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ABSTRACT 
 
In order to investigate the relationship between activities and structures, a QSAR study is applied to a set of 23 
phenol derivatives compounds. This study is conducted using the principal component analysis (PCA) method, the 
linear multiple regression method (MLR), the non-linear regression (MNLR) and the artificial neural network 
(ANN). We accordingly propose a quantitative model, and we interpret the activity of the compounds relying on the 
multivariate statistical analysis. Density functional theory (DFT) and ab-initio molecular orbital calculations have 
been carried out in order to get insights into the structure, chemical reactivity and property information for the 
series of study compounds. This study shows that the MRA and MNLR are served also to predict activities, but when 
compare with the results given by the ANN, we realize that the predictions fulfilled by this latter is more effective. To 
validate the predictive power of the resulting models, external validation multiple correlation coefficient are 0.80 
and 0.78 for the MLR and the MNLR respectively. This model gives statistically significant results and shows good 
stability to data variation in leave-one-out cross-validation. The obtained results suggested that the proposed 
combination of several calculated parameters could be useful to predict the biological activity of phenol derivatives 
over Tetrahymena pyriformis. 

 
Keywords: QSAR model, DFT study, phenol derivatives, Tetrahymena pyriformis, cross-validation. 
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INTRODUCTION 
 

Organic chemicals carrying the structure of phenol have been in production since the 1860s, and include a wide 
number of applications in various industries such as textile, leather, paper and oil. For example, chlorophenols are 
utilized in Agriculture to manufacture a range of pesticides; alkylphenols are involved in the production of 
surfactants and detergents; bisphenol A is used to synthesize epoxy resins for paint coatings and mouldings, and in 
polycarbonate plastics, familiar in CDs and domestic electrical appliances. They can spread through air and water, 
with strong carcinogenicity, teratogenicity and mutagenicity, which will cause great damage to environment, plants, 
animals and human health. Therefore, it is vital to protect the environment and prevent occupational poisoning by 
studying the acute toxicity of phenols compounds [1-2].  
 
The experiment is a direct way to obtain the toxicity data of organic compounds, which has many deficiencies, such 
as requirement of myriads of trial organisms, high expense, long time, the difference in measured value between 
different researchers and so on. Consequently, it would be impossible to gain the toxicity data of all organic 
compounds by experiment. As new compounds are springing up, other difficulties will follow. So it is necessary to 
use the theoretical research to make up for disadvantages of the experiment and to predict the toxicity data of 
compounds quickly and exactly. 
 



A. Ousaa et al                             J. Comput. Methods Mol. Des., 2015, 5 (3):16-24  
______________________________________________________________________________ 

17 
Available online at www.scholarsresearchlibrary.com 

QSAR can predict the bioactivity such as toxicity, mutagenicity and carcinogenicity based on structural parameters 
of compounds and appropriate mathematical models. With the rapid development of computer science and 
theoretical quantum chemical study, it can speedily and precisely obtain the quantum chemical parameters of 
compounds by computation. 
 
Moreover, these parameters, which have definite physical meaning, along with the introduction of the QSAR model 
can increase the interpretability. So quantum chemical theory is extensively applied in establishing QSAR models 
[3-4]. 
 
In this work, we model the toxicity of 23 phenol derivatives compounds to Tetrahymena pyriformis using several 
statistical tools, principal components analysis (PCA), multiple linear regression (MLR), non-linear regression 
(RNLM) and artificial neural network (ANN) calculations, we accordingly propose a quantitative model, and we try 
to interpret the activity of these compounds relying on the multivariate statistical analyses. 
 

MATERIAL AND METHODS 
 

Data sources 
Acute toxicity data of 23 phenol derivatives to Tetrahymena pyriformis are taken from a literature [5]. IC 50 here 
means the millimolar concentration causing 50% inhibition of growth about phenol derivatives to tetrahymena 
pyriformis. The bigger the value of –logIC50 (pIC 50), the higher is toxicity of compounds, and vice versa. 
 
