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ABSTRACT

In order to investigate the relationship between activities and structures, a QSAR study is applied to a set of 23
phenol derivatives compounds. This study is conducted using the principal component analysis (PCA) method, the
linear multiple regression method (MLR), the non-linear regression (MNLR) and the artificial neural network
(ANN). We accordingly propose a quantitative model, and we interpret the activity of the compounds relying on the
multivariate statistical analysis. Density functional theory (DFT) and ab-initio molecular orbital calculations have
been carried out in order to get insights into the structure, chemical reactivity and property information for the
series of study compounds. This study shows that the MRA and MNLR are served also to predict activities, but when
compare with the results given by the ANN, we realize that the predictions fulfilled by thislatter is more effective. To
validate the predictive power of the resulting models, external validation multiple correlation coefficient are 0.80
and 0.78 for the MLR and the MNLR respectively. This model gives statistically significant results and shows good
stability to data variation in leave-one-out cross-validation. The obtained results suggested that the proposed
combination of several calculated parameters could be useful to predict the biological activity of phenol derivatives
over Tetrahymena pyriformis.

Keywords: QSAR model, DFT study, phenol derivativéstrahymena pyriformis, cross-validation.

INTRODUCTION

Organic chemicals carrying the structure of phdramle been in production since the 1860s, and iechudvide
number of applications in various industries sustiextile, leather, paper and oil. For examplepiphenols are
utilized in Agriculture to manufacture a range dadspicides; alkylphenols are involved in the proérctof

surfactants and detergents; bisphenol A is usexyrithesize epoxy resins for paint coatings and diog$, and in
polycarbonate plastics, familiar in CDs and doneestéctrical appliances. They can spread throughrad water,
with strong carcinogenicity, teratogenicity and agénicity, which will cause great damage to envitent, plants,
animals and human health. Therefore, it is vitaptotect the environment and prevent occupationaagning by
studying the acute toxicity of phenols compoundg]/1

The experiment is a direct way to obtain the tayidiata of organic compounds, which has many dafities, such
as requirement of myriads of trial organisms, higipense, long time, the difference in measuredevhkiween
different researchers and so on. Consequently,oitldvbe impossible to gain the toxicity data of aiganic
compounds by experiment. As new compounds aregipgrup, other difficulties will follow. So it isetessary to
use the theoretical research to make up for disddgas of the experiment and to predict the toxidita of
compounds quickly and exactly.
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QSAR can predict the bioactivity such as toxicityjtagenicity and carcinogenicity based on strutfpaeameters

of compounds and appropriate mathematical modelgh Wie rapid development of computer science and
theoretical quantum chemical study, it can speeditg precisely obtain the quantum chemical parameié
compounds by computation.

Moreover, these parameters, which have definitesishl meaning, along with the introduction of th8AR model
can increase the interpretability. So quantum chalrtheory is extensively applied in establishinAR models
[3-4].

In this work, we model the toxicity of 23 phenolridatives compounds tdetrahymena pyriformis using several
statistical tools, principal components analysi€AP, multiple linear regression (MLR), non-lineaggression
(RNLM) and artificial neural network (ANN) calculahs, we accordingly propose a quantitative moaled| we try
to interpret the activity of these compounds refyim the multivariate statistical analyses.

MATERIAL AND METHODS

Data sources

Acute toxicity data of 23 phenol derivatives Tetranymena pyriformis are taken from a literature [SICsq here
means the millimolar concentration causing 50% hitlin of growth about phenol derivatives tetrahymena
pyriformis. The bigger the value eflogICso(pICsg), the higher is toxicity of compounds, and viceseer

The following table shows the studied compounds twedcorresponding experimental activities plCrable 1).
The experimental toxicity of the studied compoursdsollect from recent work [5], 18 molecules aetest for the
guantitative model (training set), and 5 are sai@atiomly to test the performance of the proposedeat(test set).

