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ABSTRACT

Genomic selection (GS) can increase genetic gain per generation through early selection. GS is expected to be
particularly valuable for traits that are costly to phenotype and expressed late in the life cycle of long-lived species.
Alternative approaches to genomic selection prediction models may perform differently for traits with distinct
genetic properties. Accuracies were investigated by simulation for a typical dairy cattle breeding setting. A genome
consisting 3 chromosomes each with 100 cM in length was simulated. In order to create sufficient linkage
disequilibrium after 50 generations of random mating in a finite population (Ne = 100), population was expanded to
obtain intended population size (500 male and 500 female). Three measures of heritability (0.05, 0.30, 0.80) and
four different numbers of markers (100, 200, 400, 800) were considered. Each simulation was replicated 10 times
and results were averaged across replications. Sx generations with only genotypes were generated to investigate
the accuracy of breeding value over time. Accuracies without phenotypes ranged from 0.21 for threshold traits to
0.73 and from 0.24 to 0.74 for continuous traits. Accuracies were found sufficiently high to implement dairy
sel ection schemes without progeny testing in which case a data time-lag of two to three generations may be present.
Accuracies were also relatively high for low heritable traits, implying that genomic selection could be especially
beneficial to improve the selection on, e.g. health and fertility. The results showed that using genomic selection can
be useful for threshold traits which include some of important traitsin animal breeding.

Keywords: Accuracy, breeding value, genomic selection, thoksbtraits.

INTRODUCTION

Estimation of breeding values requires a matrixcdbsg the additive relationship between indivibuan the
population. If pedigree information has been caéidcover multiple generations, the additive relatldp matrix
can be constructed from this information. Howevier,many livestock populations, this information mhg
unavailable, incomplete, or contain errors.

Information from high-density marker maps and higleughput genotyping can be utilized in new sé&ect
methods. An alternative to constructing the additielationship matrix from pedigrees is to use raamkformation
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to infer relationships. Attempting to do this froanlimited number of markers can result in bias aratcurate
estimates of genetic parameters [2].

One problem of using marker assisted selection(Ma®)e limited variance explained by the detecfedntitative
traits loci(QTL). Meuwissen et al. [21] createdistfstep towards predicting a total genetic valaig a genome-
wide dense map of highly informative markers. Thethnnd was termed genomic selection, and the ideatwva
estimate the effects of all genes or chromosonmhgats simultaneously. The effect of these segnissismmed
to predict the total breeding value. By treating ttmarkers or haplotypes as random effects, thdadliion of
estimating large numbers of haplotypes effects feolimited number of animals can be managed.

They compared different methods for predicting dieg values based on haplotype effects, and rephateuracies
in the range between 0.79 to 0.85. (where accuiadie correlation between true breeding value (TB¥d
estimated breeding value (EBV), and the reliabibtthe square of this result).

In several livestock species including cattle, kbit, and pig tens of thousands of SNP markers areavailable.
This could substantially reduce the costs of anibrakding, and accelerate genetic gain per yeaedhycing the
generation interval [12]. GS could also be effitifem low heritable traits [15, 23].

Although most of the prediction methods focus ontitmious traits, however, some of important traitsanimal
production, such as litter size of large mammaégyrede of calving difficulty and resistance to dsegpresent a
discrete(categorical) distribution of phenotypesd are often termed threshold traits. Obviouslg, @S methods
proposed for continuous traits, cannot be adequafelied for such kind of traits.

In this research, a simulation experiment was perédl to evaluate the accuracy of breeding valuemitinuous
and threshold traits with different number of maskiecluding low, moderate and high heritabilities.

MATERIALS AND METHODS

Simulation

A genome consisting 3 chromosomes each with 10GrcMngth with 100, 200, 400, 800 equally spacet)ls!
nucleotide polymorphism(SNP) (each 1 cM) and al tntanber of (30, 60, 120, 240) QTLs (that scatteoad
chromosomes randomly) was generated for each ohobi

This small genome size was chosen to decreasdatabcutime. Both SNP and QTL were assumed to b#dhic
with equal initial allelic frequencies. For thesmuglations, gene substitution effects for each Qidre assigned
randomly from a standard normal distribution, a {ON1). QTLs covered total genetic variance amtividual true
breeding values. Only additive genetic effect warssidered.

