

Scholars Research Library

Annals of Biological Research, 2012, 3 (5):2393-2398 (http://scholarsresearchlibrary.com/archive.html)

A theoretical study on the physicochemical and geometrical properties of the five anti-cancer drug using density functional theory for understanding their biological and anti-cancer activities

S. M. Hassani¹, S. Bagheri^{2*} and H. Ghahremani³

¹Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran ²Department of Chemistry, Quchan Branch, Islamic Azad University, Quchan, Iran ³Young Researchers Club, Quchan Branch, Islamic Azad University, Quchan, Iran

ABSTRACT

Methotrexate, Carmustine, Temozolomide, Tamoxifen and Hydroxifen are anti-cancer drugs. In this report, the physicochemical properties of these drugs have been evaluated using Density functional Theory (DFT) calculations. Our investigation include the: geometrical parameters of the mentioned drugs, Gibbs free energy of solvation (ΔG (solvation)), binding energy and Dipole Moment (DM) of complexes, beside other properties such as partition coefficient, polarizibility, hydration energy, etc.

Keywords: Methotrexate, Carmustine, Temozolomide, Tamoxifen and Hydroxifen, DFT.

INTRODUCTION

Temozolomide is a cytotoxic prodrug that, when hydrolyzed, inhibits DNA replication by methylating nucleotide bases. In preclinical testing, temozolomide has shown a broad spectrum of antineoplastic activity[1].

Methotrexate was originally developed and continues to be used for chemotherapy either alone or in combination with other agents. It is effective for the treatment of a number of cancers including: breast, head and neck, leukemia, lymphoma, lung, osteosarcoma, bladder, and trophoblastic neoplasms.

Methotrexate is thought to affect cancer and rheumatoid arthritis by two different pathways. For cancer, methotrexate allosterically inhibits dihydrofolate reductase (DHFR), an enzyme that participates in the tetrahydrofolate synthesis. The affinity of methotrexate for DHFR is about one thousand-fold that of folate. DHFR catalyses the conversion of dihydrofolate to the active tetrahydrofolate. Folic acid is needed for the de novo synthesis of the nucleoside thymidine, required for DNA synthesis. Also, folate is needed for purine base synthesis, so all purine synthesis will be inhibited. Methotrexate, therefore, inhibits the synthesis of DNA, RNA, thymidylates, and proteins[2-7].Methotrexate acts specifically during DNA and RNA synthesis, and thus it is cytotoxic during the S-phase of the cell cycle.

BiCNU (**Carmustine for injection**) is one of the nitrosoureas used in the treatment of certain neoplastic diseases. It is 1,3-bis(2-chloroethyl)-1-nitrosourea. It is in the form of sterile lyophilized pale yellow flakes or a congealed mass with a molecular weight of 214.06. It is highly soluble in alcohol and lipids, and poorly soluble in water. It is generally agreed that carmustine alkylates DNA and RNA are not cross-resistant with other alkylators. As with other nitrosoureas, it may also inhibit several key enzymatic processes by carbamoylation of amino acids in proteins[8-10].

Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist; hence, tamoxifen may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine (anti-estrogen) therapy for hormone receptor-positive breast cancer in pre-menopausal women, and it is also a standard in post-menopausal women although, aromatase inhibitors are also frequently used in that setting[11].

Some breast cancer cells require estrogen to grow. Estrogen binds to and activates the estrogen receptor in these cells. Tamoxifen is metabolized into compounds that also bind to the estrogen receptor but do not activate it. Because of this competitive antagonism, tamoxifen acts like a key broken off in the lock that prevents any other key from being inserted, preventing estrogen from binding to its receptor. Hence breast cancer cell growth is blocked.

RESULTS AND DISCUSSION

2.1. Structural optimization of Methotrexate, Carmustine, Temozolomide, Tamoxifen and Hydroxifen.

In this study, Density functional Theory (DFT) calculations were used to optimize the molecular geometries of Methotrexate, Carmustine, Temozolomide, Tamoxifen and Hydroxifen. The geometric parameters were considered and optimized in the below fashion.

2.1.1. Methotrexate

The optimized Methotrexate structures obtained from Density Functional Theory B3LYP/6-31G* method (Figure 1).

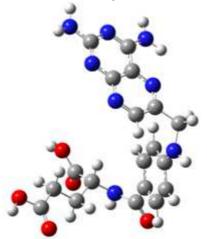


Fig. 1: Optimized structure of Methotrexate

The molecular geometries of Methotrexate (Fig. 1) were optimized using the B3LYP procedure employing the 6- $31G^*$ basis set. The molecular structure of Methotrexate is shown in Fig. 1. The geometries of this molecule optimized using the 6- $31G^*$ basis set at the B3LYP level are presented[12] in Table 1.