Table 1: Phenol derivatives and their observed togities againstTetrahymena pyriformis (Training and test set)

Training Set

N° Name (IUPAC) plCsg | N° Name (IUPAC) plCsc

1 | Phenol -0.431] 10 | 3,5-Dimethylphenol 0.113
2 | 4-Methylphenol -0.192 11 | 2-Isopropylphenol 0.803
3 | 3-Methylphenol -0.062 12 | 3-Isopropylphenol 0.609
4 | 3-Ethylphenol 0.229| 13 | 4-Isopropylphenol 0.473
5 | 2-Ethylphenol 0.176| 14 | 3-tert-Butylphenol 0.730
6 | 2,3-Dimethylphenol 0.122) 15 | 4-tert-Butylphenol 0.913
7 | 2,4-Dimethylphenol 0.128 16 | 2-Phenylphenol 1.094
8 | 2,5-Dimethylphenol 0.009 17 | 2,3,6-Trimethylphenol 0.418
9 | 3,4-Dimethylphenol 0.122) 18 | 3,4,5-Trimethylphenol 0.93(

Test Set

N° Name (IUPAC) pICss | N° Name (IUPAC) plCsc

19 | 2,4,6-Trimethylphenol 1.695 22 | 2,6-Diphenylphenol 2.113
20 | 2-tert-Butyl-4-methylphenol 1.297 23 | 2,6-Di-tert-butyl-4-methylpheno|  1.788
21 | 6-tert-Butyl-2,4-dimethylpheno|  1.244

Molecular descriptors

All computations are performing by using Gaussi@&WOprogram [6]. The geometries of all 23 theordlyca
possible phenol derivatives are fully optimize wibfT method at the B3LYP/6-31G (d) level and frague

calculations are performing to calculate at the esdevel for all of the possible geometries to eastirey are
minimal on the potential energy surface. Then weosk some related structural parameters from thatseof

guantum chemical computations as the highest oedugiolecular orbital energy,bvo, the lowest unoccupied
molecular orbital energy buo, energy gapAE, dipole moment 1, the total energy, Ehe activation energy.Fthe

absorption maximuriya, the factor of oscillationdo,

Statistical analysis

The structures of 23 phenol derivativestétrahymena pyriformis are stud by statistical methods based on the
principal component analysis (PCA) [7] using thé&ware XLSTAT version 2013 [8]. PCA is a statistibachnique
useful for summarizing all the information encodedhe structures of the compounds. It is also Jelpful for
understanding the distribution of the compounds T9ijs is an essentially descriptive statisticathmod which aims

to present, in graphic form, the maximum of infotima contained in the data table 1 and table 2.

The linear multiple regression (MLR) analysis witbscendent selection and elimination of variablas employed
to model the structure with activity. It is a s$éittal technique that minimizes differences betwaetual and
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predicted values. It has served also to selectiéiseriptors used as the input parameters in thénean multiple
regression (MNLR) and artificial neural network (NINmethods.

The (MLR) and the (MNLR) were generated using tbéwsare XLSTAT version 2013 [8], to predict cytoiox
effects 1G,. Equations were justified by the correlation cmédit (R) and mean squared error (MSE) values [8].
ANN is an artificial system simulating the functimi the human brain. Three components constituteewal
network: the processing elements or nodes, thddgp®f the connections between the nodes, antktraing rule

by which new information is encoded in the netwMile there are a number of different ANN modéle most
frequently used type of ANN in QSAR is the thregelged feed forward network [10]. In this type otwerks, the
neurons are arranged in layers (an input layer,locdden layer and an output layer). Each neuroanip layer is
fully connected with the neurons of a succeediygiand no connections are between neurons belprgithe
same layer.

According to the supervised learning adopted, thsvarks are taught by giving them examples of inpatterns
and the corresponding target outputs. Through enatite process, the connection weights are matlifietil the
network gives the desired results for the trairseg of data. A backpropagation algorithm is usethiaimize the
error function. This algorithm has been describexVipusly with a simple example of application [Hid a detail
of this algorithm is given elsewhere [12].

The ANNSs analysis was performed with the use ofldatoftware version 2009a Neural Fitting tool gof)
toolbox [13].

RESULTS AND DISCUSSION

QSAR models and analysis
The quantitative structure—activity relationshiplysis is perform using the pigof the 23 phenol derivatives to
tetrahymena pyriformis as reported in [14], the values of the 8 chendesicriptors as shown in table 2.

The principle (for the two studies) is to perfonmthe first time, a main component analysis (PQ#jich allows us
to eliminate descriptors that are highly correlgigebendent), then perform a decreasing study dRMased on the
elimination of descriptors (one by one) aberranil @nvalid model (including the critical probalbili p-value<0.05
for all descriptors and the complete model).