An effective population size of 100 individuals wsimulated, of which 50 were male and 50 were fem&his
structure was followed by 50 generations of randuoating, implying that each individual had on averago
offspring in the next generation (variance of fansiize was two).

The paternal and maternal haplotypes for each iithaid were generated based on Haldane mappingidmntd
generate recombinant haplotypes. Sires and dathe inase generation were assumed to be unrelated.

Fifty generations of random mating were practicegenerate sufficient linkage disequilibrium (LD9tlveen loci.
Two LD measurements? and D , were used to calculate LD in generation 50,\@sage of all synthetic marker
loci. Markers with a minor allele frequency of 0B.were discarded.

After the first 50 generations, 6 additional getierss (51 to 56) were simulated. Population wasaexied to obtain
intended population size in generation 51. Popatatize was constant until generation 56. For @in size,
1000 individuals with equal number of males anddk® in each of the last 6 generations were siredlat

Only females of generations 51 through 55 (500 fema each generation) had trait phenotype ang, tivere
included in the training set according to differsoénarios.
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To investigate the effect of generation distancevben training set and validation set on accuracGBBVS,
females from different generations (distant anémnégenerations) were included in training set. Fdlaation data
contained individuals from generation 56. For sifigation, no selection was considered. Populatitracture and
parameters used in the simulation are present&dbte 1.

Analysis model

For calculation of GEBV, the simple mixed modelrasttion method suggested by Meuwissen et al. [249 wsed
assuming that all loci explained and equal amofinadance (That is, the variance per loedm, iso’m =o?a /n
wherec?a is the total genetic variance ami$ the number of marker loci).

This assumption (equal variance over all loci) lisady unrealistic. Genetic variance may not beakqcross
markers, for example, major genes may exist on stm@mosomes. However, BLUP is quick, easy to @mwgand

as Meuwissen et al. [21] demonstrated, BLUP perfoaimost as well as the much more advanced and time
consuming Bayesian methods.

The model to estimate the marker effects was

y=Xb+Zm+e D

where, y is the vector of observations, b is thetareof means, m is the vector of random markeeat$f e is the
vector of random residual effects, X and Z are ficgeht matrices. Row elements of Z consist of Garfd 2 for
marker genotype. Then, the expected value of yiarid the variance of y is

V(y)=ZIZ'g?m+102e (2

(assuming equal variance for each marker).
The mixed model equation (MME) for BLUP is

XX XZ b| | XYy 3

ZX  ZZ+lal|lm| |zy
We consideredo = o%e/ s°m as Meuwissen et al. [21]. After obtaining solotfor vector m, GEBV was estimated
as

GEBV, =zm  (4)

The genetic variance was determined as varianceuef breeding values among individuals in genenatd
through 55. As haplotyping would increase compatatime with little or no gain in accuracy at higharker
density [16], we used genotypes rather than hapbsty

Different scenarios were compared by the accurdcthe estimated genomic breeding values for indiald
without a phenotypic record (generation 56). Accigs were calculated as the correlation betweenlated and
estimated breeding values.

Each simulated data set was replicated 10 timesresults were averaged across replicates. All ef ghove
calculations was done once for each type of batits{continuous and threshold), but for threshodds we did one
more stage. Before estimation of accuracy of bregpdalue, at first we changed the structure of datpresent a
discrete(categorical) distribution of phenotypes.
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Table 1. Population structure and parameters usechithe simulation.

Parameter Value
Number of chromosome 3
Number of SNP markers per chromosome 100, 20880
Genome Length (cM) 300
Marker distance (cM) 1
Number of QTL 30, 60, 120, 240
QTL effects Normal distribution
Recombination Haldane map function
Number of generation 56
Generation 1 to 50, create LD 50 male, 50 female
Generation 51 to 56 500 male, 500 female
Training set Females of generation 51 to 55
Validation set Females of generation 56
Heritability 0.05, 0.30, 0.80

Table 2. Mean (+SE) of homozygosity and linkage diguilibrium (D’ and r?) between markers in generation 50.

