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ABSTRACT  
 
In order to investigate the relationship between activities and structures, a 3D-QSAR study is applied to a set of 43 
halogenated phenols compounds. This study was conducted using the principal component analysis (PCA) method, 
the multiple linear regression method (MLR), the non-linear regression (RNLM) and the artificial neural network 
(ANN). We accordingly propose a quantitative model, and we interpret the activity of the compounds relying on the 
multivariate statistical analysis. Density functional theory (DFT) and ab-initio molecular orbital calculations have 
been carried out in order to get insights into the structure, chemical reactivity and property information for the 
series of study compounds. This study shows that the MRA and MNLR have served also to predict activities, but 
when compared with the results given by the ANN, we realized that the predictions fulfilled by this latter were more 
effective. The obtained results suggested that the proposed combination of several calculated parameters could be 
useful to predict the biological activity of halogenated phenols over Tetrahymenapyriformis. 
 
Keywords: 3D-QSAR model, DFT study, Halogenated phenols compounds, Tetrahymenapyriformis,  
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INTRODUCTION 
 

Phenols compounds are basic materials for industry production, which are commonly used in chemical synthesis. 
They can spread through air and water, with strong carcinogenicity, teratogenicity and mutagenicity [1-2], which 
will cause great damage to environment, plants, animals and human health. Therefore, it is vital to protect the 
environment and prevent occupational poisoning by studying the acute toxicity of phenols compounds. 
 
The experiment is a direct way to obtain the toxicity data of organic compounds, which has many deficiencies, such 
as requirement of myriads of trial organisms, high expense, long time, the difference in measured value between 
different researchers and so on. Consequently, it would be impossible to gain the toxicity data of all organic 
compounds by experiment. As new compounds are springing up, other difficulties will follow. So it is necessary to 
use the theoretical research to make up for disadvantages of the experiment and to predict the toxicity data of 
compounds quickly and exactly. 
 
QSAR can predict the bioactivity such as toxicity, mutagenicity and carcinogenicity based on structural parameters 
of compounds and appropriate mathematical models. With the rapid development of computer science and 
theoretical quantum chemical study, it can speedily and precisely obtain the quantum chemical parameters of 
compounds by computation. 
 
Moreover, these parameters, which have definite physical meaning, along with the introduction of the QSAR model 
can increase the interpretability. So quantum chemical theory is extensively applied in establishing QSAR models 
[3-5]. 
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In this work, we have modeled the toxicity of 43 halogenated phenols compounds to tetrahymenapyriformis using 
several statistical tools, principal components analysis (PCA), multiple linear regression (MLR), non-linear 
regression (RNLM) and artificial neural network (ANN) calculations, we accordingly propose a quantitative model, 
and we try to interpret the activity of these compounds relying on the multivariate statistical analyses. 
 

MATERIALS AND METHODS 
 

Data sources 
Acute toxicity data of 43 halogenated phenols to tetrahymenapyriformis were taken from a literature [6]. IC 50 here 
means the millimolar concentration causing 50% inhibition of growth about halogenated phenols to 
tetrahymenapyriformis. The bigger the value of –logIC50 (pIC50), the higher is toxicity of compounds, and vice 
versa. 
 
The following table shows the studied compounds and the corresponding experimental activities pIC50 (Table 1). 
The experimental toxicity of the studied compounds has been collected from recent work [6]. The range of the 
toxicity data varies from 0.02 to 2.71 (µM). 
 

Table 1: Halogenated phenols and their observed toxicities against Tetrahymenapyriformis 
 

