

82 H H p-OMe o-OEt 7.53 

83 H F p-OMe o-OEt 7.3 

84 F H p-OMe o-OMe 6.72 

85 F H p-OMe o-OEt 7.79 

 
3D-QSAR studies: 
 The molecular modeling and docking studies (3D & Docking) were performed using the molecular Design suite 
(VLife MDS software package, version 4.3; from VLife sciences, pune, India). The structures of all compounds 
were sketched in chem sketch version 12.0 (ACD lab). All structures are cleaned and 3D optimized. Energy 
minimization and geometric optimization were conducted using the Merck molecular force field (MMFF) and 
Gasteiger marsili charges for the atoms with the root mean square gradient set to 0.01kal/mol A0 and the iteration 
limit to 10,000. The conformers for all structures are generated and the low energy conformer was selected for each 
compound for further study. 
 
Data set and Molecular modeling for 3D-QSAR: 
The total set of compounds was divided in to training set (58 molecules) for generating 3D-QSARmodel and test set 
(27 molecules) for validating the quality of the models. Optimal training and test set were generated using the sphere 
exclusion (SE) algorithm. The SE method was adopted for division of training and test data set comprising of (58 
molecules) and (27 molecules) molecules respectively, with dissimilarity value of 5.0 where the dissimilarity value 
gives the SE radius. 
 
Alignment procedure: 
Molecular alignment is a crucial step in 3D-QSAR study to obtain meaningful results. Energy minimized and 
geometry optimized structure of each molecule were aligned by the template based method. In general geometric 
similarity should exist between the modeled structure and the bioactive conformation for 3D-QSAR. This special 
alignment of compounds under study is thus one of the most sensitive and determining factor in obtaining a reliable 
model. Alignment of all 85 compounds was done using the template based alignment by using the most active 
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molecule as reference and (4-oxo-3, 4 dehydro-2yl-3phenyl-quinazoline derivative) as template in MDS; the 
alignment of all compounds in present study shown in Fig 1. The aligned structures were used for the study. In the 
template alignment, a template structure was defined and used as a basic for alignment of a set of molecules. These 
aligned conformations were used to generate the predictive QSAR model. 

 
Fig1. Figure showing alignment of molecules used in the study. 

 

 

 
Descriptor calculation:  
In this study by using Tripos force field (11) and Gasteiger –marsili charges (12) electrostatic and steric descriptors 
were calculated. The dielectric constant was set to 1.0 considering the distance-dependent dielectric function probe 
setting was carbon atom with charge ±1.0. This resulted in calculation of 5,000 field descriptors (1,680 for each 
electrostatic and steric) for all the compounds. QSAR analysis was performed after removal of all the invariable 
descriptors, as they do not contribute to the QSAR. 
 
3D-QSAR studies were carried out by kNN method using forward step wise variable selection as variable selection 
method. The kNN methodology relies on a simple distance learning approach where by an unknown member is 
classified according to the majority of its kNN in the training set. The nearness is measured by an appropriate 
distance metrics (a molecular similarity measure calculated using field interactions of molecular structures). The 
step-by-step search procedure beings by developing a trial model with a single dependent variable and independent 
variable, one step at a time, examining the fit of model at each step (using weighted kNN cross-validation 
procedure). The method continues until there is no more significant variable remaining outside the model. Once the 
training and test sets are generated, kNN methodology is applied to the descriptors generated over the grid. The 
steric, electrostatic, and hydrophobic energies are computed at the lattice points of the gride using a methyl probe of 
charge ±1. These interaction energy values are considered for relationship generation and utilized as descriptors to 
decide the nearness between molecules. k-nearest neighbor molecular field analysis (kNN-MFA) model were 
developed using the Forward stepwise variable selection method with cross-correlation limit set of 5.0 and term 
selection criteria as r2. F-test was set to 4.0. As some additional parameters, variance cutoff was set at 0.000 
kal/mole Å and scaling to none; additionally, kNN parameter setting was done within the range of 2-5 and the 
prediction was selected as the distance based weighted average. To systematically assess a QSAR model, a reliable 
validation is required usually; a QSAR model is evaluated by the predictive results for the given dataset. The models 
having r2 (0.75) were checked for their external predictivity.  
 
