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ABSTRACT 
 
In this paper the normal mode of vibrational energy levels of ethylene & benzene molecules are 
studied by U(2) Lie algebra. Its application to ethylene & benzene are presented with fewer 
algebraic fitting parameters. Here each bond of the molecule is replaced by a corresponding Lie 
algebra and finally the Hamiltonian is constructed considering the interacting Casimir and 
Majorana operators. The normal modes of vibrational energy levels of these molecules are 
calculated and hence compared by considering the local Hamiltonian of Morse potential using 
the U(2) algebra.  
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INTRODUCTION 
 

The study of fundamental and excited vibrational states of diatomic and polyatomic molecules 
have been one of the most interesting and advanced topics in the field of molecular spectra in the 
theoretical as well as experimental background in recent past due to  the development and 
introduction of  new laser techniques. Several experimental techniques [1] such as electronic 
luminescence spectroscopy including fine structure quasline spectra, X-ray, ESR, NMR, 
Mossbauer spectroscopy, magnetic susceptibility measurements, absorption, infrared and Raman 
spectroscopy has been applied to elucidate the physical and chemical properties of those 
molecules. At the same time many theoretical approaches including quantum chemical 
calculation as well as semi empirical programmees have been attempted by several researchers 
[2]. Although extensive studies by all these techniques on these molecules have clarified several 
aspects, many other aspects require further theoretical explanation. In this study we have used an 
alternative approach (Algebraic approach) to describe the vibrational spectra of molecules like 
ethylene & benzene. 
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In recent years, algebraic models, such as Lie algebraic methods [3] and boson-realization model 
[4] have been proposed for the descriptions of vibrations, rotations, and rotation-vibration 
interactions in polyatomic molecules. In Lie algebraic approaches, U(4) and U(2) algebraic 
models have been extensively used [5]. The U(4) model deals with the rotation and the vibration 
simultaneously, but it becomes quite complicated when the number of atoms in a molecule are 
more than four. The U(2) model was particularly successful in explaining stretching vibrations of 
diatomic & polyatomic molecules such as benzene-like molecules [6]. This model was extended 
to deal with stretching vibrations in diatomic and polyatomic molecules [7]. 
 
In this paper, we use the U(2) algebraic model to study the normal modes of vibrations of 
ethylene & benzene molecules [ 8]. 
 
2. Summary of the Algebraic Theory 
In U(4) algebraic model (vibron model) [9], the rotations and vibrations of the molecules are 
taken into account simultaneously. But, it becomes impracticable when the number of atoms 
exceeds four. However separating the rotations and vibrations, it is possible to construct a simple 
version of the vibron model, which can be used for vibrational analysis of polyatomic molecules. 
In this study we apply the one dimensional algebraic model consisting of formal replacement of 
the interaction bond coordinate with unitary algebra U(2). With this algebraic formulation, one 
can attain algebraic expressions of eigenvalues and eigenvectors even for a complex Hamiltonian 
operator, including inter-mode coupling terms as well as expectation values of any operator. The 
main advantages of this algebraic approach over the conventional Dunham [10] like expansions 
are  
(i) The algebraic models lead to a local Hamiltonian formulation of the physical problem. 
(ii)  Its expansions are intrinsically anharmonic at their zero order approximation. 
 
These two factors reduce drastically the no of arbitrary parameters in comparison to the 
harmonic series for medium and large size molecules. However in the local Hamiltonian 
formulations, the actual eigenvectors of the physical system cannot be directly accessed through 
diagonalisation of the Hamiltonian operators. Beside this disadvantage, which is not a serious 
one, the local Hamiltonian formulation can be used in the systematic study of fundamental and 
excited overtones of the diatomic & polyatomic molecules. 
 
