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ABSTRACT

This paper deals with the operational issues ofva-échelon supply chain under linear demand functar each
buyer. The operational parameters to the model sakes price and transportation quantity that detexnthe
channel cost of the supply chain transportation. fifml out the optimal price and the optimal trangption
quantity, for each buyer from several suppliersmathematical model is formulated. For using the afien
algorithm, the formulated model is modified andnthtbe best value of the parameters is derived. Ikina
numerical example is given to illustrate the model.
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INTRODUCTION

A two echelon supply chain model, involved somepdieps and buyers that have relationship with eztbler. Each
buyer has demand that can be explained with derfamation or constant value that satisfied by suppli The
inventory routing problem (IRP) in a supply cha®C) is to determine delivery routes from suppligrssome
geographically dispersed retailers and inventofycpdor retailers. It is consisted of two sub-pleims: inventory
problem for retailers and vehicle routing probleviRP) for suppliers. The IRP considering inventong aouting

simultaneously has gained attentions since thedouation of the inventory and routing decisionsvien the
supplier and retailers leads to a better overalfopmance [1] According to the literature [2], tiicing and
demand decisions seem ignored and assumed knominshIRP researches. Since the pricing decisicectsfthe
demand decision and then both inventory and routiegjsions, it should be made in the IRP simultasgoto

achieve the objective of maximal profit in the slypghain. For example, higher pricing causes lodemand then
lower order quantity and lower inventory. In costrdower pricing causes higher demand and thehehigrder
quantity and higher inventory. Since the pricingid®n is interrelated to inventory routing deciso the profit
may decrease when they are made separately. Henwep determine inventory, routing and price siaéously
becomes an important issue in supply chain managemecause the inventory routing and pricing peab(IRPP)
is a NP-hard problem (Since inventory routing decis is a NP-hard problem [3], the IRPP is more plem than

the IRP.), a heuristic method is adopted to restii® problem. Until now, there are few researchiesut IRPP.
Hence, this paper presented a survey for two iklateas: inventory routing problem and pricing peal in the
following. Bell, Dalberto, and Fisher[4] adopted aptimization method to resolve the IRP. After thedme other
optimization methods were developed to resolve lRR [5,6,7,8,9,10]. Since the IRP is an NP-hardbfem,

heuristic methods are needed. Federgruen and Zigd{aeveloped a nonlinear integer programming meale|
adopted an exchange method to resolve the IRP eGolssadand Dahl (1984) [12] adopted an insertiethod to
resolve the IRP. Viswanathan and Mathur [13] adbmestationary nested joint replenishment policyristic

(SNJRP) to resolve the IRP. The results show théaa@desimultaneously making inventory and routingisiens is
better than that making inventory and routing deots separately. Campbell and Savelsbergh[14] adoattwo-
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phase method to resolve the IRP. The first phasgtad an integer programming method to obtain tigal
solution. The second phase adopted an insertiofadeto improve the initial solution. Gaur and Fishig5]
adopted a randomized sequential matching algorflR&MA) to resolve the IRP. An insertion method wedspted
to obtain the initial solution. Then a cross-ovesthod was adopted to improve the initial soluti8imdhuchao,
Romeijn, Akcali, and Boondiskulchok[16]adopted aoiphase method for the IRP. The first phase adopted
column generation method to obtain the initial §olu The second phase adopted very large-scatghibeihood
search (VLSN) to improve the initial solution. Leling, and Lee[17] adopted a tabu search methoestive the
IRP. Raa and Aghezzaf[18]adopted a heuristic methadsolve the IRP. A column generation method agspted
to find the initial solution. Then a saving heudsnethod was adopted to improve the initial solntiZzhao et al.
[19] adopted a heuristic method to resolve the IR# initial solution was generated randomly. Thelbu search
method adopting the GENI neighborhood search wad ts improve the initial solution. Zhao, Chen, atahg
[20] adopted a variable large neighborhood seakbNE) method to resolve the three-echelon (supglier
distributors, retailers) IRP. The results showpheposed method is better than the tabu searchoaheliih summary,
tabu search (TS) adopting the GENI neighborhoodckeapproach and VLNS have been adopted to find the
optimal solution for the inventory routing problefiectively and efficiently[15, 19,20].