Docking studies: 
The docking studies helped to sort-out the designed compounds with good binding affinity against glycogen 
synthase kinase enzyme. We conducted docking studies using Biopredicta module of VLife MDS 4.3 using crystal 
structure of the glycogen synthase kinase retrieved from protein data bank (PDB Id.4ACC). 
 

RESULTS AND DISCUSSION 
 

The computational study deals with development of 3D QSAR for 85 selected quinazoline derivatives using the 
stepwise variable selection k-nearest neighbour molecular field analysis approach; a leave-one-out cross validation  
method. The developed model showed satisfactory statistically significant r2 (Regression) with 0.75 and q2 
(Correlation coefficient) 0.81 were shown in Table 2. Further molecular docking studies were carried out with the x-
ray crystal structure of glycogen synthase kinase domain and the dock scores (kcal/moles) of all compounds were 
shown in Table 3. 
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Table2. Showing the selected QSAR model along with statistical parameters employed for the model selection 
 

Descriptor Range k Nearest Neighbour N q2
 q2_se pred_r2 pred_r2se 

E_1444 (4.0362 4.1324) 
E_1579 (0.9146 0.9899) 
S_472( 4.8157 5.0486) 

2 58 0.8172 0.7236 0.7575 0.5150 

 
Table3. Showing the Actual, predicted activities along with residuals and Docking scores of quinazoline derivatives using SW-kNN MFA 