N° Name (IUPAC) pIC50 N° Name (IUPAC) pIC50 
1 4-fluorophenol 0.017 23 3-bromophenol 1.145 
2 2-chlorophenol 0.183 24 4-bromo-2,6-dimethylphenol 1.167 
3 2-fluorophenol 0.185 25 2,3,5,6-tetrafluorophenol 1.167 
4 2-bromophenol 0.330 26 4-chloro-3,5-dimethylphenol 1.201 
5 3-fluorophenol 0.381 27 4-bromo-3,5-dimethylphenol 1.268 
6 2-chloro-5-methylphenol 0.393 28 2,3-dichlorophenol 1.276 
7 2,6-difluorophenol 0.471 29 4-bromo-6-chloro-2-methylphenol 1.276 
8 4-chlorophenol 0.545 30 2,4-dibromophenol 1.398 
9 2-bromo-4-methylphenol 0.599 31 3,5-dichlorophenol 1.569 
10 2,4-difluorophenol 0.604 32 Pentafluorophenol 1.638 
11 4-bromophenol 0.680 33 3,4-dichlorophenol 1.745 
12 2-chloro-4,5-dimethylphenol 0.688 34 4-bromo-2,6-dichlorophenol 1.778 
13 4-chloro-2-methylphenol 0.701 35 4-chloro-2-isopropyl-5-methylphenol 1.854 
14 2,6-dichlorophenol 0.735 36 2,4,6-tribromophenol 2.030 
15 4-chloro-3-methylphenol 0.796 37 Pentachlorophenol 2.049 
16 2,6-dichloro-4-fluorophenol 0.804 38 2,4,5-trichlorophenol 2.097 
17 3-chlorophenol 0.871 39 2,3,5,6-tetrachlorophenol 2.222 
18 2,4-dichlorophenol 1.036 40 2,3,5-trichlorophenol 2.373 
19 4-chloro-3-ethylphenol 1.081 41 3,4,5,6-tetrabromo-2-methylphenol 2.574 
20 2,5-dichlorophenol 1.125 42 Pentabromophenol 2.664 
21 3-chloro-4-fluorophenol 1.131 43 2,3,4,5-tetrachlorophenol 2.712 
22 2,4,6-trichlorophenol 1.410 - - - 

 
Molecular descriptors 
All computations were performed by using Gaussian 03W program [7]. The geometries of all 43 theoretically 
possible halogenated phenols were optimized with DFT method at the B3LYP/6-31G (d) level and frequency 
calculations were performed at the same level for all of the possible geometries to ensure they are minimal on the 
potential energy surface. Then choose some related structural parameters from the results of quantum computation: 
the highest occupied molecular orbital energy EHOMO, the lowest unoccupied molecular orbital energy ELUMO, energy 
gap ∆E, dipole moment µ, the total energy ET, the activation energy Ea, the absorption maximum λmax, the factor of 
oscillation f(SO).  
 
As well as the ChemSketch program (Demo version 10.0) [8] was employed to calculate the others molecular 
descriptors such as: the Molar Volume (MV), the molecular weight (MW), the Molar Refractivity (MR), the 
Parachor (Pc), the Density (D), the Refractive Index (n), the Surface Tension (γ) and the Polarizability (α). 
 
Statistical analysis 
The structures of 43 halogenated phenols to tetrahymenapyriformis were studied by statistical methods based on the 
principal component analysis (PCA) [9] using the software XLSTAT version 2013 [10]. PCA is a statistical 
technique useful for summarizing all the information encoded in the structures of the compounds. It is also very 
helpful for understanding the distribution of the compounds [11]. This is an essentially descriptive statistical method 
which aims to present, in graphic form, the maximum of information contained in the data table 1 and table 2. 
 
The multiple linear regression (MLR) analysis with descendent selection and elimination of variables was employed 
to model the structure activity relationships. It is a mathematic technique that minimizes differences between actual 
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and predicted values. It has served also to select the descriptors used as the input parameters in the Multiples 
nonlinear regression (MNLR) and artificial neural network (ANN). 
 
The (MLR), the (MNLR) were generated using the software XLSTAT version 2013 [10], to predict cytotoxic effects 
IC50 activities. Equations were justified by the correlation coefficient (R), mean squared error (MSE) [10]. ANN is 
artificial systems simulating the function of the human brain. Three components constitute a neural network: the 
processing elements or nodes, the topology of the connections between the nodes, and the learning rule by which 
new information is encoded in the network. While there are a number of different ANN models, the most frequently 
used type of ANN in QSAR is the three-layered feed forward network [12]. In this type of networks, the neurons are 
arranged in layers (an input layer, one hidden layer and an output layer). Each neuron in any layer is fully connected 
with the neurons of a succeeding layer and no connections are between neurons belonging to the same layer. 
 
According to the supervised learning adopted, the networks are taught by giving them examples of input patterns 
and the corresponding target outputs. Through an iterative process, the connection weights are modified until the 
network gives the desired results for the training set of data. A back propagation algorithm is used to minimize the 
error function. This algorithm has been described previously with a simple example of application [13] and a detail 
of this algorithm is given elsewhere [14]. 
 