Table 1: Geometric parameters of optimized Methotrexate structure

Methotrexate			
Bond lengths		Bond angles	
N_8-H_9	1.008	$H_{9}-N_{8}-H_{10}$	119.001
$N_{8}-H_{10}$	1.008	N14-C7-N15	128.505
N_8-C_7	1.362	C7-N15-C2	115.331
C7-N15	1.332	$N_{15}-C_2-C_3$	122.282
C7-N14	1.365	$C_2-C_3-C_6$	116.292
N14-C6	1.321	C3-C6-N14	121.202
C ₆ -N ₁₁	1.348	H ₁₂ -N ₁₁ -H ₁₃	121.196
$N_{11}-H_{12}$	1.008	H ₅₂ -O ₅₁ -C ₄₉	106.051
$N_{11}-H_{13}$	1.008	O ₅₁ -C ₄₉ -O ₅₀	122.653
C_6-C_3	1.446	H_{47} - C_{46} - H_{48}	105.304
C_3-C_2	1.420	H44-C43-H45	106.561
$N_{16}-C_2$	1.465	C_{49} - C_{46} - C_{43}	112.121
C49-O50	1.210	C_{46} - C_{43} - C_{37}	114.133
C ₄₉ -O ₅₁	1.356	H ₄₂ -O ₄₁ -C ₃₉	106.394
O ₅₁ -H ₅₂	0.975	O_{40} - C_{39} - O_{41}	123.103
$C_{49}-C_{46}$	1.514	O ₃₄ -C ₃₃ -N ₃₅	120.249
$C_{46}-C_{43}$	1.530	H ₃₈ -C ₃₇ -C ₃₉	108.414

2.1.2. Carmustine.

The optimized Carmustine structures obtained from Density Functional Theory B3LYP/6-31G* method (Figure 2).

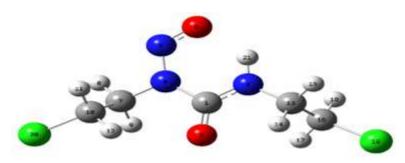


Fig. 2: Optimized structure of Carmustine

Molecular geometries of Carmustine (Fig. 2) were optimized using the B3LYP procedure employing the $6-31G^*$ basis set. The molecular structure of Carmustine is shown in Fig. 2. The geometries of this molecule optimized using the $6-31G^*$ basis set at the B3LYP level are presented in Table 2.

Table 2: Geometric parameters of optimized Carmustine structure

Carmustine			
Bond lengths		Bond angles	
CL ₂₀ -C ₁₀	1.809	CL20-C10-C7	109.604
$C_{10}-C_7$	1.528		
C_7-N_4	1.471		
N_4-N_5	1.358	C10-C7-N4	111.307
N_5-O_6	1.224	$N_4-N_5-O_6$	117.597
N_4-C_1	1.454		
C_1-O_2	1.221	$N_4-C_1-N_3$	116.244
C_1-N_3	1.350	C1-N3-H21	117.674
N ₃ -C ₁₃	1.458		
$C_{13}-C_{16}$	1.530	$O_2-C_1-N_3$	125.458
$C_{16}-C_{19}$	1.811		
C_{10} - H_{11}	1.091		
C_{10} - H_{12}	1.089	C1-N3-C13	120.533
C_7-H_8	1.090		
C_7-H_9	1.090		
N ₃ -H ₂₁	1.015	$N_3-C_{13}-C_{16}$	111.308
C ₁₃ -H ₁₅	1.092		
C13-H14	1.092		
C16-H18	1.091	C13-C16-CL19	110.136
C ₁₆ -H ₁₇	1.090		

2.1.3. Temozolomide.

The optimized Temozolomide structures obtained from Density Functional Theory B3LYP/6-31G* method were identical (Figure 3).

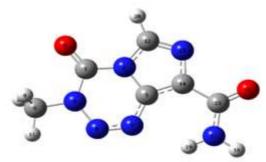


Fig. 3: Optimized structure of Temozolomide.

Molecular geometries of Temozolomide (Fig. 3) were optimized using the B3LYP procedure employing the 6-31G* basis set. The molecular structure of Temozolomide is shown in Fig. 3. The geometries of this molecule optimized using the 6-31G* basis set at the B3LYP level are presented in Table 3.