The following table shows the studied compounds and the corresponding experimental activities pIC50 (Table 1). 
The experimental toxicity of the studied compounds is collect from recent work [5], 18 molecules are select for the 
quantitative model (training set), and 5 are select randomly to test the performance of the proposed model (test set). 
 

Table 1: Phenol derivatives and their observed toxicities against Tetrahymena pyriformis (Training and test set) 
 

Training Set 
N° Name (IUPAC) pIC50 N° Name (IUPAC) pIC50 
1 Phenol -0.431 10 3,5-Dimethylphenol 0.113 
2 4-Methylphenol -0.192 11 2-Isopropylphenol 0.803 
3 3-Methylphenol -0.062 12 3-Isopropylphenol 0.609 
4 3-Ethylphenol 0.229 13 4-Isopropylphenol 0.473 
5 2-Ethylphenol 0.176 14 3-tert-Butylphenol 0.730 
6 2,3-Dimethylphenol 0.122 15 4-tert-Butylphenol 0.913 
7 2,4-Dimethylphenol 0.128 16 2-Phenylphenol 1.094 
8 2,5-Dimethylphenol 0.009 17 2,3,6-Trimethylphenol 0.418 
9 3,4-Dimethylphenol 0.122 18 3,4,5-Trimethylphenol 0.930 

  Test Set 
N° Name (IUPAC) pIC50 N° Name (IUPAC) pIC50 
19 2,4,6-Trimethylphenol 1.695 22 2,6-Diphenylphenol 2.113 
20 2-tert-Butyl-4-methylphenol 1.297 23 2,6–Di-tert-butyl-4-methylphenol 1.788 
21 6-tert-Butyl-2,4-dimethylphenol 1.245    

 
Molecular descriptors 
All computations are performing by using Gaussian 03W program [6]. The geometries of all 23 theoretically 
possible phenol derivatives are fully optimize with DFT method at the B3LYP/6-31G (d) level and frequency 
calculations are performing to calculate at the same level for all of the possible geometries to ensure they are 
minimal on the potential energy surface. Then we choose some related structural parameters from the results of 
quantum chemical computations as the highest occupied molecular orbital energy EHOMO, the lowest unoccupied 
molecular orbital energy ELUMO, energy gap ∆E, dipole moment µ, the total energy ET, the activation energy Ea, the 
absorption maximum λmax, the factor of oscillation f(SO).  
 
Statistical analysis 
The structures of 23 phenol derivatives to tetrahymena pyriformis are stud by statistical methods based on the 
principal component analysis (PCA) [7] using the software XLSTAT version 2013 [8]. PCA is a statistical technique 
useful for summarizing all the information encoded in the structures of the compounds. It is also very helpful for 
understanding the distribution of the compounds [9]. This is an essentially descriptive statistical method which aims 
to present, in graphic form, the maximum of information contained in the data table 1 and table 2. 
 
The linear multiple regression (MLR) analysis with descendent selection and elimination of variables was employed 
to model the structure with activity. It is a statistical technique that minimizes differences between actual and 
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predicted values. It has served also to select the descriptors used as the input parameters in the nonlinear multiple 
regression (MNLR) and artificial neural network (ANN) methods. 
 
The (MLR) and the (MNLR) were generated using the software XLSTAT version 2013 [8], to predict cytotoxic 
effects IC50. Equations were justified by the correlation coefficient (R) and mean squared error (MSE) values [8]. 
ANN is an artificial system simulating the function of the human brain. Three components constitute a neural 
network: the processing elements or nodes, the topology of the connections between the nodes, and the learning rule 
by which new information is encoded in the network. While there are a number of different ANN models, the most 
frequently used type of ANN in QSAR is the three-layered feed forward network [10]. In this type of networks, the 
neurons are arranged in layers (an input layer, one hidden layer and an output layer). Each neuron in any layer is 
fully connected with the neurons of a succeeding layer and no connections are between neurons belonging to the 
same layer. 
 