method 
 

Sl.No. Actual activity Predicted activity 
(pIC50) Residuals Docking score 

1 6.02 6.044 -0.34 -3.190149 
2 6.29 6.093 -0.34 -4.01869 
3 6.43 5.852 -0.34 -4.611467 
4 6.13 5.95 -0.34 -3.048052 
5 7.02 6.175 -0.34 -4.395815 
6 6.19 6.09 -0.34 -4.285131 
7 5.95 6.09 -0.34 -4.204618 
8 7.09 7.329 -0.34 -4.124801 
9 5.58 6.073 -0.34 -4.080334 
10 6.14 5.798 -0.34 -4.522176 
11 7.34 7.085 -0.34 -3.892629 
12 5 5.242 -0.34 -4.028881 
13 6.02 5.888 -0.34 -4.304687 
14 6.16 6.091 -0.34 -1.403753 
15 6.3 6.244 -0.34 -3.557473 
16 6.3 6.178 -0.34 -4.229233 
17 5.6 6.088 -0.34 -4.086438 
18 5.88 6.085 -0.34 -3.092155 
19 5.13 5.151 -0.34 -4.39268 
20 6.18 6.238 -0.34 -3.747464 
21 6.39 6.056 -0.34 -4.409298 
22 5.61 5.57 -0.34 -4.260995 
23 6.88 6.86 -0.34 -3.236679 
24 6.95 6.739 -0.34 -3.201721 
25 6.34 5.669 -0.34 -1.450164 
26 6.79 6.253 -0.34 -3.115317 
27 6.33 6.305 -0.34 -4.205425 
28 6.16 6.232 -0.34 -3.982151 
29 6.37 6.305 -0.34 -3.94702 
30 6.69 6.17 -0.34 -3.957804 
31 7.67 7.301 -0.34 -2.427283 
32 5 5.304 -0.34 -1.935696 
33 5.69 5.805 -0.34 -2.764349 
34 7.58 7.722 -0.34 -4.298745 
35 6.45 6.99 -0.34 -2.233518 
36 5 5.512 -0.34 -3.448983 
37 6.03 6.524 -0.351 -3.763191 
38 6.11 6.172 -0.351 -2.155975 
39 6.11 6.25 -0.351 -4.054487 
40 7.28 6.632 -0.351 -4.242139 
41 6.72 6.341 -0.351 -2.925613 
42 5.65 6.028 -0.351 -1.953481 
43 6.34 6.482 -0.351 -3.956572 
44 7.12 6.524 -0.351 -2.21275 
45 6.02 6.552 -0.351 -4.00793 
46 5.82 6.524 -0.351 -3.587913 
47 6.22 6.524 -0.351 -3.902675 
48 7.07 7.148 -0.351 -2.493879 
49 5 5.299 -0.351 -3.416451 
50 5.95 6.004 -0.351 -3.66064 
51 7.72 7.275 -0.351 -2.218624 
52 7.03 6.702 -0.351 -3.643802 
53 6.16 5.976 -0.351 -2.501931 
54 6.32 6.17 -0.387 -3.912165 
55 6 6.232 -0.387 -2.423559 
56 6.37 6.125 -0.387 -3.989039 
57 6.69 6.16 -0.387 -4.202147 
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58 6.88 7.19 -0.387 -4.066853 
59 5.92 6.081 -0.387 -4.186153 
60 6.56 6.335 -0.387 -4.417856 
61 7.25 6.785 -0.387 -2.815035 
62 6.2 6.97 -0.387 -3.170191 
63 6.69 7.067 -0.387 -3.871213 
64 6.58 6.505 -0.387 -3.948909 
65 6.92 7 -0.387 -3.662417 
66 6.03 5.627 -0.387 -3.85669 
67 6.45 5.808 -0.387 -2.772099 
68 7.92 7.684 -0.387 -3.440656 
69 7.13 6.786 -0.387 -4.188419 
70 6.22 5.826 -0.387 -3.982536 
71 6.67 7.242 -0.371 -1.897574 
72 7.53 7.247 -0.371 -3.975201 
73 6.95 7.553 -0.379 -1.844738 
74 7.1 7.417 -0.418 -2.223641 
75 7.31 7.241 -0.418 -3.610979 
76 7 7.159 -0.35 -3.67952 
77 7.25 7.268 -0.35 -3.752281 
78 7.04 7.273 -0.359 -3.896853 
79 6.63 7.851 -0.399 -2.412773 
80 7.79 7.854 -0.399 -3.754813 
81 7.01 7.3 -0.342 -1.888118 
82 7.53 7.277 -0.342 -1.762175 
83 7.3 7.303 -0.351 -2.987971 
84 6.72 7.79 -0.392 -1.121769 
85 7.79 7.849 -0.392 -2.161401 

 
Interpretation of QSAR model: 
 In the present study several 3D-QSAR models were generated using stepwise variable selection method. Of the 
several statistically significant models best model is reported here in Table 2. 3D-QSAR model was selected based 
on the values of statistical parameters and the best kNN-MFA 3D-QSAR models with (58) training set compounds 
having a q2 0.81 and pre_r2 0.75. The kNN-MFA QSAR method explores formally the active analog approach which 
implies that compounds display similar profiles of pharmacological activities. In this method, the activity of each 
compound is predicted as average activity of most chemically similar compound from the data set. The predictive 
ability of this forward step wise variable selection kNN-MFA model was evaluated by predicting the biological 
activities of the test set molecules. Residual values obtained by substracting of predicted activities from biological 
activities were found near to zero. Therefore it was concluded that the resultant QSAR model have good predictive 
ability. The actual, predicted activities and residuals of both training and test set molecules are given Table 3. The 
contribution plot and fitness plot of observed verses predicted activity of both training and test set molecules helped 
in cross validation of kNN-MFA QSAR model are depicted in Fig 2 & Fig 3.  The model selection criterion is based 
on the value of q2, the internal predictive ability of the model and that of pred_r2, the ability of the model to predict 
the activity of external test set. The selected model was found to be statistically most significant, especially with 
respect to the internal predictive ability q2 (0.81) of the model. The correlation coefficient suggests that our model is 
reliable and accurate. A data set of (27) compounds were selected as the test set from the original data of 85 
compounds for the cross validation. The predicted versus the experimental values for the training and test sets are 
depicted in Fig 4. The values of pred_r2 for the test set with value of (0.75), which means better predictive power for 
the external test set. Thus our model displays good predictivity in regular cross validation. 
 