Parameter Mean + SE

D’ 0.61 +0.003

P 0.18 +0.002
Homozygosity 0.58 +0.002

RESULTS AND DISCUSSION

Results

In this study, six generations with three differtntels of heritability (0.05, 0.30, 0.80) and foxarious number of
markers (100, 200, 400, 800) were simulated simaltasly to investigate accuracy of breeding vatuevio types
of traits (continuous and threshold).

The all accuracies of selection are given in taBlés 6 and 7 to 10 for threshold and continuoaggrespectively.
Accuracies showed the correlations between GEB¥ssanulated true breeding values in generatioro336t

The highest accuracy for threshold and continucaitstwas 0.73 and 0.74 respectively. The lowest@cy for
threshold and continuous traits wa21 and 0.24 respectively. The results showeelaively clear relationship
between the number of markers used in the predictiodel and the accuracies that were obtained.

The highest accuracy calculated with using 400 20@ markers for threshold and continuous traitpeetvely.
The accuracy of breeding value for threshold tre#tged from 0.21 to 0.64 using 100 markers, fod 2@arkers
from 0.24 to 0.70, with 400 markers from 0.26 té3and using 800 markers from 0.28 to 0.68 resyedgti

The accuracy of breeding value varied from 0.2@.7d. using 100 markers, for 200 markers from 0030.74, with
400 markers from 0.30 to 0.72 and using 800 markera 0.28 to 0.69 respectively for continuousttraHence,
the density of the markers increased the accurblbgeeding values as expected.

In our research for threshold traits, with a héiltty of (0.05) the accuracy in generation 51 Waé5 decreasing to
0.22 in generation 56. With a heritability of (0)3Be accuracy in generation 51 was 0.61 decredsirj27 in
generation 56. With a heritability of (0.80) thecaracy in generation 51 was 0.73 decreasing to. th2deneration
56.

The accuracy for continuous traits, with a heritgbiof (0.05) in generation 51 was 0.50 decreadimd.26 in
generation 56. With a heritability of (0.30) thecaracy in generation 51 was 0.64 decreasing to id.2@neration
56. With a heritability of (0.80) the accuracy iengration 51 was 0.74 decreasing to 0.24. in géoerat.

There is a tendency for the average loss to bl@higher from generation 51 to 52 than from gatien 52 to 56.
Our findings indicate that the decrease in accesaor predictive power over generations is relftigémilar for
different heritabilities and higher heritabilitysudts in almost higher reliability for all in thegerations 51 to 56.
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Table 3. Accuracies of breeding value in generatiofl to 56 (Number of Markers= 100, Number of QTL =30) for threshold traits.

Generation 51 52 53 54 55 56
h?=0.05 0.43 0.27 0.27 0.26 0.24 0.22
h?=0.30 0.60 0.36 0.34 0.31 0.29 0.27
h?=0.80 0.64 0.35 0.33 0.26 0.24 0.21

Table 4. Accuracies of breeding value in generatiobl to 56 (Number of Markers = 200, Number of QTL =60) for threshold traits.

Generation 51 52 53 54 55 56
h? =0.05 0.42 0.28 0.32 0.28 0.25 0.24
h?=0.30 0.61 0.41 0.42 0.38 0.35 0.34
h?=0.80 0.70 0.42 0.40 0.34 0.33 0.29

Table 5. Accuracies of breeding value in generatiobl to 56 (Number of Markers= 400, Number of QTL =120) for threshold traits.

Generation 51 52 53 54 55 56
h?=0.05 0.45 0.32 0.31 0.30 0.27 0.26
h=0.30 0.59 0.42 0.42 0.41 0.37 0.34
h?=0.80 0.73 0.46 0.44 0.41 0.38 0.36

Table 6. Accuracies of breeding value in generatiobl to 56 (Number of Markers = 800, Number of QTL =240) for threshold traits.

Generation 51 52 53 54 55 56
h?=0.05 0.44 029 0.31 0.31 0.30 0.28
W =0.3 0.59 0.44  0.42 0.41 041  0.40
h?=0.80 0.68 042 041 0.38 0.37 0.36

Table 7. Accuracies of breeding value in generatiobl to 56 (Number of Markers = 100, Number of QTL =30) for continuous traits.

