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ABSTRACT

In order to investigate the relationship between activities and structures, a 3D-QSAR study is applied to a set of 43
hal ogenated phenols compounds. This study was conducted using the principal component analysis (PCA) method,
the multiple linear regression method (MLR), the non-linear regression (RNLM) and the artificial neural network
(ANN). We accordingly propose a quantitative model, and we interpret the activity of the compounds relying on the
multivariate statistical analysis. Density functional theory (DFT) and ab-initio molecular orbital calculations have
been carried out in order to get insights into the structure, chemical reactivity and property information for the
series of study compounds. This study shows that the MRA and MNLR have served also to predict activities, but
when compared with the results given by the ANN, we realized that the predictions fulfilled by this latter were more
effective. The obtained results suggested that the proposed combination of several calculated parameters could be
useful to predict the biological activity of halogenated phenols over Tetrahymenapyriformis.

Keywords: 3D-QSAR model, DFT study, Halogenated phenolspmumds,Tetrahymenapyriformis,

INTRODUCTION

Phenols compounds are basic materials for indystguction, which are commonly used in chemicaltisgsis.
They can spread through air and water, with stroaginogenicity, teratogenicity and mutagenicity21 which
will cause great damage to environment, plantsmalsi and human health. Therefore, it is vital totgct the
environment and prevent occupational poisoningtbghang the acute toxicity of phenols compounds.

The experiment is a direct way to obtain the tayidiata of organic compounds, which has many dafites, such
as requirement of myriads of trial organisms, higipense, long time, the difference in measuredevhkiween
different researchers and so on. Consequently,oitldvbe impossible to gain the toxicity data of aiganic
compounds by experiment. As new compounds aregpgrup, other difficulties will follow. So it isatessary to
use the theoretical research to make up for disadgas of the experiment and to predict the toxidata of
compounds quickly and exactly.

QSAR can predict the bioactivity such as toxicityjtagenicity and carcinogenicity based on strutfpaeameters

of compounds and appropriate mathematical modelgh Wie rapid development of computer science and
theoretical quantum chemical study, it can speedild precisely obtain the quantum chemical paraseié
compounds by computation.

Moreover, these parameters, which have definitesishl meaning, along with the introduction of th8AR model
can increase the interpretability. So quantum chaltheory is extensively applied in establishinAR models
[3-5].
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In this work, we have modeled the toxicity of 43dgenated phenols compoundstétrahymenapyriformis using
several statistical tools, principal components lymis (PCA), multiple linear regression (MLR), nbnear
regression (RNLM) and artificial neural network (NNcalculations, we accordingly propose a quaiititamodel,
and we try to interpret the activity of these comnpds relying on the multivariate statistical anab/s

MATERIALS AND METHODS

Data sources

Acute toxicity data of 43 halogenated phenols$etoahymenapyriformis were taken from a literature [6ICso here
means the millimolar concentration causing 50% Litlin of growth about halogenated phenols to
tetrahymenapyriformis. The bigger the value oflogICsy (pICsg), the higher is toxicity of compounds, and vice
versa.

The following table shows the studied compounds #wedcorresponding experimental activities plCrable 1).
The experimental toxicity of the studied compouhds been collected from recent work [6]. The raafi¢he
toxicity data varies from 0.02 to 2.71 (uM).

Table 1: Halogenated phenols and their observed t@ities against Tetrahymenapyriformis

N° Name (IUPAC) plCsc  N° Name (IUPAC) plCsc

1  4-fluorophenol 0.017 23 3-bromophenol 1.145

2 2-chlorophenol 0.183 24 4-bromo-2,6-dimethylphenol 1.167
3 2-fluorophenol 0.185 25 2,3,5,6-tetrafluorophenol 1.167
4 2-bromophenol 0.330 26 4-chloro-3,5-dimethylphenol 1.201
5  3-fluorophenol 0.381 27 4-bromo-3,5-dimethylphenol 1.268
6  2-chloro-5-methylphenol 0.393 28  2,3-dichlorophenol 1.276