In 3D-QSAR studies the steric and electro static fields were calculated using Tripos force field and Gasteiger-marsili 
charges, 3D data points were generated. The range of property values in the generated data point helped for the 
design of new chemical entities. These ranges were based on the variation of the field values at the choosen points 
using the most active molecule and its nearest neighbor set. The points generated is SW-kNN-MFA 3D QSAR 
model are S_472 (4.8157, 5.0486), E_1444 (4.0362, 4.1324) and E_1579 (0.9146, 0.9849) that is steric and 
electrostatic interaction fields at lattice points 472, 1444 and 1579 respectively as shown in Fig 5. These points 
suggested the significance and requirement of steric and electrostatic properties as mentioned in the range in 
parenthesis for structure activity relationship (SAR) and maximum biological activities of quinazoline analogues. 
The steric interaction fields are represented in green lattice point at S472 implies that steric interaction along these 
lattice points are required to be addressed and interaction at this point S472 are positively contributing are so the 
compounds which are having bulky substituent at  aromatic ring can show the increased activity. The two 
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electrostatic fields at blue lattice point at E1444 and E1579 implies that electronegative group are positively 
contributing so the compound which are having electron withdrawing group i.e. ortho methoxy and ortho ethoxy 
group at R2 position can show the increased activity of compounds. The m-Chloro group and p-Chloro group can 
contribute the more biological activity than ortho floro and para floro groups. 
 

Fig2. Contribution plot for descriptors in QSAR model                                        Fig 3. Fitness plot of Actual versus 
                                                                                                                                 Predicted activity of training (red) and 

                                                                                                                                  Test (blue) set compounds. 

 

 
Fig4. Figures showing the Actual (red) and predicted activity (blue) of test and training set compounds 

 

                                     
 
 

Fig5. Figure showing the field points used in the QSAR model 
 

 
 
Docking results: 
To gain insight in to the molecular determinants that modulate the inhibitory activity of these compounds, molecular 
docking simulations for these compounds to GSK3β were performed using the biopredicta program in VLife MDS 
software based on the x-ray crystal structure of GSK3β was retrieved from protein data bank (pdb id. 4ACC). The 
docking and subsequent scoring were performed using the default parameters of the biopredicta program 
demonstrated that all the molecules under study have a nice interaction with amino acids of GSK3β, and all the 
compounds with ortho ethoxy, ortho methoxy groups shown to exibit good binding interaction and elucidate the 
good docking score, the para Chloro and meta Chloro groups shows the good docking score than ortho floro and 
para floro groups.  The dock scores (kcal/moles) of all compounds were shown in Table 3. The nitrogen atom of 
quinazoline ring forms hydrogen bonding with LYS183 with a 2.366 Å distance. The oxygen atom of keto group 
interacts with SER203 with 2.499 Å distance (compound 2). The electron withdrawing group (fluorine) substituted 
on phenyl ring at para position can form a hydrogen bonding with LYS183 (2.526 Å distance) and GLN185 with 
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1.797 Å distance (compound 80). The oxygen atom of amide group forms hydrogen bonding with SER 203 with a 
2.059 Å distance and the oxygen atom of methoxy group interact with ARG96 with a 2.48 Å distance (compound 
84). The most active molecule (2 and 80) interaction images depicted in Fig 6. 

 
Fig6. Figure showing the hydrogen bonding of compound 2 and 80 with active sites gsk3 (pdb id. 4acc) 

 

       
 

CONCLUSION 
 
In conclusion a computational approach along with the QSAR and docking analysis was employed to identify 
molecular structural features, electrostatic and steric effect dominantly determine binding affinities which can be 
useful for development of glycogen synthase kinase inhibitors.  
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