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ABSTRACT

In this paper the normal mode of vibrational enelgyels of ethylene & benzene molecules are
studied by U(2) Lie algebra. Its application to @dne & benzene are presented with fewer
algebraic fitting parameters. Here each bond of th@ecule is replaced by a corresponding Lie
algebra and finally the Hamiltonian is constructednsidering the interacting Casimir and
Majorana operators. The normal modes of vibratioealergy levels of these molecules are
calculated and hence compared by considering tbal IBlamiltonian of Morse potential using
the U(2) algebra.
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INTRODUCTION

The study of fundamental and excited vibrationatest of diatomic and polyatomic molecules
have been one of the most interesting and advaopsacs in the field of molecular spectra in the
theoretical as well as experimental backgroundeicent past due to the development and
introduction of new laser techniqueseveral experimental techniques [1] such as el&ictro
luminescence spectroscopy including fine structgreasline spectra, X-ray, ESR, NMR,
Mossbauer spectroscopy, magnetic susceptibilitysoreanents, absorption, infrared and Raman
spectroscopy has been applied to elucidate theigathyand chemical properties of those
molecules. At the same time many theoretical appres including quantum chemical
calculation as well as semi empirical programmegetbeen attempted by several researchers
[2]. Although extensive studies by all these teghies on these molecules have clarified several
aspects, many other aspects require further theakeiplanation. In this study we have used an
alternative approach (Algebraic approach) to dbsctihe vibrational spectra of molecules like
ethylene & benzene.
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In recent years, algebraic models, such as Liebadge methods [3] and boson-realization model
[4] have been proposed for the descriptions of atibns, rotations, and rotation-vibration
interactions in polyatomic molecules. In Lie algabrapproaches(4) and U(2) algebraic
models have been extensively used [5]. Uli¢) model deals with the rotation and the vibration
simultaneously, but it becomes quite complicate@mwthe number of atoms in a molecule are
more than four. Th&J(2) model was particularly successful in explainingtshing vibrations of
diatomic & polyatomic molecules such as benzene-fitolecules [6]. This model was extended
to deal with stretching vibrations in diatomic gmalyatomic molecules [7].

In this paper, we use thd(2) algebraic model to study the normal modes of vibnat of
ethylene & benzene molecules [ 8].

2. Summary of the Algebraic Theory

In U(4) algebraic model (vibron model) [9], the rotaticensd vibrations of the molecules are
taken into account simultaneously. But, it beconmegracticable when the number of atoms
exceeds four. However separating the rotationsvéordtions, it is possible to construct a simple
version of the vibron model, which can be usedvibrational analysis of polyatomic molecules.
In this study we apply the one dimensional algebnaodel consisting of formal replacement of
the interaction bond coordinate with unitary alget(2). With this algebraic formulation, one
can attain algebraic expressions of eigenvaluesmahvectors even for a complex Hamiltonian
operator, including inter-mode coupling terms adl a® expectation values of any operator. The
main advantages of this algebraic approach ovecdhgentional Dunham [10] like expansions
are

(i) The algebraic models lead to a local Hamiltoniamidation of the physical problem.

(ii) Its expansions are intrinsically anharmonic atrtkero order approximation.

These two factors reduce drastically the no of tealy parameters in comparison to the
harmonic series for medium and large size molecutesnever in the local Hamiltonian
formulations, the actual eigenvectors of the phajssystem cannot be directly accessed through
diagonalisation of the Hamiltonian operators. Bedidis disadvantage, which is not a serious
one, the local Hamiltonian formulation can be usethe systematic study of fundamental and
excited overtones of the diatomic & polyatomic nuoikes.

The motivation for the construction of this algebranodel is the isomorphism d#(2) one
dimensional Lie algebra with that of the one dimenal Morse oscillator, which is a good
description of a stretching vibration of a moleculée eigenstates of the one dimensional
Schrodinger equation with Morse potential [11] is

h(p, % :%2[ +D[1-exp(-a )] )

can be put into one to one correspondence with dyreamical symmetryU(2) [0 0O(2)
characterized by the quantum numb|eN$m> with the provision that one takes only the pwositi

branch ofm, i.e., m=N,N- 1, N—-2,.....,1 or O forN = odd or evenN = integer). Thus the
Hamiltonian corresponding to the Morse potentiatimnbasis otJ(2) algebra is given by
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H=¢g+AC 2

where C is the invariant operator d#(2), with eigenvaluegm” — N?). So, the eigenvalues of
H are

£=¢,+Alm?> - N?) 3)
Introducing the vibrational quantum numbar=(N-m)/2 , one can write the eigenvalue as
£=£0—4A(Nv—v2) Wwith v=0,1...........] N /:or (N-1)/2 (for N =even orodd) 4)
The value ofg,, A and N are given in terms of/, D and a by using the following relations
g =-D, —4AN = ha (2D/u)'?, AA=-Na?2u

Since the potential in co-ordinate can be takem good approximation, as a Morse potential, we
can write the Hamiltonian of a polyatomic moleciméerms of Morse anharmonic oscillators by
introducing theU(2) algebra for each coordinate(C-H bonds). The algelidamiltonian for the
coupled oscillator is then can be written as