Hence, they will be adopted to resolve the IRP pudiblem in IRPP in this paper. As for the pricimglglem, some
researchers [17,21,22,23] determined the prices damdands using calculus according to the known ddma
function based on the maximal profit criterion. Neppan and Jawahar[24] adopted a genetic algor{thA)
method to find the prices and demands based om#éxémal profit criterion in a supply chain. Theging problem

is a nonlinear integer programming (NIP) problemai$hing for the optimal solution is an NP probléwmcording

to the literature [25,26; 27], genetic algorithmA)G particle swarm optimization (PSO), ant colorgtimization
(ACO) and tabu search (TS) have been adopted tdveethe NIP problem. Since tabu search is adofedsolve
the IRP sub-problem in IRPP mentioned above, if B8O or ACO is adopted to resolve the pricing sudisiem

in IRPP, the IRPP would be resolved separatelyitbgrdnt methods.

In this paper, the best value of the parameteiisetkfrom the GA approach.

Model formulation for the inventory routing and pri cing problem
Before the model for the inventory routing and rgcproblem is formulated, the relevant informatisrdiscussed
first.

Revenue

Demand function defines the price and demand duyamtiationship. The planning horizon is usuallyelar or half
year. The demand function for retailerD; = a;(b; — p;)(The linear demandfunction is the most popularha t
related research [22,24]). The function becoméslimvs:

R; = (14 0)p; X D; = R; = a;b;p; — pf + Oa;bip; — 0pf

Thatp; is the sell price of retaildr, 6 is the percentage of the sell profit of retailersis a positive constant arig
is the upper bound of price.

Supply chain cost
Transportation and holding cost
The detailed computation is as follows:

C =ZZhuxu
i

Whereh,; is inventory cost include transportation and hagocost.
2.2.2.
Purchase cost computation is as follows:

K=Zpizxij
i j

After the revenue and supply chain cost are digtlsthe model for inventory routing and pricing fgeam is as
follows:
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Max z = Z(aibipi —pi + 8aibip; — 6p7) —ZZ hijxi; — Z Piz Xij
i i i j

S.t.

z x;; = a;(b; —p;) €Y

j

inj <S; (2)

i

x;; = 0( Nonnegative Constraint and Integer )
0 < p; < b;( Nonnegative Constraint and Integer )

The goal of the objective function is to make thwpEy chain profit maximum. The constraint (1) icates the
purchase for retailgrequal to demand of retailerThe constraint (2) indicates the sumitbfsupplier sell must be
less than or equal to supplier capacity S.

The proposed method for the inventory routing and picing problem

To resolve the IRPP, three major decisions: inwgnt@uting and pricing, need to be made. BecahedRPP is a
NP-hard problem (Since both inventory routing pesbland pricing problem are NP problem), this pgpeposes a
genetic algorithm to improve the solution throughventory routing improvement procedure and pricing
improvement procedure

Sodo code for proposed genetic algorithm

Begin:
1. Initialization
1-1. Parameter Setting (Pc, Pm, Stop Criteria, $inp, Selection Strategy, Num Gen)
1-2. Initialize Population (Randomly)
2. Fitness Evaluation
Repeat
3. Individual Selection for Mating Pool (Size of tiey Pool =Pop Size)
4. For each consecutive pair apply Crossover (Boh &€onsecutive pair apply Crossover with probghbili

pc)

5. Mutate Children (For each new-born apply mutatigth probability pm)
6. Replace the Current Population by the resulMiaging Pool
7. Fitness Evaluation
Until Stopping Criteria is met

End

Stop criteria

The maximum number of generations is achieved.