The ANNs analysis was performed with the use of Matlab software version 2009a Neural Fitting tool (nftool) 
toolbox [15]. 
 

Table 2: the values of the sixteen chemical descriptors 
 

N° MW 
MR 

(cm3) 
MV 

(cm3) 
Pc 

(cm3) n γ 
(dyne/cm) 

D 
(g/cm3) 

α 
(cm3) 

ET (Ua) 
EHOMO 

(ev) 
ELUMO  
(ev) 

∆E 
(ev) 

µ 
(debye) 

Ea 
(ev) 

λmax 
(nm) f (SO) 

                 

1 112.10 28.12 92.00 229.40 1.52 38.50 1.22 11.15 -11074.34 -5.95 -0.31 5.64 1.96 5.06 244.81 0.047 
2 128.56 33.02 99.80 258.10 1.58 44.70 1.29 13.09 -20887.12 -6.25 -0.35 5.90 0.93 5.14 241.37 0.032 
3 112.10 28.12 92.00 229.40 1.52 38.50 1.22 11.15 -11074.38 -6.13 -0.10 6.02 0.79 5.25 236.07 0.022 
4 173.01 35.82 104.00 272.70 1.60 47.20 1.66 14.20 -78383.56 -6.22 -0.37 5.85 0.94 5.07 244.41 0.001 
5 112.10 28.12 92.00 229.40 1.52 38.50 1.22 11.15 -11074.40 -6.17 -0.09 6.08 0.80 5.27 235.11 0.023 
6 142.58 37.85 116.00 295.80 1.57 42.10 1.23 15.00 -21957.75 -6.15 -0.32 5.83 1.23 5.09 243.57 0.041 
7 130.09 28.12 96.20 236.50 1.50 36.40 1.35 11.14 -13776.32 -6.30 -0.10 6.21 1.91 5.27 235.27 0.007 
8 128.56 33.02 99.80 258.10 1.58 44.70 1.29 13.09 -20887.05 -6.09 -0.40 5.69 2.49 5.03 246.57 0.029 
9 187.03 40.64 120.30 310.40 1.59 44.30 1.55 16.11 -79454.17 -6.02 -0.34 5.68 1.33 4.95 250.28 0.001 
10 130.09 28.12 96.20 236.50 1.50 36.40 1.35 11.14 -13776.43 -6.13 -0.42 5.72 0.66 5.10 243.25 0.042 
11 173.01 35.82 104.00 272.70 1.60 47.20 1.66 14.20 -78383.44 -6.04 -0.40 5.64 2.41 4.98 249.13 0.026 
12 156.61 42.67 132.30 333.40 1.56 40.20 1.18 16.91 -23028.36 -5.94 -0.16 5.78 1.60 4.99 248.54 0.049 
13 142.58 37.85 116.00 295.80 1.57 42.10 1.23 15.00 -21957.69 -5.97 -0.01 5.96 2.84 5.06 245.01 0.029 
14 163.00 37.92 111.70 294.00 1.59 47.80 1.46 15.03 -33401.79 -6.49 -0.69 5.80 2.08 5.02 247.16 0.033 
15 142.58 37.85 116.00 295.80 1.57 42.10 1.23 15.00 -21957.70 -5.98 -0.24 5.74 2.46 5.07 244.56 0.029 
16 180.99 37.91 115.90 301.10 1.57 45.40 1.56 15.03 -36103.80 -6.48 -1.00 5.48 1.37 4.87 254.58 0.066 
17 128.56 33.02 99.80 258.10 1.58 44.70 1.29 13.09 -20887.07 -6.29 -0.37 5.92 1.11 5.15 240.97 0.028 
18 163.00 37.92 111.70 294.00 1.59 47.80 1.46 15.03 -33401.86 -6.36 -0.75 5.60 1.07 4.92 251.97 0.038 
19 156.61 42.57 132.60 334.70 1.56 42.57 1.18 16.87 -23028.16 -5.94 -0.19 5.75 2.51 5.07 244.52 0.031 
20 163.00 37.92 111.70 294.00 1.59 47.80 1.46 15.03 -33401.88 -6.52 -0.73 5.79 1.46 5.02 247.03 0.037 
21 146.55 33.02 104.00 265.20 1.55 42.20 1.41 13.09 -23589.04 -6.24 -0.66 5.58 2.24 4.98 249.11 0.056 