According to the supervised learning adopted, the networks are taught by giving them examples of input patterns 
and the corresponding target outputs. Through an iterative process, the connection weights are modified until the 
network gives the desired results for the training set of data. A backpropagation algorithm is used to minimize the 
error function. This algorithm has been described previously with a simple example of application [11] and a detail 
of this algorithm is given elsewhere [12]. 
 
The ANNs analysis was performed with the use of Matlab software version 2009a Neural Fitting tool (nftool) 
toolbox [13]. 
 

RESULTS AND DISCUSSION 
 

QSAR models and analysis 
The quantitative structure–activity relationship analysis is perform using the pIC50 of the 23 phenol derivatives to 
tetrahymena pyriformis as reported in [14], the values of the 8 chemical descriptors as shown in table 2. 
 
The principle (for the two studies) is to perform in the first time, a main component analysis (PCA), which allows us 
to eliminate descriptors that are highly correlated (dependent), then perform a decreasing study of MLR based on the 
elimination of descriptors (one by one) aberrant until a valid model (including the critical probability: p-value<0.05 
for all descriptors and the complete model). 
 

Table 2: The values of the eight chemical descriptors 
 

N° ET (Ua) 
EHOMO 

(ev) 
ELUMO  
(ev) 

∆E 
(ev) 

µ 
(debye) 

Ea 
(ev) 

λmax 
(nm) f (SO) 

         

1 -8372.09 -6.48 0.01 6.49 1.60 5.26 235.93 0.025 
2 -9442.71 -6.21 0.03 6.25 1.70 5.34 232.33 0.011 
3 -9442.90 -5.86 0.13 5.99 1.09 4.83 256.56 0.015 
4 -10513.41 -5.87 0.09 5.96 1.11 4.50 275.72 0.013 
5 -10509.65 -5.20 -2.36 2.84 2.43 4.95 250.51 0.174 
6 -10513.45 -5.75 0.15 5.90 1.91 3.03 409.87 0.039 
7 -10509.79 -5.08 -2.26 2.82 3.08 3.00 413.86 0.040 
8 -10509.79 -5.19 -2.24 2.94 2.74 3.50 354.10 0.039 
9 -10509.41 -4.85 -2.23 2.62 2.41 4.11 301.45 0.043 
10 -10513.53 -5.79 0.14 5.93 1.38 4.38 282.99 0.053 
11 -11583.83 -5.81 0.15 5.96 1.75 4.58 270.48 0.052 
12 -11583.90 -5.85 0.13 5.98 1.58 4.08 303.97 0.060 
13 -11583.89 -5.76 0.06 5.82 1.34 3.65 339.71 0.035 
14 -12654.38 -5.86 0.09 5.95 1.60 3.29 376.55 0.031 
15 -12654.31 -5.75 0.07 5.83 1.37 2.32 534.92 0.051 
16 -14663.98 -5.81 -0.69 5.12 1.74 4.97 249.60 0.103 
17 -11584.10 -5.63 0.27 5.90 1.69 4.38 283.18 0.049 
18 -11584.05 -5.57 0.32 5.88 1.44 5.97 207.83 0.066 
19 -11584.15 -5.53 0.30 5.83 1.39 5.78 214.60 0.216 
20 -13724.80 -5.56 0.25 5.82 1.17 2.88 429.86 0.012 
21 -14790.88 -4.96 -2.48 2.48 6.28 3.01 412.20 0.071 
22 -20955.58 -5.74 -0.70 5.04 1.67 1.90 652.23 0.122 
23 -18000.09 -4.81 -2.70 2.11 1.74 1.88 658.90 0.005 

         

Principal component analysis  
The set of descriptors encoding the 23 phenol derivatives, electronic and energetic parameters are submitted to use 
for PCA analysis [15]. The first three principal axes are sufficient to describe the information provided by the data 
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matrix. Indeed, the percentages of variance are 49.97%; 21.91% and 14.15% for the axes F1, F2 and F3, 
respectively. The total information is estimated to a percentage of 86.03%. 
 