Generation 51 52 53 54 55 56
h?=0.05 0.50 0.35 0.33 0.31 029 0.26
h?=0.30 0.64 0.37 0.39 0.32 0.28 0.26
h?=0.80 0.71 0.40 0.37 0.26 0.25 0.24

Table 8. Accuracies of breeding value in generatiobl to 56 (Number of Markers = 200, Number of QTL =60) for continuous traits.

Generation 51 52 53 54 55 56
h?=0.05 0.49 0.37 0.36 0.34 0.32 0.30
h?=0.30 0.63 0.43 0.45 0.42 0.39 0.35
h? = 0.80 0.74 046 042 0.36 0.34 0.32

Table 9. Accuracies of breeding value in generatiobl to 56 (Number of Markers = 400, Number of QTL =120) for continuous traits.

Generation 51 52 53 54 55 56
h?=0.05 0.47 0.32 0.33 0.31 0.31 0.30
h=0.30 0.61 0.40 0.39 0.36 0.35 0.33
h?=0.80 0.72 0.46 0.44 0.41 0.37 0.35

Table 10. Accuracies of breeding value in generatio51 to 56 (Number of Markers = 800, Number of QTL= 240) for continuous traits.

Generation 51 52 53 54 55 56
h?=0.05 0.48 035 034 0.31 0.29 .28
h=0.30 0.60 0.38 044 0.42 0.40 .38
h?=0.80 0.69 0.42 043 0.40 0.39 0.37
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DISCUSSION

The estimation model assumes that there is no dom(i.e., only the additive effects are fitteat)d the average
effects of the genes are estimated, which is pigtstiisfactory for the prediction of breeding vedun most cases.
In theory, this is not a problem, but more reseascheeded to verify that such estimates are atzumarealistic
scenarios.

A relationship between heritability and accuracies observed; as heritability increased so didattmiracy, this
was also observed by Kolbehdari et al. [10].

Meuwissen et al. [21] showed that the accuracy BB®@s decreased to 0.804, 0.768, 0.758, 0.734 artBdn 5
subsequent generations, respectively. AdvantagBsiggsian method to BLUP evaluation has been shinwsnome
studies [3, 4, 21].

Wang et al. [5] introduced a threshold model to fitaenework of GS. They specifically extended thBsg/esian

methodBayesA, BayesB and Bayes©n the basis of threshold model for estimationogeic breeding value of
threshold traits and termed correspondingly exténaethods BayesTA, BayesTB and BayesTThey showed
new approaches generally performed better tharcdahesponding normal Bayesian methods, in particaiéen

the number of phenotypic categories was small.rT¢edculating accuracies at first generations veémglar to our

results, but after generation 2, their finding visgher than our study except BayesA method. In lesiwn, they

suggested that threshold model for predicting GEBMireshold traits.

We calculated relatively higher accuracies by iasieg the number of markers. Solberg et al. [2pbreed that the
accuracy of selection increased from 0.63 to 08tha density of markers increased.

The presented simulations assumed a relativelyl sfiattive population size of Ne = 100, which geates linkage
disequilibrium(LD) between the markers and QTLsdorating the marker effects. The LD is the keydathat is
driving the genomic prediction process, and, tahiewr confirm this, some simulations were testechéav the
accuracy changed with increasing LD. The simulgtepulation was therefore stopped before it reachbdlance
between recombination and drift, and before thdlibgum amount of LD was reached, resulting inoavér LD.

The expected amount of disequilibrium in a staldpypation represents a balance between its crehtialrift and
its decay by recombination.

A reduced heritability will lead to a decrease atw@racy of predicting the breeding value but cacdmpensated
for by using a larger number of observations tomesie the marker effects. A large part of this & can
probably be avoided by updating the prediction nhedth the most recent data. Calus & Veerkamp [ddifirmed
that accuracy increased as data from the latesrgéon was included in the genetic evaluation BB8. The basis
for the high reduction and possible improvementaikhbe investigated more thoroughly.

Results for low heritability trait confirmed thatauracy of GEBV will improve by increasing the nuenkof
phenotypic records in the training set even if meeords are from more distant generations. Accuch@stimated
breeding values based on marker distance and nuofil@renotypic records in the training set is samtio other
studies like Meuwissen et al. [21].