Crossover
For crossover in this paper we use two kind of apaph crossover:
For transportation quantity matrix we use unifomossover:

0, =X +X,(1-9)
0, =X1-Y)+ X9

Wherey is the crossover mask; O is offspring and X ispts.
For price vector we use liner compound crossover.

01:P1/1+P2(1_A)
02:P1(1_/’{)+P2/’{

Where/ is the crossover mas, is offspring and is parents.

Mutation
For mutation we use one point mutate for both artation quantity matrix and price vector.
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Elitist strategy

Using an elitist strategy to produce a faster cogeece of the algorithm to the optimal solutiortleé problem.The
elitist individual represents the more fit pointtbe population. Theuseof elitist individual guaess that the best
fitness individual never increase (Minimization Biem) from one generation to the next generaticow@rds the
end of the process).Although the GA representssaible way of solving the models; some problemsaiarn its
implementation.

Feasible solution

Genetic algorithms are derived from an analogy wite spread of mutations in a population [28]. Thain
problem in applying a GA to constrained optimizatfwroblems is how to deal with the constraints. €@ints can
be dealt with strategies such as reject, repaiand penalty strategies, and the strategy of matifygenetic
operators [29]. The reject strategy excludes iniidasolutions immediately on generation, resultimgn efficient
GA. The repairing strategy transforms an infeasgmtution into a feasible one through a repairingcpss. The
difficulty in designing a repairing process to cdynwith the problem weakens the repairing stratéfye penalty
strategy uses a penalty function to penalize ddlaisible solutions, hoping that infeasible solwionight evolve
toward feasible. Finally, the strategy of modifyiggnetic operators aims to devise problem- spewficesentations
and specialized genetic operators to maintain bdagi Comparatively, the strategies of penaltydamodifying
genetic operators appear more suitable for thidyst80]. Therefore, the strategies of penalty amdlifiying genetic
operators were used in this study to deal with Buppnstraints and repairing strategy for demanustaints.

3.6.1. Repairing strategy for demand constraints

/ Xij

=——x =x/ .
x”_Z-x.'x =x;; X D;
Jj i

ij
The penalty function that impels the solutionsatisfy supply constraint is formulated as follows.

le’]’_ Si lf inj >SL
£=12 L.

13
0 other wise

Fitness evaluation
Incorporating the objective function (1) and thegiéy function (2), the target function for modeihcbe defined as

Q= Z(aibipi - Pi2 + 0a;b;p; — Qpiz) —ZZ hijxij _Zpizxij -—Mx¢
i i Ji

i

WhereM a large positive number .Then we compensate ftf@shest effect for roulette wheel.

1 f<-1
f*={ ol -
0.1]¢| —1<f<0
k Q other wise

Empirical study
The parameter setting of the proposed GAs is dswsl The number of population (Pop Size), the nfusome
dimension for transportation quantity matrix, foice vector dimensions, the crossover and mutatites and the
number of iterations for two sizes of problem dneven in table 1. The values of the M were set ¥88pectively.
Also, Fig 1 and Fig 2 show the GA convergence fauotwo problems.

Table 1. Algorithm paramiter for two problem .

Problem Percentage of Percentage of .

. - Pop Size
size crossover mutation

Small 0.85 0.05 300

Big 0.85 0.05 300
. chromosome chromosome number of

Problem size ] . . : . A

dimension X dimension P iterations

Small 2*3 1*3 500

Big 7*10 1*10 5000
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The experiments were conducted on a PC with a @t€bre™ 2 Duo E7500 @ 2.93GH CPU, 2 GB of RAM and
Windows 7 Ultimate and implemented in MATLAB 7.1@109 (R2010a)

Table 2. The results of two problem

Problem size Average profit CPU Time
Small (2*3) 151 30
Big (7*10) 312 347

Fig 1. The GA convergence plot for small problems
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Fig 2 . The GA convergence plot for big problem
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