Table 2: The values of the eight chemical descripte

o Enomo ELumo AE u Ea Amax

N* Br(U8) ")) ev) (ev) (debye) (ev) (nm) O

1 -837209 -648 001 649 160 526 23583025
> 944271 621 003 625 170 534 23238011
3 044290 586 013 599 109 483 25686015
4 -1051341 -587 009 596 111 450 27502013
5 -10509.65 -520 -2.36 284 243 495 25081174
6 -10513.45 -575 045 590 191  3.03 409.87039
7 -10509.79 -508 -2.26 282 308 300 413.86040
8 -10509.79 -519 -2.24 294 274 350 354.00039
9 -10509.41 -485 -2.23 262 241 411 30145043

10 -10513.53 -579 0.14 593 1.38 4.38 282.99053
11 -11583.83 -5.81 0.15 5.96 1.75 4.58 270.48052
12 -11583.90 -585 0.13 598 1.58 4.08 303.9/060
13 -11583.89 -576 0.06 5.82 1.34 3.65 339.71035
14 -12654.38 -5.86 0.09 5.95 1.60 3.29 376.99031
15 -12654.31 -5.75 0.07 5.83 1.37 2.32 534.92051
16 -14663.98 -5.81 -0.69 5.12 1.74 4.97 249.60103
17 -11584.10 -5.63 0.27 5.90 1.69 4.38 283.08049
18 -11584.05 -557 0.32 5.88 1.44 5.97 207.83066
19 -11584.15 -553 030 5.83 1.39 578 214.60216
20 -1372480 -556 0.25 5.82 117 2.88 429.86012
21 -14790.88 -496 -2.48 248 6.28 3.01 412.20071
22 -20955.58 -5.74 -0.70 5.04 1.67 1.90 652.23122
23 -18000.09 -4.81 -2.70 211 1.74 1.88 658.90005

Principal component analysis
The set of descriptors encoding the 23 phenol dévies, electronic and energetic parameters armitiglol to use
for PCA analysis [15]. The first three principaleaxare sufficient to describe the information pded by the data
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matrix. Indeed, the percentages of variance ar®748;, 21.91% and 14.15% for the axes F1, F2 and F3,
respectively. The total information is estimatedtpercentage of 86.03%.

The principal component analysis (PCA) [16] wasdwaried to identify the link between the differemtriables.
Bold values are different from O at a significaheeel of p= 0.05. Correlations between the eigldcdptors are
shown in table 3 as a correlation matrix and iruFégl these descriptors are represented in a atiarelcircle. The
Pearson correlation coefficients are summarizatierfollowing Table 3. The obtained matrix providefrmation
on the negative or positive correlation betweenagdes.

Table 3: Correlation matrix (Pearson (n)) between dferent obtained descriptors

Variables p|C50 E+ Ervomo EvLumo AE %8 Ea Amax f(go)

pICSC 1

Er -0.88 1

Enomo 0.30 -0.31 1

ELumo -0.07 0.25 -0.82 1

AE -0.13 0.28 -0.90 0.99 1

1] 0.05 -0.13 055 -0.67 -0.66 1

Ea -0.40 0.63 -0.39 0.36 0.38 -0.23 1

Mmax 0.56 -0.77 0.36 -0.35 -0.37 0.14 -0.94 1

f so 0.40 -0.19 0.15 -0.09 -0.11 0.10 0.28 -0.16 1

Bold values are different from O at a level significant for p < 0.05
At a very significant for p < 0.01
At a very significant for p < 0.001

Variables (axes F1 et F2 : 72,21 %)
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Figure 1: Correlation circle

The analysis of projections according to the plarFR (72.21% of the total variance) of the studiealecules is
shown in Figure 2:
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Figure 2: Cartesian diagram according to F1 and F2Separation between three regions
The obtained matrix provides information on theata@ or positive correlation between variables.

*The energy gaAE is positively correlated with the lowest unoccupradlecular orbital energy Bvo (r=0.954
and p<0.05) at a significant level.

The principal component analysis revealed fromdeelation circle (Figure 1) shows that the F1sgxi7.78% of
the variance) is clearly connected to the energy/da while the axis F2 (24.43% of the variance) sated by the
other parameters of energy.