H=E+2AC+ T AG+2A M ®)

i(j

where C,C; and M; are the algebraic operators. In the local basisofferatorsC, are the

diagonal matrix with eigenvalues
(NG N = =4(Ny, -y ?) (6)

The couplings between the bonds are introducechéyoperatorsC; and M, , called Casimir

[} 4
and Majorana operators respectively. The role efMlajorana operators; is to introduce off-
diagonal couplings between pairs of local modeghénsimplest case of equivalent interacting
bonds, the Majorana operator naturally leads tolatisn for symmetrized coupled modes, in
which the invariance of the Hamiltonian operatorder bond exchange, is explicitly taken into
account. A rather appealing feature of this algebmaodel is that such a ‘symmetrizing’
property of the Majorana operator, actually quitenaal one for two equal bonds, can readily be
extended to any molecular geometry, even a veryptooone. The key point is that the basic
information characterizing the specific moleculagometry can easily be incorporated by
introducing proper linear combinations of Majoraeerators.

In purely local limit of N oscillators, these oscillators are somehow caedlavith each other
through theC, operators, which account for (diagonal) cross-ambaicities, represented by the

following equation:
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c C

C,=G-N (N_',+W],) WhereN ;=N + N (7)
i i

Furthermore, following the Eq.(7), it should be etbthat one basically subtracts frabnthose

terms arising from uncoupled single-oscillator ciimitions. In the special case of a pair of
equivalent oscillators and j (N; = N;) ,the above equation can be replaced by the following

matrix elements

v |Glyy) =-4(v- yy
(8)
i.e., the matrix elements do not dependN\pfl;). As a result,C; will account for different

contributions throughout different polyads and witlthe same polyad; the most important
aspect ofC; is the dependence of its matrix elements on theymtv,v; .

The simplest basis to diagonalize the Hamiltonganharacterized by the representation of local
mode chain [5]

U®@)ou®@)ou®@)u sa? ) 0 so?(2) 0 SG¥(2) 0SO2)
! ! ! ! ! ! ! (9)
| [N, [N, [N Vi, Vs Vs, V),

where, below each group we have indicated the ea&jees that label their irreducible
representations. Explicitly this basis is given by,

[N NG NG v v =[N Wl N [ Ny (10)
Where, [N ];v) = ('\,L!‘\;_’)!(J_)V' [N],0)

Here ,N is the total number of bosons fixed by the po&drghapey, corresponds to the number
of quanta in the oscillator antl is the angular momentum operator ( has bothngisl. |,
lowering J. connecting different energy statesh U(2) algebra. The quantum numbers
correspond to the number of quanta in each osmillahile V is the total vibrational quantum
number given by

n
V:ZVi (11)
i=1
For a particular polyad, the total vibrational qusn number is always conserved. The inclusion
of M, in the local Hamiltonian operator cannot affect tbaservation rule. In Eq. (5%, is an
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invariant operator of uncoupled bond with eigeneald(v*-Ny;) and the operatorC, for
coupled bonds are diagonal with matrix elementschvare given by

(NN (G NG VNG L) :‘4l(Vi +V J, + Nj)—(Vi +V )ZJ
(Ni,vi;Nj,vj|Mij|Ni,vi;Nj,vj>=viNJ. +V;N, —2vyv; (12)

(LY + LNV =T NG NG vy = = v (v + 2N, _Vi)+(Nj —V +1)
(Ni,vi =L N,y +1~Mii‘Ni’Vi; N;,vp) :_\/Vi (Vi +1)(Nj _Vi)+(Ni -V, +1)

J

Thus the eigenvalues of the Hamiltonian can bdyeasaluated and provide a descriptionrof
coupled anharmonic vibrators.

3. Thelocality parameter (£)
The local-to-normal transition is governed by thmehsionless locality parametefé ). The
transition from local to the normal mode limit isstribed by the parametdE/A. When this

parameter is zero, the Hamiltonian (Eq. 5) is i libcal limit, when the parameter is large the
approaches the normal mode limit.

For ethylene (gH4) and benzene ¢Els) molecules, the locality parameters are

E=(2Ymtan' By /A+A), i,j=123... (13)

corresponding to the number of bonds.
With this definition, due to Child and Halonen [1I3, 14], local mode molecules are near to the
& =0 limit, normal mode molecules ha§e- 1.

RESULTSAND DISCUSSION

In this work we use four algebraic parameters, A,A,1" & N, the vibron number, used to
study the vibrational spectra of the ethylengH{ and benzene ¢Els) molecules.

The value ofN ( vibron no.) can be determined by the relation

N=-% 1 (14)
. X

e’’e

Where «, and w, X are the spectroscopic constants [15] of stretchitegaction of the molecules

considered. This numerical value must be seen ifigl iguess; depending on the specific
molecular structure, one can expect changes in anakstimate, which, however, should not be
larger than+20%o0f the original value (Eq. 14). It may be notedt ttharing the calculation of the
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vibrational frequencies of ethylene{@;) and benzene ls), the value ofN is kept fixed and
not used as free parameter.