The motivation for the construction of this algebraic model is the isomorphism of U(2) one 
dimensional Lie algebra with that of the one dimensional Morse oscillator, which is a good 
description of a stretching vibration of a molecule. The eigenstates of the one dimensional 
Schrödinger equation with Morse potential [11] is 
 

                                       h(p, x) =
µ2

2p
+ D [1-exp(-α x)]2

        (1) 

 

can be put into one to one correspondence with the dynamical symmetry U(2) ⊃ O(2) 
characterized by the quantum numbers mN,  with the provision that one takes only the positive 

branch of m, i.e., m = N,N - 1, N – 2,….., 1 or 0 for N = odd or even (N = integer). Thus the 
Hamiltonian corresponding to the Morse potential on the basis of U(2) algebra is given by  
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0H ACε= +              (2) 

 
where C  is the invariant operator of U(2), with eigenvalues 2 2( )m N− . So, the eigenvalues of  
H  are 
 

( )22
0 NmA −+= εε           (3) 

 
Introducing the vibrational quantum number   ( ) / 2v N m= −  , one can write the eigenvalue as   
 

( )2
0 4 vNvA −−= εε  ,with 0,1............. / 2v N=  or ( 1) / 2N −  (for N = even or odd )       (4) 

 
The value of 0ε , A  and N are given in terms of ,Dµ  and α by  using the following relations 

 

0 Dε = − , 1/ 24 (2 / ) ,AN h Dα µ− =  2 24 / 2A h α µ= −  

 
Since the potential in co-ordinate can be taken to a good approximation, as a Morse potential, we 
can write the Hamiltonian of a polyatomic molecule in terms of Morse anharmonic oscillators by 
introducing the U(2) algebra for each coordinate(C-H bonds). The algebraic Hamiltonian for the 
coupled oscillator is then can be written as  
 

0
1

n n n

i i ij ij ij ij
i i j i j

H E AC A C Mλ
= 〈 〈

= + + +∑ ∑ ∑        (5) 

 
where iC , ijC  and ijM  are the algebraic operators. In the local basis the operators iC  are the 

diagonal matrix with eigenvalues 
 

( )24,, iiiiiiii vvNvNCvN −−=〉〈         (6) 

 
The couplings between the bonds are introduced by the operators ijC  and ijM , called Casimir 

and Majorana operators respectively. The role of the Majorana operators ijM  is to introduce off-

diagonal couplings between pairs of local modes. In the simplest case of equivalent interacting 
bonds, the Majorana operator naturally leads to a solution for symmetrized coupled modes, in 
which the invariance of the Hamiltonian operator, under bond exchange, is explicitly taken into 
account. A rather appealing feature of this algebraic model is that such a ‘symmetrizing’ 
property of the Majorana operator, actually quite a trivial one for two equal bonds, can readily be 
extended to any molecular geometry, even a very complex one. The key point is that the basic 
information characterizing the specific molecular geometry can easily be incorporated by 
introducing proper linear combinations of Majorana operators. 
 
In purely local limit of N  oscillators, these oscillators are somehow correlated with each other 
through the ijC operators, which account for (diagonal) cross-anharmonicities, represented by the 

following equation: 
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( )ji
ij i ij

i j

CC
C C N

N N
= − +  Where ij i jN N N= +       (7) 

 
Furthermore, following the Eq.(7), it should be noted that one basically subtracts from iC those 

terms arising from uncoupled single-oscillator contributions. In the special case of a pair of 
equivalent oscillators i  and j ( )i jN N= ,the above equation can be replaced by the following 

matrix elements 
 

24( )i ij i j i jj
v v C v v v v〈 〉 = − −    

      (8) 
i.e., the matrix elements do not depend on( )i jN N . As a result, ijC will account for different 

contributions throughout different polyads and within the same polyad; the most important 
aspect of ijC is the dependence of its matrix elements on the product i jv v . 

 
The simplest basis to diagonalize the Hamiltonian is characterized by the representation of local 
mode chain [5] 
 

(1)(2)U ⊗ (2)(2)U ⊗ (3)(2)U ⊃ (1)(2)SO ⊗ (2)(2)SO ⊗ (3)(2)SO (2)SO⊃  

                  ↓               ↓              ↓                 ↓               ↓                ↓              ↓         (9) 

[ ]1N ,        [ ]2N ,       [ ]3N ;           1v ,             2v ,              3v ;           V〉 , 

  
where, below each group we have indicated the eigenvalues that label their irreducible 
representations. Explicitly this basis is given by, 
 

[ ] [ ] [ ] [ ] [ ] [ ]1 2 3 1 2 3 1 1 2 2 3 3, , ; ; ; ;N N N v v v N v N v N v〉 = 〉 〉 〉     (10) 