Temozolomide			
Bond lengths		Bond angles	
C_8-H_9	1.092	$H_9-C_8-H_{10}$	108.889
$C_{8-}H_{10}$	1.092	$H_9-C_8-H_{11}$	110.421
C ₈ -H ₁₁	1.089	H ₁₁ -C ₈ -H ₁₀	110.425
C_8-N_4	1.463	$C_8-N_4-C_1$	118.016
N_4-N_6	1.386	$N_4-C_1-O_5$	124.698
N_6-N_7	1.268	$N_4-C_1-N_2$	110.639
N_7-C_3	1.364	$C_1-N_2-C_3$	121.729
N_2-C_1	1.399	$N_2-C_3-N_7$	121.367
C_1-O_5	1.211	C3-N7-N6	120.065
N_2-C_{12}	1.371	N7-N6-N4	119.073
C ₁₂ -N ₁₃	1.314	N ₂ -C ₁₂ -N ₁₃	111.343
N ₁₃ -C ₁₄	1.371	H ₂₀ -C ₁₂ -N ₁₃	126.763
$C_{14}-C_{3}$	1.390	C12-N13-C14	107.224
C_{14} - C_{15}	1.499	N ₁₃ -C ₁₄ -C ₃	109.194
C ₁₅ -O ₁₆	1.220	C_{14} - C_{3} - N_{2}	105.661
C15-N17	1.365	C_{14} - C_{15} - O_{16}	121.770
$N_{17}-H_{19}$	1.012	O ₁₆ -C ₁₅ -N ₁₇	123.807
N ₁₇ -H ₁₈	1.009	H_{18} - N_{17} - H_{19}	119.794

Table 3: Geometric parameters of optimized Temozolomide structure

2.1.4. Tamoxifen and Hydroxifen

The optimized Tamoxifen and Hydroxifen structures obtained from Density Functional Theory B3LYP/6-31G* method were identical (Figures 4 and 5).

Fig. 4: Optimized structure of Tamoxifen

Molecular geometries of Tamoxifen (Fig. 4) were optimized using the B3LYP procedure employing the 6-31G* basis set. The molecular structure of Tamoxifen is shown in Fig. 4. The geometries of this molecule optimized using the 6-31G* basis set at the B3LYP level are presented in Table4.

Geometrical parameters (Bond lengths (Å) and Bond angles(°)) of Tamoxifen			
Bond lengths		Bond ar	ngles
C_1-C_2	1.405	$C_1 - C_2 - C_3$	117.906
C_2-C_3	1.405		
C_3-C_4	1.393	$C_2-C_3-C_4$	121.078
C_4-C_5	1.396	$C_3-C_4-C_5$	120.290
C_5-C_6	1.395		
C_6-C_1	1.395	$C_4-C_5-C_6$	119.393
$C_2 - C_{12}$	1.496	$C_5-C_6-C_1$	120.230
C_{12} - C_{13}	1.360		
C_{12} - C_{14}	1.521	$C_6-C_1-C_2$	121.092
C ₁₄ -C ₁₇	1.538	$C_2 - C_{12} - C_{13}$	122.450
$C_{13}-C_{21}$	1.495		
C_{21} - C_{23}	1.408	C ₁₂ -C ₁₄ -C ₁₇	114.167
C ₂₃ -C ₂₆	1.387	C ₁₂ -C ₁₃ -C ₂₁	123.554
C ₂₆ -C ₂₈	1.402		
$C_{28}-C_{24}$	1.399	C_{21} - C_{22} - C_{24}	121.986
$C_{24}-C_{22}$	1.395	C22-C24-C28	119.601
$C_{22}-C_{21}$	1.402	C_{24} - C_{28} - C_{26}	119.334

C ₂₈ -O ₄₂	1.365		
O ₄₂ -C ₄₃	1.424	C ₂₈ -C ₂₆ -C ₂₃	120.305
C ₄₃ -C ₄₆	1.027	$C_{26}-C_{23}-C_{21}$	121.458
C46-N49	1.461		
N ₄₉ -C ₅₀	1.457	C_{23} - C_{21} - C_{22}	117.297
N49-C54	1.458	C ₂₈ -O ₄₂ -C ₄₃	118.740
C ₁₃ -C ₃₁	1.498		
C ₃₁ -C ₃₂	1.405	O ₄₂ -C ₄₃ -C ₄₆	106.645
C ₃₂ -C ₃₄	1.393		
C ₃₄ -C ₃₈	1.397		
C ₃₈ -C ₃₆	1.395		
C ₃₆ -C ₃₃	1.396	C ₅₀ -N ₄₉ -C ₅₄	110.670
$C_{33}-C_{31}$	1.404		

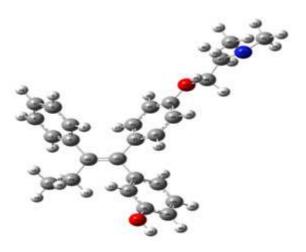


Fig. 5: Optimized structure of Hydroxifen

The geometry structures of Methotrexate, Carmustine, Temozolomide, Tamoxifen and Hydroxifen were optimized at B3LYP/6-31g* level of theory and then the Gibbs free energy of solvation (ΔG (solvation)) was calculated at B3LY/6-31g* level of theory using Gaussian 03[13].

