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ABSTRACT

The curved waveguides of various cross sections@mguseful in building a waveguide system andrageired in

many communication applications, especially in lisdecommunications. While designing curved wavegsl it is
necessary to take care about exact position of aris angle of bending for proper distribution ofetic and

magnetic fields. So that electromagnetic waves papagate through waveguide in the desired maniibe

problem of propagation of dominant TE mode in cdrweaveguide of right isosceles triangular crosstieecis

analyzed up to third order perturbation terms. Togindrical coordinate system is used for matheosti
formulation of the problem and perturbation techrégs used in obtaining the solution. The informatabout the
percentage contribution up to third order termsnisrked out. It is shown that the propagation @célomagnetic
waves through triangular waveguide and its phaseoity depends on the sense of bending of waveaide
frequency.

Keywords: Triangular waveguide, curved waveguide, perturlmatischnique.

INTRODUCTION

Waveguide is normally rigid and therefore it isewftnecessary to direct the waveguide in a partialitaction.

Using waveguide bends and twists it is possiblaange the waveguide into the positions requir@ggular

straight hollow waveguides have phase velocitiesatgr than the free-space speed of light for prafoamg

electromagnetic waves. Conventional slow wave #tires used for accelerating charged particles ahero
applications employ reactive loadings in hollovagght waveguides to reduce the phase velocityesfteimagnetic
fields in the specific mode to be used.

The problem of propagation of electromagnetic wawesurved rectangular waveguide has been solvddeivin
[1,2] He used perturbation method and obtainedhida for guide wavelength and showed that how saditi
curvature of the waveguide affects the propagationdependent on the sense of bending of the guide

The propagation of electromagnetic waves in cusstegctures has also been studied by Lewin, Chaddaiester
[3]. They solved this problem by starting with twoupled modes and showed that the combinatiomeftwo
modes at any cross-section involves a phase chdemgnding on the radius of curvature.

Various methods for the analysis of curved wavegsiilave been studied in the literature. The prdmagaf
general-order modes in curved rectangular wavegexdenined by using asymptotic expansion methodJéyeral
methods of investigation of propagation were dgwetbfor study of empty curved waveguide and beba8][
Rectangular waveguides with curved corners areyaedlusing super quadric functions [9]. A novelhhigyder
finite difference method is introduced for opticaweguides with smoothly curved perfectly electrimducting
boundaries [10]. The propagation of dominant maedvistedwaveguide of right isosceles triangular cross-secti
is analyzed by using helical co ordinate systemperturbation technique [11].
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A good design of a curved waveguide is intendelghit the pure radiation losses and the transitasses between
the straight and the bent waveguides. Not propgkigned bends may lead to the excitation of higheéer leaky
modes in the plane of the bend. Accordingly wavegubend and waveguide twist sections are manufsttur
specifically to allow the waveguide direction to b#ered without unduly destroying the field patterand
introducing loss.

Here we analyzed the propagation of dominant modeiived waveguide of right isosceles triangulassfsection.
The cylindrical co-ordinate system is used for thathematical formulation of the problem and perdtidn
technique is used in obtaining the solution. Thebfem is worked out up to third order perturbattenrms and
obtained solutions. The effect of radius of cunvat on the propagation properties of a wave, eés ttudied with
the use of these solutions. This study will help@signing the lossless curved waveguides of tukamgection.

MATHEMATICAL FORMULATION

1 Thewave Equation:

Figure 1 show the isosceles right triangular waiggof dimension ‘a’ curved about the guide axifie cylindrical
co-ordinatesp, @, z, are replaced by a new co-ordinate systemy(x'z’). The relation between these two co-
ordinate systems is given by

Z
R L 1.1

Where R is radius of curvature of guide axis.
The wave equation in cylindrical co-ordinate sysiem

92 d 92 92
pz—w+p%+—w+p2 N

9p? 902 E'F/)ZKZLP =0 R

Using transformation equations in equation 1, th@evequation 2 can be written in terms of x’, ylanas
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Figure 1: Isosceles Right Triangular Waveguide
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The boundary conditions for triangular waveguide ar