7  2,6-difluorophenol 0.471 29 4-bromo-6-chloro-2-methylphenol 1.276
8  4-chlorophenol 0.545 30 2,4-dibromophenol 1.398

9  2-bromo-4-methylphenol 0.599 31 3,5-dichlorophenol 1.569

10 2,4-difluorophenol 0.604 32 Pentafluorophenol 1.638

11  4-bromophenol 0.680 33 3,4-dichlorophenol 1.745

12 2-chloro-4,5-dimethylphenol  0.688 34  4-bromo-2,6-dichlorophenol 1.778
13  4-chloro-2-methylphenol 0.701 35 4-chloro-2-isopropyl-5-methylphenol  1.854
14  2,6-dichlorophenol 0.735 36 2,4,6-tribromophenol 2.030

15 4-chloro-3-methylphenol 0.796 37 Pentachlorophenol 2.049
16 2,6-dichloro-4-fluorophenol  0.804 38 2,4,5-trichlorophenol 2.097

17  3-chlorophenol 0.871 39 2,3,5,6-tetrachlorophenol 2.222
18 2,4-dichlorophenol 1.036 40 2,3,5-trichlorophenol 2.373

19 4-chloro-3-ethylphenol 1.081 41 3,4,5,6-tetrabromo-2-methylphenol 2.574
20 2,5-dichlorophenol 1.125 42 Pentabromophenol 2.664
21  3-chloro-4-fluorophenol 1.131 43 2,3,4,5-tetrachlorophenol 2.712
22 2,4,6-trichlorophenol 1410 - - -

Molecular descriptors

All computations were performed by using Gaussi8W0Oprogram [7]. The geometries of all 43 theordfyca
possible halogenated phenols were optimized witi Ditethod at the B3LYP/6-31G (d) level and frequency
calculations were performed at the same level loofathe possible geometries to ensure they ammal on the
potential energy surface. Then choose some retdtadtural parameters from the results of quantamputation:
the highest occupied molecular orbital energyye, the lowest unoccupied molecular orbital energykg, energy
gapAE, dipole moment L, the total energy, Ehe activation energyFthe absorption maximufy,,,, the factor of
oscillation {soy

As well as the ChemSketch program (Demo versio®)1[8] was employed to calculate the others mokecul
descriptors such as: the Molar Volume (MV), the ecolar weight (MW), the Molar Refractivity (MR), gh
Parachor (Pc), the Density (D), the Refractive kn(tg, the Surface Tensiop)(and the Polarizabilityo).

Statistical analysis

The structures of 43 halogenated phenols to tetnahgppyriformis were studied by statistical methbdsed on the
principal component analysis (PCA) [9] using thdtware XLSTAT version 2013 [10]. PCA is a statistic
technique useful for summarizing all the informatiencoded in the structures of the compounds. &ise very
helpful for understanding the distribution of thengpounds [11]. This is an essentially descriptiagistical method
which aims to present, in graphic form, the maxinafriimformation contained in the data table 1 aatule 2.

The multiple linear regression (MLR) analysis witbscendent selection and elimination of variablas employed
to model the structure activity relationships.sltai mathematic technique that minimizes differertete/een actual
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and predicted values. It has served also to séhectdescriptors used as the input parameters ifvithiéples
nonlinear regression (MNLR) and artificial neuratwork (ANN).

The (MLR), the (MNLR) were generated using thewafe XLSTAT version 2013 [10], to predict cytotoxitfects
ICso activities. Equations were justified by the coatin coefficient (R), mean squared error (MSE)][ENN is
artificial systems simulating the function of thanhan brain. Three components constitute a neutalonk: the
processing elements or nodes, the topology of dmmections between the nodes, and the learningbsulehich
new information is encoded in the network. Whilerthare a number of different ANN models, the nfiesfuently
used type of ANN in QSAR is the three-layered fém@vard network [12]. In this type of networks, theurons are
arranged in layers (an input layer, one hiddenrlayel an output layer). Each neuron in any layéullg connected
with the neurons of a succeeding layer and no adiores are between neurons belonging to the sayee.la

According to the supervised learning adopted, thsvarks are taught by giving them examples of inpatterns
and the corresponding target outputs. Through enatite process, the connection weights are matlifietil the
network gives the desired results for the trairseg of data. A back propagation algorithm is ugethinimize the
error function. This algorithm has been describexVipusly with a simple example of application [£3]d a detail
of this algorithm is given elsewhere [14].