Analysis of projections according to the plan F1{F2.88% of the total variance) of the studied rooles (Figure
2) shows that the molecules are dispersed, acaptdirthe of radicals of phenol derivatives, in thdasses of
compounds belonging to three groups: the group 1) g&ntaining the phenol substituted by phenyl, gheup 2

(G2) containing the phenol substitutedutyl, and the group 3 (G3) containing the pheswistituted by methyl or
ethyl. In this representation, compound 1 is arepton because it is a phenol non substituted

Linear Multiple Regressions

To establish quantitative relationships betweercttyxplCsy and selected descriptors, our array data are cutgje
linear multiple and multiple nonlinear regressio@sly variables whose coefficients are statistjcalfnificant are
retained.

Linear Multiple regression of the variable toxicity (MLR)

Linear multiple regression is carried out to depeforelationship with the indicator variable of itoty plCsq, but
the best relationship obtained by this method Ig one corresponding to the linear combinationvad tlescriptors
selected the total energy,Bhe activation energy ERefractive energy fomo, €nergy Eumo and the absorption
MaximumAmay.

The resulting equation is:

PIC 5 = -2.502-2.552. T0<E1+0.37 15 omo +0.159%E umo +0.303Ea+3.006.1F hmay (1)
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Figure 3: Graphical representation of calculated ad observed toxicity by MLR

For our 18 compounds, the correlation between éxatal toxicity and calculated one based on thixleh is
quite significant (Figure 3) as indicated by stitad values:

N =18 R=097 %R0.94 RMSE = 0.13

With the optimal MLR model, the values of toxicitglculated from equation 1 and the observed vauegiven in
table 5. The correlations of predicted and obsepi€ld, are illustrated in Figure 3. The descriptors psgabin
equation 1 by MLR were, therefore, used as thetipptameters in the Multiples nonlinear regres§MNLR).

Nonlinear multiple regression of the variable toxicity (MNLR)

We have also used the technique of nonlinear reigresnodel to improve the structure toxicity redaship in a
guantitative way, taking into account several patms. This is the most common tool for the study o
multidimensional data. We have applied it to Tableontaining 18 molecules associated with eightatdes. We
used a pre-programmed function of XLSTAT as follows

Y=a+(bX+cX+dXgteX...)+ (f X+ g X2+ h X+ i X4..)
Where a, b, c, d... represent the parameters an¥,XXs, X4...: represent the variables.

The resulting equation is:
PLG=-3.866 - 1.10018%Er + 1.957xEomo + 0.179%Eumo + 0.215Ea + 2.25010°)A ax - 3.48210
OBXE% + 0.174xEomo 2 + 5.996 10 %E ymo * + 9.35110°3<Ea? + 5.03810 xA\ % (2)

The obtained parameters describing the electrageds of the studied molecules are:
N =18 R=098 %R=0.96 RMSE =0.14
The toxicity value plG, predicted by this model is somewhat similar ta thlaserved. The figure 4 shows a very

regular distribution of toxicity values based op thhserved values. The values of toxicity calcdldtem equation
2 and the observed values are given in table 5.
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Figure 4: Graphical representation of calculated ad observed toxicity by MNLR
The obtained coefficient of determination in eqouiat{2) is quite very interesting.08).
The proper predictive power of a QSAR model isefst their ability to predict accurately the toxycibf compounds
from an external test set (compounds which wereugetl for the model development), the toxicitytref temained
set of 5 compounds are deduced from the quanttativdel proposed with the 18 molecules (traininy s MLR
and MNLR. The observed and calculated toxicity galare given in tables 4.

The comparison of the values of toxicity pé@est to plGy-obs shows that a good prediction has been obtdored
the 5 compounds:

Multiple linear regression: N=5 o= 0.80  fies= 0.64

Multiple non-linear regression: N=5 .= 0.78 fiest=0.61

Table 4: Observed values and calculated values of@s,according to MLR and MNLR for the 5 tested compound (test set).

No Obs. MLR MNLR
Pred-test Pred-test

19 1.695 0.844 0.850
20 1.297 1.139 1.005
21 1.245 1.182 1.052
22 2113 3.136 3.455
23 1.788 2.423 1.381

The results obtained by MLR and MNLR are very suéfit to conclude the performance of the mode§ it’
confirmed by the test done with the 5 compound®nE¥it is possible that this good predictionasifd by chance
we can claim that it is a positive result. So, thisdel could be applied to all phenol derivativesaadingly to table
1.

A comparison of the quality of MLR and MNLR modelsows that the approach 2 is better predictive luépya
because it gives better results. MLR and MNLR wabée to establish a satisfactory relationship betwthe
molecular descriptors and the toxicity gd©@f the studied compounds.