9 atx'= 0
a—y,: aty = 0 ......... 14
oY o¥

- _ t/ -
ax’+ay’ atx + vy a

2. Zeroth Order Solutions:
We assume a solutidh of equation (1.3), of the form

O (P e Ae~IB? 2.1

= 0+?+ﬁ+ ...... e cre ane eee L
Where

B B B

2 = K2 (1 R ) 2.2
g * R + R? + R3 +

2 _ [(2m 2_ n 2
k2 = (&) - (%) 2.3
By, By, Bs......... are the unknowns to be determined.

The zeroth order equation is obtained by substijuéiquations 2.1 and 2.2 into wave equation 1.3rataihing the
terms of order 1/R

%Y, 02, (m\2
e S (_) Y, =0 o 2.4
ax ay a

Solving equation fo, and applying boundary conditions in equation 1hé,dolution obtained is of the form

x' y'
Y, = cos( ) — cos (—) vn e e 2.5
a a

To study the effect of bending, it is necessargtitain the solutions of higher order terms.

3. First Order Solution:
Substitute equations (3.1) and (3.2) into wave tgad1.3), and examine the terms of order 1/R getfirst order
equation.

a2%+a2q’1+(n)21}1 =F(x',y") 3.1
axlz ax'2 a 1= X,y BTRTTRTIRTIR B
Where

’ ’ ’ aZLPO aijo alpo ’ 2 ,2
FyD =2y \ ot 5z |~ 3y - 2y'K*W, + K"*B, ¥, . I

With the substitution o¥, from equation (2.5), equation (3.2) becomes

F(x',y")

x' wy' x' Ty’
= —2K'%y' (COS ( ) — cos <l> + K'*B, cos ( ) — cos <l>>
a a a a

~ (%) cos (Q) e 33

a a
The most general solution of (3.1) satisfying tberdary conditions (1.4), is

Y, = Z Z A {cos [(m +n) T[?X,] .COoS (m;y')
+ (—1)™ cos [(m +n) HTYI] .CoS (nzx’)} vt vee e e 3.4
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Substituting equation (3.4) into the left side qfiation (3.1), we get

- i i App.[(m +1n)? +n? - 1] (g)z {COS [(m +n) HTX,] .COS (m;y')

m=0 n=0
+ (—1)™ cos [(m +n) _y] cos (nnx )}
a
=F&,y") v 3.5

The LHS of above equation vanishes for m = 1 arel & we can find value of B with the usual process of
determining coefficients by Fourier analysis [4for this, multiply to the right side of equatiorb$ [Cos ("x') -

cos( ” )] and equate with zero after integration.

ff P e[ () - os ()| e -0

Substitute F (X, y’) from equation (3.3) and wr{&6), as

T
2K21, — K2B, I, + (E) I=0 e 3.7

Solve integrald; |, and k one by one by parend substitute into (3.7), we get value gf B

5= (5+72)
1= 3 2nZi

+ m ..3.8
4. Evaluation of Coefficients A
In order to obtain the coefficientsA multiply on both sides of equation (3.5) by

x' nmy' wy' nms' ]
cos|(m +n) .cos| —— |+ (=1)™cos|(m +n) .cos and integrate.
a a a a
Ay [(m + n)? + n?
T 2 X’ nmy’
-1] —) ff {cos[(m-ﬁ-n)—].cos( y)
a a a
00 aa—x/
nTx
+ (- 1)mcos[(m+n)—] cos( 3 )} dx'dy’ = ff F ', y).
X’ nmy’ nmx
.{cos [(m + n)?] .cos( 2 >+ (—1)™cos [(m + n)—] cos( 3 )} dx'dy’
w41
For simplicity we write this equation as
IL = IR ............4‘.2
After solving equation fof; it becomes
7.[2

I, = Ay [(m+n)?2 +n? — 1].7 e 43

Let us now considel, of equation (4.2)
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In = 2K — KB, L + (%) I e B
Now solve these integrals one by one, by partssaibdtitute values df andly into equation (4.1), we can obtain
value of coefficient®\,.