The ANNSs analysis was performed with the use ofldatoftware version 2009a Neural Fitting tool gof)
toolbox [15].

Table 2: the values of the sixteen chemical desctgs

o MR MV Pc Yy D o Evomo  ELumo AE u Ea Amax

N* MW o) emd)  (cnd) (@dynelem) (glen?) @) T Tey) (ev) (ev) (debye) (ev) (nm) O
1 11210 2812 92.00 22940152 3850  1.22 1115 -1107434 -595 -0.31 564 961. 506 244.810.047
2 12856 3302 99.80 25810158 4470 129 1309 -20887.12 -6.25 -035 5090 930. 514 241.370.032
3 11210 2812 9200 22940152 3850 122 1115 -1107438 -613 -010 602 790. 525 236.070.022
4 17301 3582 104.00272.70 1.60 4720 166 1420 -7838356 -6.22 -037 585 940. 507 244.410.001
5 11210 2812 9200 22940152 3850 122 1115 -11074.40 -617 -009 608 800. 527 235110.023
6 14258 37.85 116.00295.80 157 4210 123 1500 -21957.75 -6.15 -032 583 231 509 243.570.041
7 130.09 2812 9620 23650150 3640 135 1114 -1377632 -6.30 -010 621 911. 527 235270007
8 12856 33.02 99.80 25810158 4470 129 1309 -20887.05 -6.09 -040 569 492. 503 246.570.029
9 187.03 40.64 1203031040 159 4430 155 1611 -7945417 -6.02 -034 568 331 495 250280001
10 13009 2812 9620 23650150 3640  1.35 1114 -1377643 -613 -042 572 660. 510 243.250.042
11 173.01 3582 104.00 27270 1.60 47.20  1.66 1420 -78383.44 -604 -040 564 412. 498 249.130.026
12 156.61 42.67 132.3033340 156 4020  1.18 1691 -23028.36 -594 -0.16 578 601 499 248.540.049
13 14258 37.85 116.00 29580 157 4210 123 1500 -21957.69 -597 -0.01 5096 842. 506 245.010.029
14 163.00 37.92 111.70 29400 159 47.80 146 1503 -33401.79 -649 -0.69 580 082. 502 247.160.033
15 14258 37.85 116.00 29580 157 4210 123 1500 -21957.70 -598 -0.24 574 462. 507 244.560.029
16 18099 37.91 1159030110 157 4540 156 1503 -36103.80 -6.48 -1.00 548 371. 487 254.580.066
17 12856 33.02 99.80 258.10158 4470 129 1309 -20887.07 -629 -0.37 592 111. 515 240.970.028
18 163.00 37.92 111.70 29400 159 47.80 146 1503 -33401.86 -636 -0.75 560 071 492 251.970.038
19 156.61 4257 132.60 33470 156 4257 118 16.87 -23028.16 -594 -019 575 512. 507 244.520.031
20 163.00 37.92 111.70 29400 159 47.80 146 1503 -33401.88 -652 -0.73 579 461 502 247.030.037
21 14655 33.02 104.00 26520 155 4220 141 13.09 -23580.04 -6.24 -0.66 558 242 498 249.110.056
22 197.45 42.81 1237032980 161 5050 160 1697 -45916.49 -6.57 -1.05 552 421 482 257.220.040
23 173.01 3582 104.00272.70 160 4720  1.66 1420 -78383.46 -6.26 -0.39 587 021. 511 242570031
24 201.06 4547 13650 348.00 158 4210 147 1802 -8052473 -582 -013 570 872 505 245560021
25 166.07 28.10 104.70 250.70 145 32.90 159 1114 -19180.07 -6.76 -0.44 632 381 525 235980001
26 156.61 42.67 132.30333.40 156 4020 118 1691 -23028.33 -589 -0.09 580 971 525 235980001
27 201.06 4547 13650 348.00 158 4210 147 1802 -80524.77 -586 -0.09 577 921. 509 243570017
28 163.00 37.92 111.70294.00 159 47.80 146 1503 -33401.77 -6.49 -0.67 582 321 505 245430026
29 22148 4554 132.20346.20 160 4690 167 1805 -91968.76 -6.16 -0.59 557 563. 4.91 252530028
30 251.90 4351 1202032320 1.64 4351 164 17.25 -148394.69 -627 -0.76 551 930 484 256310038
31 163.00 37.92 111.70294.00 159 47.80 146 1503 -33401.82 -6.63 -073 590 382. 505 245440019
32 184.06 2810 108.90257.90 143 3140 169 1114 -2177511 -6.56 -185 472 981. 628 197.440.002
33 163.00 37.92 1117029400 159 47.80 146 1503 -33401.71 -6.33 -071 563 612. 494 251.190.033
34 241.90 4561 127.9034450 1.63 5250  1.89 1808 -103412.89 -651 -1.04 547 381 466 266.220.001
35 184.66 52.03 166.10410.80 154 37.30 111 2063 -25169.29 -5.84 -0.11 572 432. 507 244780034
36 330.80 51.20 136.40373.70 1.67 5630 242 2029 -218405.74 -6.45 -1.18 527 491 471 263.280044
37 266.34 52.60 147.60401.60 1.63 5470 180 2085 -7094545 -6.82 -145 537 911. 468 264.940032
38 197.45 42.81 123.70329.80 1.61 5050 160 1697 -4591648 -6.56 -103 553 052. 4.82 257.160.045
39 231.80 47.71 1356036570 1.62 5280 171 1891 -58431.02 -6.85 -123 563 401. 4.75 260.890.001
40 197.45 42.81 123.70329.80 1.61 5050 160 1697 -4591650 -6.76 -1.00 575 031, 4.95 250700023
41 42372 63.72 168.80461.90 1.68 5590 251 2526 -289487.11 -6.38 -1.45 494 493 448 276.890.002
42 48859 6658 168.70474.70 1.72 6250  2.89 2639 -358427.65 -6.61 ~-1.97 464 721 415 298.820.001
43 231.80 47.71 1356036570 1.62 5280 171 1891 -58430.96 -6.71 -124 547 082. 477 260030035
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RESULTS