Where, [ ] [ ]( )!
; ( ) ,0

! !
ivN v

N v J N
N v −

−
〉 = 〉  

 
Here , N is the total number of bosons fixed by the potential shape ,v corresponds to the number 
of quanta in the oscillator and J- is the angular momentum operator  ( has both raising  J+ , 
lowering J- connecting different energy states)  in U(2) algebra. The quantum numbers vi 
correspond to the number of quanta in each oscillator while V is the total vibrational quantum 
number given by 
 

V =
1

n

i
i

ν
=
∑           (11) 

 
For a particular polyad, the total vibrational quantum number is always conserved. The inclusion 
of 

ijM  in the local Hamiltonian operator cannot affect the conservation rule. In Eq. (5), iC  is an 
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invariant operator of uncoupled bond with eigenvalues 4(vi
2-Nivi) and the operator 

ijC  for 

coupled bonds are diagonal with matrix elements, which are given by 
 
     

 ( )( ) ( )[ ]24,;,,;, jijijijjiiijjjii vvNNvvvNvNCvNvN +−++−=〉〈  

jiijjijjiiijjjii vvNvNvvNvNMvNvN 2,;,,;, −+=〉〈       (12) 

     ( )( ) ( )11,;,1,;1, +−+−+−=〉−+〈 jjiiijjjiiijjjii vNvNvvvNvNMvNvN  

    ( )( ) ( )11,;,1,;1, +−+−+−=〉+−〈 iijjjijjiiijjjii vNvNvvvNvNMvNvN  

 
 
 
 
 
Thus the eigenvalues of the Hamiltonian can be easily evaluated and provide a description of n  
coupled anharmonic vibrators. 
 
3. The locality parameter (ξ )  
The local-to-normal transition is governed by the dimensionless locality parameter (ξ ). The 

transition from local to the normal mode limit is described by the parameter ij Aλ . When this 

parameter is zero, the Hamiltonian (Eq. 5) is in the local limit, when the parameter is large the 
approaches the normal mode limit. 
 
For ethylene (C2H4) and benzene (C6H6) molecules, the locality parameters are 

( ) 12 tan [8 / ( )],ij i ijA Aξ π λ−= +      , 1,2,3.......i j =       (13) 

 
corresponding to the number of bonds. 
With this definition, due to Child and Halonen [12, 13, 14], local mode molecules are near to the 

0ξ =  limit, normal mode molecules have 1ξ → . 
 

RESULTS AND DISCUSSION 
 

In this work we use four algebraic parameters. . , , , &i e A A Nλ λ′ ′ , the vibron number, used to 
study the vibrational spectra of the ethylene (C2H4) and benzene (C6H6) molecules. 
 The value of N  ( vibron no.) can be determined by the relation 

1e

e e

N
x

ω
ω

= −               (14) 

 
Where eω and e exω are the spectroscopic constants [15] of stretching interaction of the molecules 

considered. This numerical value must be seen as initial guess; depending on the specific 
molecular structure, one can expect changes in such an estimate, which, however, should not be 
larger than 20%± of the original value (Eq. 14). It may be noted that during the calculation of the 
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vibrational frequencies of ethylene (C2H4) and benzene (C6H6), the value of N  is kept fixed and 
not used as free parameter. 
 

Table 1: Fitting algebraic parameters of ethylene C2H4 ( A , λ , λ′  all are in cm-1 whereas N is 
dimensionless) 

 
Vibron number Stretching algebraic parameters 

N  A  λ  λ′  

140 -1.4838 0.4428 -0.1369 
 

Table 2: Vibrational frequencies (cm-1) of ethylene C2H4 

 

Modea Symmetry 
Obs. freq.b 

( I ) 
 

Calc. freq.c 

( II ) 