5. Second Order Solution:

With the substitution of equations (2.1) and (4r2p wave equation (1.3) and examining the termerder 1/R,
we get second order perturbation equation, which is

0 T +(7T)211J =F (x.y") 5.1
oz T oy o L, =F ',y wer vee eee wee D
Where

Py g2 (%W | 9PWo)  , 0Wo ., (9PWy , 3PWi)  9Y: ., 2 2 2 12
ey = =2 (SR + T0) -y S -2y (S +208) — 52 2y/Wik? —y " Wok® + KB, +
K'*B,¥, 5.2

The most general solution of equation (5.1), sgtigf boundary conditions (1.4), is

v, = Z Z B, {cos [(m +n) %x’] .cos (m;y’) + (—=1)™ cos [(m +n) 7%,’] .cos (m;x’)} v 5.3

Substitute?, from above equation to the left of equation (5.1),

3 bt e -0 (D) feos on 47 cos ()
a a a

m=0n=0

T
a

y' nmx'
+ (—1)™ cos [(m +n) ] .cos( » )} =Fx',y") ..5.4

On the left, the coefficient c{tos ("Tx') — cos ("Ty')] vanishes when m = 1 and n = 0. Hence by the ysoakss
of determining coefficients by Fourier analysis, egn obtain constar®,. Thus according to Fourier analysis
multiply to the right side of equation (5.4) Ex;ps ("Tx') — cos ("Ty')] and equate with zero after integration.

aa-x - T[y,
f f F(x',y") [cos <7> - cos( " )dx’dy’] =0 e v e D5
0 0

Substitute F (X, y’) from equation (5.2) and wréquation (5.5), in the simple form as

(Ii+ 1)+ 13+ 2 (Ia+ 1g) + Ig+ 2K? 17+ K1 —K'2By 1g—K'?B;110= 0 v 5.6

2

R =a7 T

Substitute value of integréd, form equation (5.7) and solve fos,Bve get

B, = {I, + L+I; + 2(I,05) + Ig+2K? + I,+K?IgK'* B, I,} P X <

a’K?
After substituting the value of integralstb ly, from respective equations, we get value of B

6. Evaluation of Coefficients By:
To determine coefficients B, multiply on both sides of equation (5.4) by

x' nmy' y' nmx’
{COS [(m +n) 7 ] .cos (T) + (—1)™cos [(m +n) 7] .CoS <T>} and
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Integrate.
B [(m + n)? + n?
aa—x/

—1] (g)z .bf Of {cos [(m +n) %x’] .cos (n%y’>

n

y' mx'\)?
+ (=1)™cos [(m +n) 7}’] .CoS (T)} dx'dy’ = —f f F(x',y").
0 0

aa—x/

!

X nmy’' wy' nmx'\)’
(m+n)7 -cos | —— + (—=1)™cos (m+n)7 .cos | —— dx'dy’

{COS

Wire above equation as ol
I, = I e 6.2
Above equation is solved fdrand is equal to
o I, = Bpp[(m + n)* + n* — 1]. %2 e e e 6.3
Let us considerglof equation (6.2).
After substituting F (X', y') from equation (5.2)eamay write equation fogbs
Ip=U + L)+ 13+ 2, +Is) + Ig + 2K?l, — K2Ig—K'? — B,y — K"?B, 1,

..6.4

Solve the integrals; lto |, and substitute their values, we get valudzofWe can obtain value of coefficients,B
using equation (6.1).

7. Third Order Solution:
Substitute (2.1) and (2.2) into wave equation (BB8) examining the terms of order i/Rve get third order
perturbation equation.