QSAR models and analysis
The QSAR analysis was performed using thespk@® the 43 halogenated phenols to tetrahymenapymifo as
reported in [16], the values of the 16 chemicakdp$ors as shown in table 2.

The principle (for the two studies) is to perfonmthe first time, a main component analysis (PQ#jich allows us
to eliminate descriptors that are highly correlgigebendent), then perform a decreasing study dRMased on the
elimination of descriptors (one by one) aberraril @anvalid model.

Principal component analysis

The set of descriptors encoding the 43 halogenphehols, topologic, electronic and energetic pataraeare
submitted to PCA analysis [17]. The first threenpipal axes are sufficient to describe the inforamprovided by
the data matrix. Indeed, the percentages of vagiame 61.48%; 11.35% and 09.51% for the axes FRNE2F3,
respectively. The total information is estimatedtpercentage of 82.34%.

The principal component analysis (PCA) [18] wasdwarted to identify the link between the differemtriables.

Bold values are different from 0 at a significaimeeel of p= 0.05. Correlations between the sixtdescriptors are
shown in table 3 as a correlation matrix and inrfigl these descriptors are represented in a atiarlcircle. The
Pearson correlation coefficients are summarizetienfollowing table 3. The obtained matrix provide®ormation

on the negative or positive correlation betweenades.