Muir [23] proved that after several generationddi@ing estimation of marker effect, the accuracyGEBVs
reduces and these effects should be re estimatdever, there is a tendency for the rate of deoalyet a little
higher for the first two to three generations, vhhis the critical time frame for the use of genompiedictions in
dairy cattle. We found similar trend for decay gtaracies in our research. It could be interedtingnderstand the
effective factors of this decay and to see if reéatmprovements in the genomic prediction modelsld be made
to keep reliabilities high over a longer time span.

Because of the only gradual decay in the religbdft GEBV over time, it can be concluded that GH e well
applicable to dairy breeding setting without progéesting. As progeny testing is not necessarytscosbreeding
may be reduced and in addition genetic gain per ysaaccelerated by reducing the generation interva
Implementation of GS for dairy breeding requireghhaccuracies of GEBYV for at least two to threeegations
ahead without having phenotypes.
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However, high reliabilities could be obtained fdirad heritabilities with appropriate models, shogithat GS can
be especially useful for low heritable traits. Niejdavaremi et al. [1] replaced pedigree basedtimiship by

marker-based total allelic relationship and docuexrits impact on reducing prediction error varignhence,

increasing accuracy of evaluation. Habier et g).if@licated that genomic selection uses genomiaticiship

among individuals and LD between markers and QTintprove accuracy of GEBVs. They reported increiase
accuracy of evaluation is partly due to using geicaelationship information among individuals.

It is important to notice, that in the presentedidations the population is random mating. Muir][2&ported that
the decay of accuracies were faster in situatioitis directional selection compared with random mgtiwhich
means that change in allele frequencies, and gémeief LD also may be effective. For a trait wétheritability of
0.10, he found that random selection resulted iheeay in accuracies from about 0.6 down to 0.35 cvwe
generations if population started in Hardy—Weinbaggilibrium (HWE) and from 0.65 to 0.55 if poputat started
in mutation-drift equilibrium (MDE). The faster raction in accuracies with selection is explainedchgnges in
allele frequencies, genetic variance and generaidfil4].

GS will be useful in dairy cattle breeding becattse reliabilities of GEBV are high, and the decayréliability

over generations is slow. This is also useful faits with low heritability, and therefore GS caadl to more
balanced selection schemes. Models with effecthapiotypes perform better than single SNP effelots, the
optimal length of haplotypes will depend on differéactors such as LD, marker distances and thelptpn and
must therefore be optimized for the specific data.

With traditional selection schemes, low heritalbbéts are only improved slowly because reliabitfythe breeding
value depends strongly on the heritability. With {B8 reliability related to different factors likéze of dataset used
to make the marker associations, recombinations ah® marker density which is similar for both lowdahigh
heritability traits. Therefore, use of GS may ldada more balanced selection index than obtainethénclassic
selection methods. With GS the necessity to haeagiypes on close relatives of breeding candidatedaxed, as
the prediction ability persists over several getiena. This gives the opportunity to perform ditficrecordings in
designated herds, which are then used to congtrediction models for the total population. Thue humber of
observations needed to estimate accuracy increeifieslecreased heritability. This is most likely yive see a
decline in accuracies with lower heritabilities.

Results also showed the accuracies of the tratts vigher heritability is more accurate than accigsfor the traits
of lower heritability. Similar results have beerpoeed from other studies [13, 22]. However, if tbest of
genotyping is an issue it may be recommended tagaretypes (and phenotypic information) of indivatiufrom
more recent generations.

Therefore, GS is possible and a very interestiqga@arh to replace or supplement progeny testingulReshowed
that there is no barrier to achieving such accesaasing genomic evaluations in practiG& has improved dairy
cattle breeding by greatly increasing the accusaofegenetic merit estimation and the rate of germogress by
shortening the generation interval. GS so far hmsuded on continuous traits. However, many of dréitat
significantly affect profitability and are difficuto be selected belong to threshold traits.

Among different existing approaches for estimatjyegomic breeding values of quantitative traits,ttiree normal
Bayesian methods (BayesA, BayesB and Baygs@® commonly used, although, they are not swétédl threshold
traits, because they are based on linear models.

CONCLUSION
Genomic selection for threshold traits can be wEedvell as continuous traits in practical. Howeweethod for
estimating genomic breeding values of thresholidstia scarce yet and maybe it needs to be done masearch
because of having different data structure comp@tecontinuous traits.
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