— 57 + (E) W, =F (x,y") A |

Where

Fix'\y)= —y?|l—=+—=)—-y — =2y’ — | - == - 2y'¥,K? — y"?K?¥, + K"?B, V.
(x J’) y (axlz + ay!z) y ay! dx'? + aylz ay’ y 13 y 1 + 112

+K2B,W, + K'?B,¥,
7.2

The most general solution of equation (7.1), sgtigf boundary conditions (1.4) is

Y, = Z Z Conn .{COS [(m +n) n;c’] .cos (?)
+ (=1)™cos [(m +n) 7-[2,'] .COS <%x’>} e 7.3

Substitutéd; into the left side of equation (4.6.1), we get

i i Conn - [(m +1)? + 1?2 — 1] (E)Z -{Cos [(m +n) n_x'] .CoS ("”yl>
a a m

m=0n=0
+ (—=1)™cos [(m +n) ng: ] .COS <%>}

= —F (x’,y’) e e e e 14
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On LHS the coefficient o{cos (”Tx') — cos ("Ty')] vanishes when m = 1 and n = 0. Hence with theqe® of
determining coefficients by Fourier analysis we cdmain constant 8 In order to get B multiply to RHS of
equation (7.4) by{cos ("Tx') — cos ("Ty')] and equate with zero after integration.

o x’' Ty’
f f F(x',y"). [cos (T) — cos <T>],dx’dy’ =0 e 7.5
0 0

After substituting F (X', y’) from equation (7.2je may write equation (7.5), in the simple form as
L+ L)+ I+ 2y +15) + Ig + 2K%l, — K?Ig—K'* — Byly — K'*Bylyo—K'*B3 I;; =
0 e e e 1.6

Now solve these integralgto I;; one by one by parts.

a2

s~ = = e 1.7
11 2
Substitute value of integraj;lfrom equation (7.7) into equation (7.6) and wetpiation for B as

B3 = (11 + 12) + 13 + 2 (14 + 15) + 16 + 2K217 - Kzlg_Klz - Bllg

_K’2B2110 ............7.8

a?K'2

After solving integrals,lto l;o and substitute in above equation we get the vaflig.

8. Evolution of Propagation Constant:
Equation of propagation constant square is giveedmation (2.2), which is rewritten here

B, B
2 = g2 (1+ L4254 )
B R R

From this, the equation for propagation constamunfed triangular waveguide up to third order igten as

N

B, B
2 3) .81

=K' (1 T S
b= R "R? "R®
With the substitution of values of constants B, and B from equations (3.8), (5.8) and (7.8) respectiviglyabove
equation we obtaip.

9. Numerical Calculation:
The theoretically analyzed formula of propagatimnstant in equation (8.1) is used to study the et&pn
characteristics of curved isosceles right triangulaveguide. The formula is rewritten below

The computer PCAT, 1.2 MB with coprocessor 8028iisisd for numerical calculations. The constant{sB and

B3 in above formula are evaluated with the help afgpam ‘CWB3’ written in Turbo Basic. The constditis
required for calculations of coefficients,f The values of Band A, are used to evaluate constant BThe
constant B contains summation over m and n. for summationsatected so as to obtain the convergence for
calculated values of B The subroutine ‘AMNB2’ does these calculatiorisAg,, and B. These values are then
used to obtain coefficients,8 The constant Bis evaluated with the use of.A B, B: and B. The constant B
also contains summation over m and n, and henceahwes of m and n are so chosen that the conveegisn
obtained for value B This is achieved by subroutine ‘BMNB3'. By knimg the values of constants,B, and B

the value of propagation constant is obtained urdifferent situations (i.e. for different values oddius of
curvature and frequency), with the use of abovmida.
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The propagation constant is evaluatediat 28mm and for R varying from 55mm to 400 mm ane graph of
propagation constant versus R is plotted as oneeculrhe process is repeated for 30 mm and\ = 32mm as
shown inFigure 2.

The Figure 3 depicts the variation of propagation constant WtHor parameters and R same as that of figure 2,
but for the waveguide curved in opposite sensee dpposite sense of bending is achieved by regaRiby —R in
the formula of propagation constant.