Table 3: Correlation matrix (Pearson (n)) between dferent obtained descriptors

Variables plCsy, MW MR MV Pc n Yy D o Er Evomo  ErLumo AE U Ea hmax T (so)
plec 1

MW 0.75 1

MR 0.76 0.87 1

MV 0.74 0.78 0.95 1

Pc 0.78 0.85 0.99 0.98 1

n 054 072 079 057 070 1

y 063 072 073 052 066 0941

D 0.67 0.94 068 055 0.65 0.67 0.73 1

a 0.76 087 1.00 0.95 0.990.79 0.73 068 1

Er -0.57 -0.95 -0.78-0.65 -0.73 -0.74 -0.68 -0.92 -0.78 1

Enomo -0.58 -0.37 -0.18 -0.10 -0.19 -0.26 -0.51 -0.51 -0.18 0.21 1

ELumo -0.75 -0.72 -0.51 -0.44 -0.52 -0.46 -0.63 -0.78 -0.51 0.57 0.77 1

AE -0.61 -0.76 -0.61 -0.57 -0.62 -0.45 -0.50 -0.73 -0.61 0.68 0.28 0.82 1

v 0.26 022 036 042 038 0.12 0.09 0.10 0.36 -0.17 0.23 -0.03 -0.26 1

Ea -0.47 -0.67 -0.74 -0.56 -0.67 -0.85 -0.82 -0.58 -0.74 0.65 0.24 0.34 030 -0.12 1

Mmax 054 076 079 062 073086 0.8 068 079 -0.74-0.29 -0.46 -0.43 0.13 -0.99 1

f so -0.20 -0.29 -0.16-0.19 -0.18 -0.01 -0.03 -0.31 -0.16 0.29 0.12 0.12 0.07 -0.05 -0.10 0.041

Bold values are different from O at a level significant for p < 0.05
At a very significant for p < 0.01
At a very significant for p < 0.001

1Variables (axes F1 et F2 : 72.83 %)

0.75

0.5

0.25

-0.25

F2 (11.35 %)

-0.5 -+

-0.75 T

-1 -0.75 -05 -025 0 025 05 075 1

F1 (61.48 %)

Figure 1: Correlation circle
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Analysis of projections according to the plan F1{F2.83% of the total variance) of the studied rooles (Figure
2) is showing in figure 2:

Observations {(axes Flet F2: 72,83 %)

® 35,
| - v\.
?k 13 1p* ]
2 & 2* )= A
. i u
= { oo = -
w Fa ) s T F "
5 ° [P ol W TN \'I |
- 38
E' I':"Bol % -ﬁﬁd "2z saie je 26 1%
w = I, =Pl & 33 o
z = e b

F1(61.48%)

Figure 2: Cartesian diagram according to F1 and F2Separation between three regions

Multiple Linear Regressions
To establish quantitative relationships betweelictxplCso and selected descriptors, our array data werestdaj
to a multiple regression linear and were nonlin€@aly variables whose coefficients are significarte retained.

Multiple linear regression of the variable toxicity (MLR)

Many attempts have been made to develop a relingth the indicator variable of toxicity pkg but the best
relationship obtained by this method is only oneegponding to the linear combination of two dgsoris selected:
Parachor (Pc) and energyidso.

The resulting equation is:
pICso = — 8.331 + 8.532.1&xPc— 1.094%E0m0  (Equation 1)

3

| ° /"’
25 o« °
> L] ~-”
5] )
g 2 * .- -
e €] . ,”'
B 1s b ="
o o_-" | @
c o &0
@ 00 %y 0o
g 1 -
(o) + Qo" o®
0.5 L2
' T e
o ° |
0 ‘e
0 0.5 1 15 2 2.5 3

Predictif toxicity
Figure 3: Graphical representation of calculated ad observed toxicity by MLR

For our 43 compounds, the correlation between éxmatal toxicity and calculated one based on thixleh is
quite significant (Figure 3) as indicated by stitad values:

N =43 R =0.896 R 0.804 RMSE = 0.322
The figure 3 shows a very regular distributionafitity values depending on the experimental values
Multiple nonlinear regression of the variable toxicity (MNLR)
We have also used the technique of nonlinear reigmesnodel to improve the structure toxicity in @aqtitative

way, taking into account several parameters. Thihé most common tool for the study of multidimenal data.
We have applied it to table 2 containing 43 moleswssociated with sixteen variables.
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The resulting equation is:

pICso = -18427.59 + 9.57 1B x MW - 2.27MR + 2.21MV - 0.47Pc + 4321.00n - 9.68y +18.89D + 6.43.1¢0°°
Er - 41.88Euomo + 28.19E yyo - 0.72 + 1777.84Ea + 44.44),, + 23.05f(s0) + 3.00 107 MW ?- 3.02 10*
MR?-1.90 1®MV? + 4.49 18* P& - 1321.63n*+ 0.11y? - 12.16D*+ 1.70 10"° E+? - 0.90E% om0 - 2.60E? umo
- 2.59AE%+ 0.27 xp® - 77.79E&” - 4.90 10 2% ax- 523.06%(s0)

The obtained parameters describing the topologiedlthe electronic aspects of the studied moleaukss
N =43 R =0.958 R 0.918 RMSE = 0.417

The toxicity value plg, predicted by this model is somewhat similar ta thiaserved. The figure 4 shows a very
regular distribution of toxicity values based or tibserved values.

3 =
° “/
2.5 =
*
=2 2 P )
= =
X o e-
S -2
= 15
el ,‘{ @
R )
[] ¢ o4
o - ®
& 0.5 s :
c = ©-9
P
0 L=
0 0.5 1 1.5 2 2.5 3
Predictif toxicity

Figure 4: Graphical representation of calculated ad observed toxicity by MNLR

The obtained coefficient of determination in eqmat(2) is quite interesting (0.92). To optimize #reor standard
deviation and a better finish to building our mqdet involve in the next part artificial neural wetrks (ANN).

Artificial neural networks ANN

In order to increase the probability of good cheeazation of studied compounds, neural networksIf can be
used to generate predictive models of quantitastrecture—activity relationships (QSAR) between e of
molecular descriptors obtained from the MLR andeobsd activity. The ANN calculated toxicity modelasv
developed using the properties of several studiechpounds. The correlation between ANN calculated an
experimental toxicity values are very significastidustrated in figure 8 and as indicated by R RAdalues.

N =43 R =0.998 ’R 0.996 RMSE = 0.003
3 ; =
. =
g‘ 25 o L
é 2 .0 ’. - o=
= o =
3 15 REpeIEE
s ..f.ﬁ.‘
o -
_8 o5 ’:’ 1.‘..“ ®
2" o
0 ® t
0 0.5 1 1.5 2 2.5 3

Predictif toxicity

Figure 5: Correlations of observed and predicted awvities calculated using ANN
The statistic of the three steps of the calculatipithe ANNSs: training, validation and test arestrated in table 4.

Table 4: Values obtained by ANNs

Samples RMSE R R’

Training 31 25810° 0.998 0.996
validaton 6 0.109  0.9210.848
Test 6 0.725  0.9050.819

R: correlation coefficient; R determination coefficient; RMSE: root mean square error.
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DISCUSSION

Principal component analysis

* The toxicity (plIGy) is well correlated with the Parachor (Pc) (r=@7hd p<0.05) and the molecular weight
(MW) (r=0.748 and p <0.05) and the Molar Refrad¢}iiMR) (r=0.756 and p <0.05) and The Polarizail)
(r=0.756 and p <0.05) at a significant level.

* The Polarizability &) is positively correlated with the Molar Volume ¥1(r=0.954 and p<0.05) and the Parachor
(Pc) (r=0.991 and p<0.05) at a significant level.

* The energy of activation Hs negatively correlated with maximum of absomfig,, for r=0.987 and p<0.05 at a
significant level.

* The Polarizability ¢) is strongly correlated with the Molar Refractiw{iMR) for r= 1 and p<0.001 at a high level.
Both variables are thus redundant. Taking into antthese observations, we removed the polaritalfi) order
not to distort the rest of calculation.

The principal component analysis revealed fromdieelation circle (Figure 1) shows that the Flsg%i1.48% of
the variance) is clearly connected to the molecuaight (MW), while the axis F2 (11.35% of the \aace) is
located by the other parameters of energy.