Some physicochemical properties of Methotrexate, Carmustine, Temozolomide, Tamoxifen and Hydroxifen, such as, Refractivity, polarizability, Log p, Hydration energy, Gibbs free energy of solvation (ΔG solvation) and Dipole moment (DM) were obtained from the optimal structure and have been shown in Table 5 and 6.

Table 5: Some calculated physicochemical properties of Methotrexate, Carmustine, Temozolomide

Physicochemical properties	Methotrexate	Carmustine	Temozolomide
Refractivity ^a	111.30	41.77	40.39
Polarizability	45.65	17.93	17.52
Hydration energy ^a (Kcal/mol)	-29.17	-5.50	-8.68
Surface area ^a (Å2)	535.65	393.31	268.08
Dipole moment (Debye)	7.14	1.848	5.89
ΔG solvation(Kcal/mol)	-29.77	-6.27	-12.35

^a Data was calculated using HyperChem 8 software[14]

Table 6: Some calculated physicochemical properties of Tamoxifen, Hydroxifen

Physicochemical properties	Tamoxifen	Hydroxifen	
Refractivity ^a	119.26	120.95	
Polarizability	46.23	46.87	
Hydration energy ^a (Kcal/mol)	-2.69	-8.75	
Surface area ^a (Å2)	616.67	631.31	
Dipole moment (Debye)	1.42	1.805	
$\Delta G_{solvation}$ (Kcal/mol)	1.12	-3.81	

^a Data was calculated using HyperChem 8 software[14]

CONCLUSION

B3LYP calculations were applied to study some physicochemical properties of Methotrexate, Carmustine, Temozolomide, Tamoxifen and Hydroxifen. Density functional Theory (DFT) calculation were applied to study

some geometrical properties of Methotrexate, Carmustine, Temozolomide, Tamoxifen and Hydroxifen. With regards to the calculations carried out and the amount of $\Delta G_{solvation}$, the solvation of Methotrexate was seen to be higher than the other four types under study. As can be seen in the experimental results, Carmustine is poorly soluble in water where as its highly soluble in lipids and alcohol; $\Delta G_{solvation} = -6.27$ calculated for this chemical confirms the same. Further, $\Delta G_{solvation} = -29.77$ for Methotrexate confirms its higher solubility in water than the other types. In this research, we have been able to identify the physicochemical properties of five anti-cancer drugs through calculations.

REFERENCES

[1] Hvizdos KM, Goa KL., CNS Drugs, 1999, 12,237-243.

[2] Sawaya MR, Kraut J., Biochemistry, 1997, 36,586-603.

[3] Fierke CA, Johnson KA, Benkovic SJ., Biochemistry, 1987, 26,4085-4092.

[4] Cayley PJ, Dunn SM, King RW., *Biochemistry*, **1981**, 20,874-879.

[5] Cameron CE, Benkovic SJ, Biochemistry, 1997, 36,15792-15800.

[6] Beckett D, Kovaleva E, Schatz PJ., Protein Sci., 1999, 8,921-929.

[7] Miller GP, Wahnon DC, Benkovic SJ., Biochemistry, 2001, 30,867-875.

[8] Souhami RL, Tannock I, Hohenberger P, Horiot JC. Tumours of the nervous system in adult Oxford textbook of

oncology. 2nd ed. Oxford University Press, 2001 chapter 18.2

[9] Dinnes J, Cave C, Huang S, Major K, Milne R., Health Technol Assess, 2001, 5,13.

[10] Chamberlain MC, Kormanik PA., West J Med., **1998**, 168,114-120.

[11] Beck WT. Modulators of P-glycoprotein-associated multidrug resistance in Molecular and Clinical Advances in Anticancer Drug Resistance, Ozols, R.F. (ed.), Boston. Kluwer Academic Publishers, **1991**. p. 151-170.

[12] Bagheri S, Chamani Z, Hassani SM., Int J ChemTech Res., 2012, 4,144.

[13] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Chessman JR et al. Gaussian 03, Revision B.03, Gaussian Inc., Wallingford CT, **2004**.

[14] <u>www.hyperchem.com</u>