The principal component analysis (PCA) [16] was conducted to identify the link between the different variables. 
Bold values are different from 0 at a significance level of p= 0.05. Correlations between the eight descriptors are 
shown in table 3 as a correlation matrix and in Figure 1 these descriptors are represented in a correlation circle. The 
Pearson correlation coefficients are summarized in the following Table 3. The obtained matrix provides information 
on the negative or positive correlation between variables. 
 

Table 3: Correlation matrix (Pearson (n)) between different obtained descriptors 
 

Variables pIC 50 ET EHOMO  ELUMO  ∆E µ Ea λmax f (SO) 
pIC 50 1         
ET -0.88 1        
EHOMO  0.30 -0.31 1 

      
ELUMO  -0.07 0.25 -0.82 1      
∆E -0.13 0.28 -0.90 0.99 1     
µ 0.05 -0.13 0.55 -0.67 -0.66 1 

   
Ea -0.40 0.63 -0.39 0.36 0.38 -0.23 1   
λmax 0.56 -0.77 0.36 -0.35 -0.37 0.14 -0.94 1  
f (SO) 0.40 -0.19 0.15 -0.09 -0.11 0.10 0.28 -0.16 1 

        Bold values are different from 0 at a level significant for p < 0.05 
At a very significant for p < 0.01 

At a very significant for p < 0.001 
 

 
Figure 1: Correlation circle 

 
The analysis of projections according to the plan F1-F2 (72.21% of the total variance) of the studied molecules is 
shown in Figure 2: 
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Figure 2: Cartesian diagram according to F1 and F2: Separation between three regions 

 
The obtained matrix provides information on the negative or positive correlation between variables. 
 
*The energy gap ∆E is positively correlated with the lowest unoccupied molecular orbital energy ELUMO (r=0.954 
and p<0.05) at a significant level. 
 
The principal component analysis revealed from the correlation circle (Figure 1) shows that the F1 axis (47.78% of 
the variance) is clearly connected to the energy gap ∆E, while the axis F2 (24.43% of the variance) is located by the 
other parameters of energy. 
 
Analysis of projections according to the plan F1-F2 (71.88% of the total variance) of the studied molecules (Figure 
2) shows that the molecules are dispersed, according to the of radicals of phenol derivatives, in three classes of 
compounds belonging to three groups: the group 1 (G1) containing the phenol substituted by phenyl, the group 2 
(G2) containing the phenol substituted t-butyl, and the group 3 (G3) containing the phenol substituted by methyl or 
ethyl. In this representation, compound 1 is an exception because it is a phenol non substituted  
 
Linear Multiple Regressions  
To establish quantitative relationships between toxicity pIC50 and selected descriptors, our array data are subject to 
linear multiple and multiple nonlinear regressions. Only variables whose coefficients are statistically significant are 
retained. 
 
Linear Multiple regression of the variable toxicity (MLR) 
Linear multiple regression is carried out to develop a relationship with the indicator variable of toxicity pIC50, but 
the best relationship obtained by this method is only one corresponding to the linear combination of two descriptors 
selected the total energy ET, the activation energy Ea, Refractive energy EHOMO, energy ELUMO and the absorption 
maximum λmax.  
 
The resulting equation is:             
 

pIC 50 = -2.502-2.552.10-4×ET+0.371×EHOMO +0.159×ELUMO  +0.303×Ea+3.006.10-3×λmax         (1) 
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Figure 3: Graphical representation of calculated and observed toxicity by MLR 

 
For our 18 compounds, the correlation between experimental toxicity and calculated one based on this model is 
quite significant (Figure 3) as indicated by statistical values: 
 

N = 18          R = 0.97       R2 = 0.94        RMSE = 0.13 
 

With the optimal MLR model, the values of toxicity calculated from equation 1 and the observed values are given in 
table 5. The correlations of predicted and observed pIC50 are illustrated in Figure 3. The descriptors proposed in 
equation 1 by MLR were, therefore, used as the input parameters in the Multiples nonlinear regression (MNLR). 
 