Analysis of projections according to the plan F1{F2.83% of the total variance) of the studied rooles (Figure
2) shows that the molecules are dispersed, acaptdithe of halogenated of halogenated phenoldrae classes
of compounds belonging to three groups: the gro¢@1) containing the phenol substituted by halo¢gshand the
hydrocarbons, the group 2 (G2) containing the phsulostituted by fluorine "donors by mesomeric efffe and the
group 3 (G3) containing the phenol substituted filprine "donors by mesomeric effect".

In this representation, the compounds 41, 42, 3¢ iqd by mesomeric effect) with pdg>2,03, is an exception
because they are phenols substituted by bromine.

Statistical Analysis
As part of this conclusion, we can say that theicitk values obtained from nonlinear regression highly
correlated to those of the observed toxicity conmggato results obtained by MLR method.

The obtained squared correlation coefficierf) (Ralue is 0.998 for this data set of halogenateehpls. It confirms
that the artificial neural network results were st to build the quantitative structure activilationship models.

In this study, we investigated the best linear QS®&Bression equations established in this studge®an this
result, a comparison of the quality of the CPA, MlaRd ANN models shows that the ANN models have
substantially better predictive capability becatleANN approach gives better results than MLR. AN&s able to
establish a satisfactory relationship between thkecular descriptors and the activity of the stddiempounds.

CONCLUSION

In this work we have investigated the QSAR regmssd predict the toxicity of several compoundseaasn
halogenated phenols

Comparison of key statistical terms like R drd® different models obtained by using differerstistical tools and
different descriptors has been shown in table 5.

The study of the quality of the MLR and ANN modsi®w that the ANN result has substantially bettedjztive
capability than the other methods. With ANN appigawe have established a relationship between akver
descriptors and inhibition values pi®f halogenated phenols.

Finally, we can conclude that studied descriptatsich are sufficiently rich in chemical, electrordod topological
information to encode the structural feature mayubed with other descriptors for the developmenpreflictive
QSAR models.
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Table 5: Observed values and calculated values of@b0 according to different methods

pICsc (obs.) plCs (calc.)

N° MLR NMLR ANN

1 0.017 0.137  0.054 0.053
2 0.183 0.714  0.394 0.409
3 0.185 0.330 0.407 0.273
4 0.330 0.804 0.505 0.461
5 0.381 0.378 0.264 0.426
6 0.393 0.923  0.453 0.449
7 0.471 0.586  0.525 0.431
8 0.545 0.540 0.669 0.558
9 0.599 0.905 0.650 0.708

10 0.604 0.398 0.610 0.584
11 0.680 0.609 0.772 0.693
12 0.688 1.010 0.791 0.726
13 0.701 0.728  0.571 0.756
14 0.735 1.277 1.489 0.769
15 0.796 0.739  0.643 0.837
16 0.804 1329 0.929 0.802
17 0.871 0.753  0.485 0.377
18 1.036 1.133 1.011 1.060
19 1.081 1.031 1.076 1.309
20 1.125 1.309 1.086 0.811
21 1.131 0.756  0.916 1.111
22 1.410 1.676 1.672 2.277
23 1.145 0.849 0.728 1.218
24 1.167 1.010 1.444 0.951
25 1.167 1.203 1.143 1.084
26 1.201 0.960 1.106 1.237
27 1.268 1.055 1.108 1.314
28 1.276 1.278 1.376 1.323
29 1.276 1.367 1.327 1.271
30 1.398 1.291 1.392 1.413
31 1.569 1.434 1.533 1.570
32 1.638 1.053 1.645 1.611
33 1.745 1.110 1.603 1.607
34 1.778 1.737 1.682 1.771
35 1.854 1.563 1.840 1.267
36 2.030 1.919  2.090 2.029
37 2.049 2560 2.328 3.580
38 2.097 1.660 1.870 2.145
39 2.222 2.289  2.192 2.272
40 2.373 1879 2241 2.042
41 2.574 2595 2511 2.524
42 2.664 2.956  2.686 2.625
43 2.712 2133  2.256 3.685
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