22 197.45 42.81 123.70 329.80 1.61 50.50 1.60 16.97 -45916.49 -6.57 -1.05 5.52 1.42 4.82 257.22 0.040 
23 173.01 35.82 104.00 272.70 1.60 47.20 1.66 14.20 -78383.46 -6.26 -0.39 5.87 1.02 5.11 242.57 0.031 
24 201.06 45.47 136.50 348.00 1.58 42.10 1.47 18.02 -80524.73 -5.82 -0.13 5.70 2.87 5.05 245.56 0.021 
25 166.07 28.10 104.70 250.70 1.45 32.90 1.59 11.14 -19180.07 -6.76 -0.44 6.32 1.38 5.25 235.98 0.001 
26 156.61 42.67 132.30 333.40 1.56 40.20 1.18 16.91 -23028.33 -5.89 -0.09 5.80 1.97 5.25 235.98 0.001 
27 201.06 45.47 136.50 348.00 1.58 42.10 1.47 18.02 -80524.77 -5.86 -0.09 5.77 1.92 5.09 243.57 0.017 
28 163.00 37.92 111.70 294.00 1.59 47.80 1.46 15.03 -33401.77 -6.49 -0.67 5.82 1.32 5.05 245.43 0.026 
29 221.48 45.54 132.20 346.20 1.60 46.90 1.67 18.05 -91968.76 -6.16 -0.59 5.57 3.56 4.91 252.53 0.028 
30 251.90 43.51 120.20 323.20 1.64 43.51 1.64 17.25 -148394.69 -6.27 -0.76 5.51 0.93 4.84 256.31 0.038 
31 163.00 37.92 111.70 294.00 1.59 47.80 1.46 15.03 -33401.82 -6.63 -0.73 5.90 2.38 5.05 245.44 0.019 
32 184.06 28.10 108.90 257.90 1.43 31.40 1.69 11.14 -21775.11 -6.56 -1.85 4.72 1.98 6.28 197.44 0.002 
33 163.00 37.92 111.70 294.00 1.59 47.80 1.46 15.03 -33401.71 -6.33 -0.71 5.63 2.61 4.94 251.19 0.033 
34 241.90 45.61 127.90 344.50 1.63 52.50 1.89 18.08 -103412.89 -6.51 -1.04 5.47 1.38 4.66 266.22 0.001 
35 184.66 52.03 166.10 410.80 1.54 37.30 1.11 20.63 -25169.29 -5.84 -0.11 5.72 2.43 5.07 244.78 0.034 
36 330.80 51.20 136.40 373.70 1.67 56.30 2.42 20.29 -218405.74 -6.45 -1.18 5.27 1.49 4.71 263.28 0.044 
37 266.34 52.60 147.60 401.60 1.63 54.70 1.80 20.85 -70945.45 -6.82 -1.45 5.37 1.91 4.68 264.94 0.032 
38 197.45 42.81 123.70 329.80 1.61 50.50 1.60 16.97 -45916.48 -6.56 -1.03 5.53 2.05 4.82 257.16 0.045 
39 231.89 47.71 135.60 365.70 1.62 52.80 1.71 18.91 -58431.02 -6.85 -1.23 5.63 1.40 4.75 260.89 0.001 
40 197.45 42.81 123.70 329.80 1.61 50.50 1.60 16.97 -45916.50 -6.76 -1.00 5.75 1.03 4.95 250.70 0.023 
41 423.72 63.72 168.80 461.90 1.68 55.90 2.51 25.26 -289487.11 -6.38 -1.45 4.94 3.49 4.48 276.89 0.002 
42 488.59 66.58 168.70 474.70 1.72 62.50 2.89 26.39 -358427.65 -6.61 -1.97 4.64 1.72 4.15 298.82 0.001 
43 231.89 47.71 135.60 365.70 1.62 52.80 1.71 18.91 -58430.96 -6.71 -1.24 5.47 2.08 4.77 260.03 0.035 
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RESULTS 
 

QSAR models and analysis 
The QSAR analysis was performed using the pIC50 of the 43 halogenated phenols to tetrahymenapyriformis as 
reported in [16], the values of the 16 chemical descriptors as shown in table 2. 
 