Nonlinear multiple regression of the variable toxicity (MNLR) 
We have also used the technique of nonlinear regression model to improve the structure toxicity relationship in a 
quantitative way, taking into account several parameters. This is the most common tool for the study of 
multidimensional data. We have applied it to Table 2 containing 18 molecules associated with eight variables. We 
used a pre-programmed function of XLSTAT as follows: 
 

Y = a + (b X1+ c X2 + d X3+ e X4 …) + (f X1
2+ g X2

2+ h X3
2+ i X4

2…) 
 

Where a, b, c, d… represent the parameters and X1, X2, X3, X4…: represent the variables. 
 
The resulting equation is: 
            pLC50=-3.866 - 1.10010-03×ET + 1.957×EHOMO + 0.179×ELUMO + 0.215×Ea + 2.25010-03×λmax - 3.48210-
08×E2

T + 0.174×EHOMO
2 + 5.99610-02×ELUMO

2 + 9.35110-03×Ea2 + 5.03810-07×λ2
max             (2) 

 

The obtained parameters describing the electronic aspects of the studied molecules are: 
 

N = 18        R = 0.98      R2 = 0.96        RMSE = 0.14 
 

The toxicity value pIC50 predicted by this model is somewhat similar to that observed. The figure 4 shows a very 
regular distribution of toxicity values based on the observed values. The values of toxicity calculated from equation 
2 and the observed values are given in table 5. 
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Figure 4: Graphical representation of calculated and observed toxicity by MNLR 
 
The obtained coefficient of determination in equation (2) is quite very interesting (0.98).  
 
The proper predictive power of a QSAR model is to test their ability to predict accurately the toxicity  of compounds 
from an external test set (compounds which were not used for the model development), the toxicity of the remained 
set of 5 compounds are deduced from the quantitative model proposed with the 18 molecules (training set) by MLR 
and MNLR. The observed and calculated toxicity values are given in tables 4. 
 
The comparison of the values of toxicity pIC50-test to pIC50-obs shows that a good prediction has been obtained for 
the 5 compounds: 
 
Multiple linear regression: N=5    rtest = 0.80     r2test = 0.64 
 
Multiple non-linear regression: N=5    rtest = 0.78    r2test =0.61 
 

Table 4: Observed values and calculated values of pIC 50 according to MLR and MNLR for the 5 tested compounds (test set). 
 

No Obs. MLR MNLR 
  Pred-test Pred-test 
19 1.695 0.844 0.850 
20 1.297 1.139 1.005 
21 1.245 1.182 1.052 
22 2.113 3.136 3.455 
23 1.788 2.423 1.381 

 
The results obtained by MLR and MNLR are very sufficient to conclude the performance of the model; it’s 
confirmed by the test done with the 5 compounds. Even if it is possible that this good prediction is found by chance 
we can claim that it is a positive result. So, this model could be applied to all phenol derivatives accordingly to table 
1. 
 
A comparison of the quality of MLR and MNLR models shows that the approach 2 is better predictive capability 
because it gives better results. MLR and MNLR were able to establish a satisfactory relationship between the 
molecular descriptors and the toxicity pIC50 of the studied compounds.  
 
The developed equations can be used for the designing of new phenol derivatives with improved the Activity.  
 
To optimize the error standard deviation and a better finish to building our model, we involve in the next part 
artificial neural networks (ANN). 
 