Deviation 
( )I II∆ −  

Percentage of deviation 

100%
I II

I

∆ −
×  

Description 

E1 gA  3026.0 3030.3 -4.3 0.142% 2CH  stretch 

E2 gA  1630.0 1631.4 -1.4 0.085% C C=  stretch 

E3 gA  1342.0 1338.6 3.4 0.253% 2CH sciss 

E4 1gB  3086.0 3082.2 3.8 0.123% 2CH  stretch 

E5 1gB  1220.0 1223.7 -3.7 0.303% 2CH  rock 

E9 2uB  3105.0 3100.2 4.8 0.154% 2CH  stretch 

E10 2uB  826.0 825.0 1.0 0.121% 2CH  rock 

E11 3uB  3021.0 3021.3 -0.3 0.01% 2CH  stretch 

E12 2gB  1444.0 1437.6 6.4 0.443% 2CH sciss 

E6 2gB  940.0 939.9 0.1 0.01% 2CH wagg 

E7 uA  1023.0 1020.9 2.1 0.205% C C= torsion 

E8 1uB  949.0 948.9 0.1 0.01% 2CH wagg 

( ) 3.287rms∆ = cm-1 

aWilson No.; breference [8]; cU(2) Algebraic model 
 
To obtain a starting guess for the parameter A , we use the expression for the single-oscillator 
fundamental mode which is given as, 
 

( 1) 4 ( 1)E A Nν = = − −        (15) 
 
Using the (Eq. 15), A  can be obtained as, 

4(1 )

E
A

N
=

−
                   (16) 
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Table 3: Fitting algebraic parameters of benzene C6H6 ( A , λ , λ′  all are in cm-1 whereas N is 
dimensionless) 

Vibron number Stretching algebraic parameters 

N  A  λ  λ′  

140 -0.7158 0.9857 -0.25 

 
Table 4: Vibrational frequencies (cm-1) of benzene C6H6 

 

Modea Symmetry 
Obs. Freq.b 

( I ) 
 

Calc. freq.c 

( II ) 

Deviation 
( )I II∆ −  

Percentage of deviation 

100%
I II

I

∆ −
×  

Description 

E1 1gA  993.1 1003.94 -10.84 1.09% breathing 

E2 1gA  3073.9 3067.85 6.05 0.19% CH  stretch.in-phase 

E3 2gA  1350 1345.92 4.08 0.30% CH  bend. In-phase 

E12 1uB  1010 1015.98 -5.98 0.59% CCC trigonal bend 

E13 1uB  3057 3055.82 1.18 0.04% CH  trigonal stretch 

E14 2uB  1309.4 1309.83 -0.43 0.03% CCstretch 

E15 2uB  1149.7 1147.95 1.75 0.15% CH trigonal bend 

E6 2gE  608.1 608 0.1 0.02% CCCbend 

E7 2gE  3056.7 3055.82 0.88 0.03% CH  stretch 

E8 2gE  1601.0 1597.85 3.15 0.2% CC  stretch 

E9 2gE  1177.8 1177.85 -0.05 0.004% CH  bend 

E18 1uE  1038.3 1045.87 -7.57 0.72% CH  bend 

E19 1uE  1484.0 1489.93 -5.93 0.39% CC  stretch 

E20 1uE  3064.4 3063.85 0.55 0.017% CH  stretch 

E11 2uA  674.0 673.99 0.01 0.001% CH  wagg.in-phase 

E4 2gB  707 715.92 -8.92 1.26% CCCC puckering 

E5 2gB  990 991.1 -1.1 0.11% CH trigonal wagg 

E10 1gE  847.1 859.93 -12.83 1.51% CH  wagg 

E16 2uE  398 398 0 0% CCCC torsion 

E17 2uE  967 967.5 -0.5 0.05% CH  wagg 

( ) 5.292rms∆ = cm-1 

aWilson No.; breference [8]; cU(2) Algebraic model 
 
To obtain an initial guess for the parameterλ whose role is to split the initially degenerate local 
modes is obtained by considering the relation,  

1 2

2

E E

N
λ

−
=                    (17) 
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and   1 2

6

E E

N
λ

−
′ =                   (18) 

 
To have better results a numerical fitting procedure (in a least-square sense) is required to obtain 
the parameters A , A′  λ  and λ′ starting from the values as given by (Eq. 16), (Eq. 17) and (Eq. 
18). Initial guess for A′  may be taken as zero. 
 
The fitting algebraic parameters along with the simulated and calculated energies of ethylene 
(C2H4) and benzene (C6H6) are shown in Tables 1 - 4. 