The principle (for the two studies) is to perform in the first time, a main component analysis (PCA), which allows us 
to eliminate descriptors that are highly correlated (dependent), then perform a decreasing study of MLR based on the 
elimination of descriptors (one by one) aberrant until a valid model. 
 
Principal component analysis  
The set of descriptors encoding the 43 halogenated phenols, topologic, electronic and energetic parameters are 
submitted to PCA analysis [17]. The first three principal axes are sufficient to describe the information provided by 
the data matrix. Indeed, the percentages of variance are 61.48%; 11.35% and 09.51% for the axes F1, F2 and F3, 
respectively. The total information is estimated to a percentage of 82.34%. 
 
The principal component analysis (PCA) [18] was conducted to identify the link between the different variables. 
Bold values are different from 0 at a significance level of p= 0.05. Correlations between the sixteen descriptors are 
shown in table 3 as a correlation matrix and in figure 1 these descriptors are represented in a correlation circle. The 
Pearson correlation coefficients are summarized in the following table 3. The obtained matrix provides information 
on the negative or positive correlation between variables. 

 
Table 3: Correlation matrix (Pearson (n)) between different obtained descriptors 

 

Variables pIC50 MW MR MV Pc n γ D α ET EHOMO  ELUMO  ∆E µ Ea λmax f (SO) 

pIC 50 1                 
MW 0.75 1                
MR 0.76 0.87 1 

              
MV 0.74 0.78 0.95 1              
Pc 0.78 0.85 0.99 0.98 1             
n 0.54 0.72 0.79 0.57 0.70 1            
γ 0.63 0.72 0.73 0.52 0.66 0.94 1           
D 0.67 0.94 0.68 0.55 0.65 0.67 0.73 1 

         
α 0.76 0.87 1.00 0.95 0.99 0.79 0.73 0.68 1         
ET -0.57 -0.95 -0.78 -0.65 -0.73 -0.74 -0.68 -0.92 -0.78 1 

       
EHOMO  -0.58 -0.37 -0.18 -0.10 -0.19 -0.26 -0.51 -0.51 -0.18 0.21 1       
ELUMO  -0.75 -0.72 -0.51 -0.44 -0.52 -0.46 -0.63 -0.78 -0.51 0.57 0.77 1      
∆E -0.61 -0.76 -0.61 -0.57 -0.62 -0.45 -0.50 -0.73 -0.61 0.68 0.28 0.82 1     
µ 0.26 0.22 0.36 0.42 0.38 0.12 0.09 0.10 0.36 -0.17 0.23 -0.03 -0.26 1    
Ea -0.47 -0.67 -0.74 -0.56 -0.67 -0.85 -0.82 -0.58 -0.74 0.65 0.24 0.34 0.30 -0.12 1   
λmax 0.54 0.76 0.79 0.62 0.73 0.86 0.85 0.68 0.79 -0.74 -0.29 -0.46 -0.43 0.13 -0.99 1 

 
f (SO) -0.20 -0.29 -0.16 -0.19 -0.18 -0.01 -0.03 -0.31 -0.16 0.29 0.12 0.12 0.07 -0.05 -0.10 0.04 1 

Bold values are different from 0 at a level significant for p < 0.05 
At a very significant for p < 0.01 

At a very significant for p < 0.001 
 

. 
 

Figure 1: Correlation circle 
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Analysis of projections according to the plan F1-F2 (72.83% of the total variance) of the studied molecules (Figure 
2) is showing in figure 2: 
 

 
 

Figure 2: Cartesian diagram according to F1 and F2: Separation between three regions 
 
Multiple Linear Regressions  
To establish quantitative relationships between toxicity pIC50 and selected descriptors, our array data were subjected 
to a multiple regression linear and were nonlinear. Only variables whose coefficients are significant were retained. 
 
Multiple linear regression of the variable toxicity (MLR) 
Many attempts have been made to develop a relationship with the indicator variable of toxicity pIC50, but the best 
relationship obtained by this method is only one corresponding to the linear combination of two descriptors selected: 
Parachor (Pc) and energy EHOMO.  
 