Artificial neural networks ANN 
In order to increase the probability of good characterization of studied compounds, neural networks (ANN) can be 
used to generate predictive models of quantitative structure–activity relationships (QSAR) between a set of 
molecular descriptors obtained from the MLR and observed activity. The ANN calculated toxicity model develop 
using the properties of several studied compounds. The correlation between ANN calculated and experimental 
toxicity values are very significant as illustrated in figure 8 and as indicated by R and R2 values. 
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N = 23          R = 0.95          R2 = 0.90         RMSE = 0.05 
 

The R2 = 0.90 value confirms that the results of the artificial neural network were the best for building quantitative 
structure–activity models. In order to validate the generated ANN model 'Leave-one-out’ method is use to check 
their predictivity and robustness, test sets of new compounds, not included in the model development set, must be 
used. The 'Leave-one-out’ is an approach particularly well adapted to the estimation of that ability. In this procedure, 
one compound is removed from the data set, the network is train with the remaining compounds and used to predict 
the discarded compound. The process is repeated in turn for each compound in the data set. In this paper the ‘leave-
one-out’ procedure is use to evaluate the predictive ability of the ANN. 
 

N = 23                    Rcv = 0.74                      R2cv = 0.55 

 
Figure 5: Correlations of observed and predicted activities calculated using ANN 

 
The correlation between the calculated and experimental artificial neural network values were highly significant, as 
illustrated in Fig. 5 and as indicated by the R and R2 values. The predicted activities calculated with the artificial 
neural network and the observed values are given in Table 5. 
 
The obtained squared correlation coefficient (R2) value is 0.96 for this data set of halogenated phenols. It confirms 
that the multiple non-linear regression results were the best to build the quantitative structure activity relationship 
models. In this study, we investigated the best linear QSAR regression equations established in this study. Based on 
this result, a comparison of the quality of the CPA, MLR, MNLR and ANN models shows that the MNLR model 
has substantially better predictive capability because the MNLR approach gives better results than MLR and ANN. 
MNLR is able to establish a satisfactory relationship between the molecular descriptors and the activity of the 
studied compounds. 
 

Table 5: Observed values and calculated values of pIC 50 according to different methods 
 

pIC 50 (obs.) pIC50 (calc.)  
N°   MLR NMLR ANN CV 
1 -0.431 -0.471 -0.491 -0.560 -0.017 

2 -0.192 -0.081 -0.025 -0.035 0.234 

3 -0.062 -0.016 -0.157 0.013 0.131 

4 0.229 0.203 0.218 0.198 0.258 

5 0.176 0.121 0.200 0.199 -0.007 

6 0.122 0.217 0.149 0.203 0.316 

7 0.128 0.083 0.067 0.032 0.222 

8 0.009 0.019 0.029 -0.045 0.222 

9 0.122 0.173 0.135 0.204 0.222 

10 0.113 0.231 0.205 0.230 0.184 

11 0.803 0.521 0.591 0.584 0.465 

12 0.609 0.453 0.527 0.457 0.391 

13 0.473 0.450 0.475 0.459 0.448 

14 0.730 0.692 0.759 0.725 0.641 

15 0.913 0.911 0.917 1.113 0.584 

16 1.094 1.226 1.107 1.171 1.728 

17 0.418 0.584 0.580 0.674 0.581 

18 0.930 0.869 0.897 1.786 0.706 
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CONCLUSION 
 

Multiple linear and non-linear regression analysis and artificial neural networks are used to construct a relationship 
between several descriptors and inhibition values pIC50 of phenol derivatives. The multiple nonlinear regression is 
substantially better predictive capability than the other two models, with greater predictive power. We establish a 
relationship between several descriptors and inhibition values pIC50 of phenol derivatives, with external validation. 
The results show that the model proposed in this paper can predict activity accurately and that the selected 
descriptors are pertinent. 
 
The accuracy and predictability of the proposed models are illustrated by comparison of the key statistical terms R 
or R2 for the different models (table 6) and the predictive powers of the equations are validated by an external test 
set (Table4). The proposed methods will reduce the time and cost of synthesis and determination of the toxicity 
pIC50 of phenol derivatives. 
 
Furthermore, the descriptors are sufficiently rich in chemical and electronic information to encode structural features 
that could be used with other descriptors in the development of predictive QSAR models. 
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