02131

0183 _—

0182+

0154

c

0ms} + 0140 . .
% 124 193 262 3 400 % 126 193 262 m 400

Radius of Curvature (R) Radius of Curvature (R)

Figure 2: Variation of Propagation Constant () Figure 3: Variation of Propagation Constant (B)
with radius of curvature (R) for different values with radius of curvature (R) for different values
of A (CurvesA,Band Carefor A=28,30and 32 of A (CurvesA, B and C arefor A =28,30and 32
mm respectively) mm respectively)
*Waveguideis curved in opposite sense

The phase velocity is calculated for R ranging fiéBmm to 400mm, a = 28mm. The calculations are repeated
for A = 30mm andA =32mm. A graph of phase velocity as a functionsPblotted for each value of. The
corresponding curves are drawrFigure 4.

The above calculations of phase velocity are alsdopmed for waveguide curved in opposite sense thed
respective curves are shownFdigure5.  These calculations of propagation constant ahds@ velocity are
carried out with the use of program ‘PRCW-'.

§ 5.10‘
~~
€ \
e 4,36+ \
;1
o
—
X s 2l— .
:; \
[3) c
2 et
()
=~
a B
4 LA4T
= A
W 124 19 x5 3 2%
Radius of Curvature (R) Radius of Curvature (R)

Figure 4: Phase Veocity against radius of Figure5: Phase Velocity against radius of
curvature (R) for different values of & curvature (R) for different values of A
(CurvesA, B and C arefor A =28, 30and 32 (CurvesA, B and C arefor A =28,30 and 32
mm respectively) mm respectively)

*Waveguide is curved in opposite sense
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The propagation constant and phase velocity arei@eal for R = 75mm, over the range of frequenoyfiBGHz to
12GHz. The calculations are repeated for R = 10Ganch 150mm.Figure 6 depicts the behavior of propagation
constant with change in frequency for each R, wtiike behavior of phase velocity is depicted=igure 7. The
program ‘PRCWF’ is developed and used for evalmadibpropagation constant and phase velocity.

155¢
0257 (\
\ / g \
| P
aabi A S
; 7 b
£ B / =
£ 2 <
E01 >
Q C 8 [
ﬁ/‘/ L=
00T 7 /A g
/ £ %)
/. m
0054 g
A
000 +———rt } ; -
0 88 113 104 1.2 12.0
Frequency in GHz Frequency in GHz
Figure 6: Propagation Constant () against Figure 7: Phase Velocity against Frequency
Frequency for different values of radius of for different values of radius of curvature (R)
curvature (R) (CurvesA, B and C arefor R=75, 100 and
(Curves A, B and C arefor R=75, 100 and 150 mm respectively)

150 mm respectively)
CONCLUSION
With the help of graphs plotted we arrive to thikofeing conclusions.

1. The increase in radius of curvature of waveguidddRreases the propagation constant of a wavediven and
converges to a value equal to the value of prop@ayatonstant of straight waveguide at higher valoER, as
shown inFigure 2.

In case of waveguide curved in opposite senserthgagation constant increases with the increasearfd attains a
value equal to the value that for straight wavegutihigher R, which is representedrigure 3.

Thus the propagation in a curved waveguides depemdise sense of bending.

2. Figure 4 shows that, as we increase the radius of curv&®uthe phase velocity of a wave increases fovaryi
A and for higher R it remains constant at the vahme as that for untwisted waveguide.

For a waveguide curved in opposite sense the patjpagconstant goes on decreasing with the increbgeand
converges to a value equal to that for untwistedegaide at high values of R, as indicatedFiigure 5.

In other words phase velocity is changed in cuwadeguide and its value depends on the sense dfrtzen

3. FromFigure 6 it seen that, increase in frequency will incretdmepropagation constant for a given R. Itigals
observed that as frequency increases the differbatgeen the values of propagation constant fderdift values
of R goes on decreasing and finally at higher feagpies this difference between propagation condtanbmes
negligibly small.

4. For given R, phase velocity of a wave goes on @deing with the increase of frequency as showRigure 7.

It can also be seen that the difference betweephtihse velocities for different values of R decesass frequency
increases and this difference becomes very smhlghaer value of frequency.
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