The resulting equation is: 

pIC 50 = – 8.331 + 8.532.10-3×Pc – 1.094×EHOMO         (Equation 1) 

 
Figure 3: Graphical representation of calculated and observed toxicity by MLR 

 
For our 43 compounds, the correlation between experimental toxicity and calculated one based on this model is 
quite significant (Figure 3) as indicated by statistical values: 
 

N = 43          R = 0.896          R2 = 0.804          RMSE = 0.322 
 

The figure 3 shows a very regular distribution of toxicity values depending on the experimental values. 
 
Multiple nonlinear regression of the variable toxicity (MNLR) 
We have also used the technique of nonlinear regression model to improve the structure toxicity in a quantitative 
way, taking into account several parameters. This is the most common tool for the study of multidimensional data. 
We have applied it to table 2 containing 43 molecules associated with sixteen variables. 
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The resulting equation is:  
pIC 50 = -18427.59 + 9.57 10-02 x MW - 2.27 MR + 2.21 MV - 0.47 Pc + 4321.00 n - 9.68 γ +18.89 D + 6.43.10-06 
ET - 41.88 EHOMO  + 28.19 ELUMO  - 0.72 µ + 1777.84 Ea + 44.44 λmax + 23.05 f(SO) + 3.00 10-04 MW 2 - 3.02 10-02 
MR 2 - 1.90 10-03 MV 2 + 4.49 1004 Pc2 - 1321.63 n2+ 0.11 γ2 - 12.16 D2+ 1.70 10-10 ET

2 - 0.90 E2
HOMO  - 2.60 E2

LUMO  
- 2.59 ∆E2+ 0.27 x µ2  - 77.79 Ea2 - 4.90 10-02 λ2

max - 523.06 f2
(SO)   

 
The obtained parameters describing the topological and the electronic aspects of the studied molecules are: 
 

N = 43        R = 0.958          R2 = 0.918          RMSE = 0.417 
 

The toxicity value pIC50 predicted by this model is somewhat similar to that observed. The figure 4 shows a very 
regular distribution of toxicity values based on the observed values. 

 

Figure 4: Graphical representation of calculated and observed toxicity by MNLR 
 
The obtained coefficient of determination in equation (2) is quite interesting (0.92). To optimize the error standard 
deviation and a better finish to building our model, we involve in the next part artificial neural networks (ANN). 
 
Artificial neural networks ANN 
In order to increase the probability of good characterization of studied compounds, neural networks (ANN) can be 
used to generate predictive models of quantitative structure–activity relationships (QSAR) between a set of 
molecular descriptors obtained from the MLR and observed activity. The ANN calculated toxicity model was 
developed using the properties of several studied compounds. The correlation between ANN calculated and 
experimental toxicity values are very significant as illustrated in figure 8 and as indicated by R and R2 values. 
 

N = 43          R = 0.998          R2 = 0.996          RMSE = 0.003 

 

Figure 5: Correlations of observed and predicted activities calculated using ANN 
 
The statistic of the three steps of the calculation by the ANNs: training, validation and test are illustrated in table 4. 
 

Table 4: Values obtained by ANNs 
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Training 31 2.58 10-03 0.998 0.996 
Validation 6 0.109 0.921 0.848 
Test 6 0.725 0.905 0.819 

R: correlation coefficient; R2: determination coefficient; RMSE: root mean square error. 
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DISCUSSION 
 

Principal component analysis  
* The toxicity (plC50) is well correlated with the Parachor (Pc) (r=0.782 and p<0.05) and the molecular weight 
(MW) (r=0.748 and p <0.05) and the Molar Refractivity (MR) (r=0.756 and p <0.05) and The Polarizability (α) 
(r=0.756 and p <0.05) at a significant level.  
 
* The Polarizability (α) is positively correlated with the Molar Volume (MV) (r=0.954 and p<0.05) and the Parachor 
(Pc) (r=0.991 and p<0.05) at a significant level.  
 
* The energy of activation Ea is negatively correlated with maximum of absorption λmax for r=0.987 and p<0.05 at a 
significant level. 
 
 * The Polarizability (α) is strongly correlated with the Molar Refractivity (MR) for r= 1 and p<0.001 at a high level. 
Both variables are thus redundant. Taking into account these observations, we removed the polarizability (α) order 
not to distort the rest of calculation. 
 
The principal component analysis revealed from the correlation circle (Figure 1) shows that the F1 axis (61.48% of 
the variance) is clearly connected to the molecular weight (MW), while the axis F2 (11.35% of the variance) is 
located by the other parameters of energy. 
 