The developed equations can be used for the degigfinew phenol derivatives with improved the Aiti.

To optimize the error standard deviation and aebdthish to building our model, we involve in tmext part
artificial neural networks (ANN).

Artificial neural networks ANN

In order to increase the probability of good cheeazation of studied compounds, neural networksIf can be
used to generate predictive models of quantitadtreicture—activity relationships (QSAR) between ea of
molecular descriptors obtained from the MLR andeobsd activity. The ANN calculated toxicity modedwelop
using the properties of several studied compouiitie. correlation between ANN calculated and expemtale
toxicity values are very significant as illustraiadigure 8 and as indicated by R antivlues.
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N =23 R =0.95 R 0.90 RMSE = 0.05

The R = 0.90 value confirms that the results of thefiaiéil neural network were the best for buildingantitative
structure—activity modeldn order to validate the generated ANN model 'Leame-out’ method is use to check
their predictivity and robustness, test sets of wewpounds, not included in the model developmentraust be
used. The 'Leave-one-out’ is an approach partilyeell adapted to the estimation of that ability this procedure,
one compound is removed from the data set, theanktis train with the remaining compounds and usepredict
the discarded compound. The process is repeatednirior each compound in the data set. In thizepé#pe ‘leave-
one-out’ procedure is use to evaluate the predicthility of the ANN.

N =23 R=0.74 R =055
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Figure 5: Correlations of observed and predicted awvities calculated using ANN

The correlation between the calculated and expettahartificial neural network values were highlgrsficant, as
illustrated in Fig. 5 and as indicated by the R &idalues. The predicted activities calculated wita #tificial
neural network and the observed values are givamaine 5.

The obtained squared correlation coefficierf) (®lue is 0.96 for this data set of halogenateehpts. It confirms
that the multiple non-linear regression resultsesie best to build the quantitative structurevégtirelationship
models. In this study, we investigated the besdimQSAR regression equations established in tihi/sBased on
this result, a comparison of the quality of the CRALR, MNLR and ANN models shows that the MNLR mbde
has substantially better predictive capability heseathe MNLR approach gives better results than MbhBR ANN.
MNLR is able to establish a satisfactory relatiapshetween the molecular descriptors and the agtiof the
studied compounds.

Table 5: Observed values and calculated values ofQs, according to different methods

pICsc (0bs.) plCsq (calc.)

N° MLR NMLR ANN CV

1 -0.431 -0.471 -0.491 -0.560 -0.017
2 -0.192 -0.081 -0.025 -0.035 0.234
3 -0.062 -0.016 -0.157 0.013 0.131
4 0.229 0.203 0.218 0.198 0.258
5 0.176 0.121 0.200 0.199 -0.007
6 0.122 0.217 0.149 0.203 0.316
7 0.128 0.083 0.067 0.032 0.222
8 0.009 0.019 0.029 -0.045 0.222
9 0.122 0.173 0.135 0.204 0.222
10 0.113 0.231 0.205 0.230 0.184
11 0.803 0.521 0.591 0.584 0.465
12 0.609 0.453 0.527 0.457 0.391
13 0.473 0.450 0.475 0.459 0.448
14 0.730 0.692 0.759 0.725 0.641
15 0.913 0.911 0.917 1.113 0.584
16 1.094 1.226 1.107 1.171 1.728
17 0.418 0.584 0.580 0.674 0.581
18 0.930 0.869 0.897 1.786 0.706
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CONCLUSION

Multiple linear and non-linear regression analysisl artificial neural networks are used to consteurelationship
between several descriptors and inhibition valu€sgof phenol derivatives. The multiple nonlinear esgion is
substantially better predictive capability than titber two models, with greater predictive powere ¥établish a
relationship between several descriptors and itibibivalues plG, of phenol derivatives, with external validation.
The results show that the model proposed in thigzepa&an predict activity accurately and that thkected
descriptors are pertinent.

The accuracy and predictability of the proposed et®dre illustrated by comparison of the key diatisterms R
or R for the different models (table 6) and the prediztpowers of the equations are validated by arrextéest
set (Table4). The proposed methods will reducetithe and cost of synthesis and determination oftdixécity
plCsoof phenol derivatives.

Furthermore, the descriptors are sufficiently iicichemical and electronic information to encodacttral features
that could be used with other descriptors in theettgoment of predictive QSAR models.
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