 
CONCLUSION 

 

In this paper, we presented a systematic analysis of vibrational spectra of ethylene (C2H4) and 
benzene (C6H6) in the algebraic framework making use of the one-dimensional Vibron model i.e. 
U(2) Vibron model. Results of our study (Table 2, Table 4) show that the RMS deviation 
obtained for the vibrational spectra of ethylene (C2H4) and benzene (C6H6) using the algebraic 
mode Hamiltonian are 3.287cm-1 and  5.292 cm-1 respectively, which are near to the accuracy 
of the results considering the other approaches [16, 17]. The present calculation demonstrates 
that U(2) model can also be applied successfully to the higher excited states of ethylene (C2H4) 
and benzene (C6H6). 
 

REFERENCES 
 
[1] M  Abe; T  Kitagawa; Y  Kyogoku; J. Chem. Phys. 1978 ,69, 4526.; JM  Burke; JR Kincaid; 
TG Spiro; J. Chem. Phys. 1978, 100, 6077. 
[2] RS  Czernuszewicz; KA Macar; XY Li; TG Spiro ; J. Am. Chem. Soc. III 1989 , 7024.; T 
Kitagawa; M Abe;  H  Ogoshi;  J. Chem. Phys. 1978 ,69 (10), 4516.; S  Tewari; R Das;  A  
Chakraborty; R  Bhattacharjee;  Pramana J. Phys. 2004,  63(5), 1073. 
[3] F Iachello;  RD  Levine;  Algebraic Theory of Molecules, Oxford University Press, Oxford, 
1995. 
[4] ZQ Ma; XW  Hou;  M Xie;   Phys. Rev. A.  1996, 53, 2173. 
[5] NK  Sarkar; J Choudhury; R Bhattacharjee; Mol. Phys. 2006,104 ,3051.; NK Sarkar; J 
Choudhury; SR Karumuri; R Bhattacharjee; Mol. Phys. 2008 ,106 (5) , 693.; NK Sarkar; J 
Choudhury; R Bhattacharjee; Indian J. Phys. (6) 2008, 82 , 767.; J Choudhury; SR Karumuri; 
NK Sarkar; R Bhattacharjee; Pramana J. Phys. 2008 ,71 (3) , 439.; J Choudhury; NK Sarkar; R 
Bhattacharjee; Indian J. Phys. (5) 2008, 82 ,561.; J Choudhury; NK Sarkar; SR Karumuri; R 
Bhattacharjee;  Chin. Phys. Lett.  2009, 26 (2) , 020308. 
[6] F Iachello; S Oss;  Phys. Rev. Lett. 1991 ,66,2976.; JQ Chen; F Iachello;  JL  Ping;  J. Chem. 
Phys. 1996 ,104 ,815. 
[7] A  Frank; R  Lemus;  R Bijker; F  Perez-Bernal; JM  Arias;  Ann. Phys. 1996 ,252  ,211. 
[8] G Baranovic;  Chemical Physics  Letters . 1997, 271, 226. 
[9] F Iachello;  Chem. Phys. Lett. 1981 ,78 ,581 
[10] JL Dunham; Phys. Rev. 1932,41 ,721. 
[11] OS Van Roosmalen ; I Benjamin;  RD  Levine; J. Chem. Phys., 1984 ,81,5986 
[12] R  Bijker;  AEL  Dieperink;  A  Leviatan;  Phys. Rev. A  1995, 52,2786. 
[13] MS  Child;  LO  Halonen;  Adv. Chem. Phys. 1984 ,54, 1 



Rupam Sen et al  Arch. Appl. Sci. Res.: 2011, 3 (4)42-50 
_____________________________________________________________________________ 

50 
Scholars Research Library 

[14] S  Oss; Algebraic Models in Molecular Spectroscopy, Dipartimento di Fisica-Universita di 
Trento and Istituto Nazionale di Fisica della Materia, Unita di Trento, Povo (TN), Italy, 1996. 
[15] KP  Huber; G  Herzberg;  Molecular Spectra and Molecular Structure IV:  Constants of 
Diatomic Molecules; Van Nostrand Reinhold Co., NewYork,  (1979). 
[16] C.E.Blom, C.Altona, Mol. Phys.34 (1977)177. 
[17] L. Goodman, A. G. Ozkabak, and S. N. Thakur, J. Phys. Chem. 95 (1991) 9044. 
 