Analysis of projections according to the plan F1-F2 (72.83% of the total variance) of the studied molecules (Figure 
2) shows that the molecules are dispersed, according to the of halogenated of halogenated phenols, in three classes 
of compounds belonging to three groups: the group 1 (G1) containing the phenol substituted by halogenated and the  
hydrocarbons, the group 2 (G2) containing the phenol substituted by fluorine "donors by mesomeric effect" , and the 
group 3 (G3) containing the phenol substituted by chlorine "donors by mesomeric effect". 
 
In this representation, the compounds 41, 42, 36 (donor by mesomeric effect) with pIC50 >2,03, is an exception 
because they are phenols substituted by bromine. 
 
Statistical Analysis  
As part of this conclusion, we can say that the toxicity values obtained from nonlinear regression are highly 
correlated to those of the observed toxicity comparing to results obtained by MLR method. 
 
The obtained squared correlation coefficient (R2) value is 0.998 for this data set of halogenated phenols. It confirms 
that the artificial neural network results were the best to build the quantitative structure activity relationship models.  
In this study, we investigated the best linear QSAR regression equations established in this study. Based on this 
result, a comparison of the quality of the CPA, MLR and ANN models shows that the ANN models have 
substantially better predictive capability because the ANN approach gives better results than MLR. ANN was able to 
establish a satisfactory relationship between the molecular descriptors and the activity of the studied compounds. 
 

CONCLUSION 
 

In this work we have investigated the QSAR regression to predict the toxicity of several compounds based on 
halogenated phenols. 
 
Comparison of key statistical terms like R or R2 of different models obtained by using different statistical tools and 
different descriptors has been shown in table 5. 
 
The study of the quality of the MLR and ANN models show that the ANN result has substantially better predictive 
capability than the other methods. With ANN approach, we have established a relationship between several 
descriptors and inhibition values pIC50 of halogenated phenols. 
 
Finally, we can conclude that studied descriptors, which are sufficiently rich in chemical, electronic and topological 
information to encode the structural feature may be used with other descriptors for the development of predictive 
QSAR models. 
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Table 5: Observed values and calculated values of pIC50 according to different methods 
 

pIC 50 (obs.) pIC 50 (calc.) 
N°   MLR  NMLR ANN  
1 0.017 0.137 0.054 0.053 
2 0.183 0.714 0.394 0.409 
3 0.185 0.330 0.407 0.273 
4 0.330 0.804 0.505 0.461 
5 0.381 0.378 0.264 0.426 
6 0.393 0.923 0.453 0.449 
7 0.471 0.586 0.525 0.431 
8 0.545 0.540 0.669 0.558 
9 0.599 0.905 0.650 0.708 
10 0.604 0.398 0.610 0.584 
11 0.680 0.609 0.772 0.693 
12 0.688 1.010 0.791 0.726 
13 0.701 0.728 0.571 0.756 
14 0.735 1.277 1.489 0.769 
15 0.796 0.739 0.643 0.837 
16 0.804 1.329 0.929 0.802 
17 0.871 0.753 0.485 0.377 
18 1.036 1.133 1.011 1.060 
19 1.081 1.031 1.076 1.309 
20 1.125 1.309 1.086 0.811 
21 1.131 0.756 0.916 1.111 
22 1.410 1.676 1.672 2.277 
23 1.145 0.849 0.728 1.218 
24 1.167 1.010 1.444 0.951 
25 1.167 1.203 1.143 1.084 
26 1.201 0.960 1.106 1.237 
27 1.268 1.055 1.108 1.314 
28 1.276 1.278 1.376 1.323 
29 1.276 1.367 1.327 1.271 
30 1.398 1.291 1.392 1.413 
31 1.569 1.434 1.533 1.570 
32 1.638 1.053 1.645 1.611 
33 1.745 1.110 1.603 1.607 
34 1.778 1.737 1.682 1.771 
35 1.854 1.563 1.840 1.267 
36 2.030 1.919 2.090 2.029 
37 2.049 2.560 2.328 3.580 
38 2.097 1.660 1.870 2.145 
39 2.222 2.289 2.192 2.272 
40 2.373 1.879 2.241 2.042 
41 2.574 2.595 2.511 2.524 
42 2.664 2.956 2.686 2.625 
43 2.712 2.133 2.256 3.685 
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