Table 1: Fitting algebraic parameters of ethyleneC,H, (A, A, A" all arein cm™ whereas N is
dimensionless)

Vibron number Stretching algebraic parameters
N A A A
140 -1.4838 0.4428 -0.1369

Table 2: Vibrational frequencies (cm™) of ethylene C,H,

Percentage of deviation
Modé  Symmetry Ob(s.lf)red’. Calc. freqf Deviftion A|I _”g| Description
(y A=) ———x100%
El Ag 3026.0 3030.3 -4.3 0.142% CH2 stretch
E2 A, 1630.0 1631.4 -1.4 0.085% C = C stretch
E3 Ag 1342.0 1338.6 3.4 0.253% Cstciss
E4 Blg 3086.0 3082.2 3.8 0.123% CH2 stretch
ES Blg 1220.0 1223.7 -3.7 0.303% CH2 rock
E9 B2u 3105.0 3100.2 4.8 0.154% CH2 stretch
E10 B,, 826.0 825.0 1.0 0.121% CH, rock
E1ll B, 3021.0 3021.3 -0.3 0.01% CH, stretch
E12 Bzg 1444.0 1437.6 6.4 0.443% CHZSCiSS
E6 B, 940.0 939.9 0.1 0.01% CH, wagg
E7 'Ah 1023.0 1020.9 2.1 0.205% C = Ctorsion
E8 B, 949.0 948.9 0.1 0.01% CH,wagg

A(rms) =3.287cm™
awilson No.reference [8];°U(2) Algebraic model

To obtain a starting guess for the parameterwe use the expression for the single-oscillator
fundamental mode which is given as,

E(v =1)=—-4A(N-1) (15)

Using the (Eq. 15)A can be obtained as,
,&:L (16)
4(1-N)
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Table 3: Fitting algebraic parameters of benzene CeHg (A, A, A" all arein cm™ whereas N is
dimensionless)
Vibron number  Stretching algebraic parameters

N A A A
140 -0.7158 0.9857 -0.25

Table4: Vibrational frequencies (cm™) of benzene C¢Hg

Percentage of deviation
Modé  Symmetry Ob?'l F)red’. Calc. frecf Deviiltion A|I _”g| Description
(I A0 =) ——— x100%

E1 A, 993.1 1003.94 -10.84 1.09% breathing
E2 A_Lg 3073.9 3067.85 6.05 0.19% CH stretch.in-phase
E3 Azg 1350 1345.92 4.08 0.30% CH bend. In-phase
E12 B, 1010 1015.98 -5.98 0.59% CCC trigonal bend
E13 B, 3057 3055.82 1.18 0.04% CH trigonal stretch
E14 B, 1309.4 1309.83 -0.43 0.03% CCstretch
E15 B, 1149.7 1147.95 1.75 0.15% CH trigonal bend
E6 Ezg 608.1 608 0.1 0.02% CCChbend

E7 2g 3056.7 3055.82 0.88 0.03% CH stretch

E8 Ezg 1601.0 1597.85 3.15 0.2% CC stretch

E9 Ezg 1177.8 1177.85 -0.05 0.004% CH bend
E18 E, 1038.3 1045.87 -7.57 0.72% CH bend
E19 E, 1484.0 1489.93 -5.93 0.39% CC stretch
E20 E, 3064.4 3063.85 0.55 0.017% CH stretch
Ell A, 674.0 673.99 0.01 0.001% CH wagg.in-phase
E4 B,, 707 715.92 -8.92 1.26% CCCC puckering
ES5 BZg 990 991.1 -1.1 0.11% CH trigonal wagg
E10 E 847.1 859.93 -12.83 1.51% CH wagg

E16 E,, 398 398 0 0% CCCC torsion
E17 EZu 967 967.5 -0.5 0.05% CH wagg

A(rms) =5.292cm™
awilson No.reference [8];°U(2) Algebraic model

To obtain an initial guess for the parameterhose role is to split the initially degeneratedbc
modes is obtained by considering the relation,

/1:|E1_E2|

N a7)
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/]':|E1_E2| (18)

and

To have better results a numerical fitting procediim a least-square sense) is required to obtain
the parameterd\, A' A and A’ starting from the values as given by (Eq. 16), (EQ.and (Eq.
18). Initial guess forA" may be taken as zero.

The fitting algebraic parameteadong with the simulated and calculated energiestbflene
(CzH4) and benzene @Els) are shown in Tables 1 - 4.

CONCLUSION

In this paper, we presented a systematic analysigbmtional spectra of ethylene {d.) and
benzene (gHs) in the algebraic framework making use of the dmeensional Vibron model i.e.
U(2) Vibron model. Results of our study (Table 2, Ta#leshow that the RMS deviation
obtained for the vibrational spectra of ethylengH{} and benzene @) using the algebraic
mode Hamiltonian ar@®.287cm™ and 5.292 cmi’ respectively, which are near to the accuracy
of the results considering the other approaches 1I§ The present calculation demonstrates
thatU(2) model can also be applied successfully to the higReited states of ethylene A@,)
and benzene @ El).
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