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ABSTRACT

The main schemes of optical bistability and phase conjugation is review with particular
emphasis on the instabilities and routes to chaos that occur there. Their impact on the
performances of nonlinear optical devicesis discussed.

INTRODUCTION

An optical beam propagating in a medium can mod#gyown optical path by means of the
optical nonlinearity that it induces in the mediamd under certain conditions profoundly affect
its own propagation characteristics. Similar efectay be also occur when a beam crosses the
optical path of a second beam. Up to certain ligténsities the observed effects can be simply
discussed within the framework of perturbation tiyenf the optical response of the medium [1]
as is known this amounts into assuming a seriearestpn of the polarization around the zero
field intensity. It is however an essential featucé nonlinear interactions that such a scheme
breaks down if the light intensity reaches certaitical values. The feedback that experiences
the light beam through the material nonlinearitgrtimay lead to multistable behaviour, whereby
several realizable states may appear same of vdrehunstable and this is the origin of the
appearance of hysteresis cycles and optical instadieventually leading to chatic behaviour
under different conditions the optical nonlineantgy also give rise to highly stable pulse forms
the so called solitary waves or solitons.

These effects provide some of the most convinciranifastations of the general laws that
govern nonlinear phenomena and are intensivelyiedué\long with this much of the present
interest in these effects has been spured by pwential use in important and far reaching
application such as all optical treatment of infation, real time adaptive optics, reshaping and
compression of optical pulses e.t.c. In the proagssptimizing the performances of such
devices however one stumbles on same limitatiotiancally interwoven with the nonlinear
optical processes themselves and much effort i€esdrated in understanding and properly
describing the mechanisms underlying these linoitaéind to find the appropriate materials.

The propagation proprieties of an optical beam avatistance s in a material medium are
characterized by the optical path.
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(1)

whereA is the wavelength of the light wave in vacuum and the effective refractive index of
the medium. For sufficiently large light intensgi¢he later also depends on the electric field
intensity E(z, t). Thus an optical beam can actitself and modify its time and space
characteristics. [2] Under certain conditions thedf-action has striking influence. For instance,
as will be discussed later, by inserting the mateanside an Fabry-Perot cavity are obtains [3] a
multistable transmission characteristic for theedatfurthermore as some of the states are
unstable a hysteresis cycle will appear and théesysan function as a real time memory
element. Such a behaviour, which goes under thesridroptical bistability can be encountered
[4] and has been observed in a multitude of otbefigurations whereby a cavity is not the sole
agent of the feedback of the optical beam on it3dlé conditions for this phenomenon to occur
essentially depend on the dynamic and spatial dkgrere ofp as a consequence of the action of
the optical beam and other external factors: iate$, external fields, temperature e.t.c.
Although a description of the optical bistabilitgrcbe built up with equation (1) as a starting
point.

The physical origin of the electrical field depende of the index of refraction is the nonlinear
polarization set up by the electric field in thetaral. To simplify things we momentarily
consider the stationary regime and monochromatenise Furthermore we concentrate on media
that possess inversion symmetry. Then the induokdipation can be written

P=&X()E (2

where the effective susceptibility X(I) is solelyfanction of the light intensity 1=, c|Ef/.
Below certain intensities one may use a seriesresipa and write [4, 5]

p=p" + 049+ = £ (XD + XOIEF + XPIES)E ©)
where XV(w, -w, w---) andp™ are the n —th order susceptibility and polarizafat frequency

w) respectively, because of the assumed symmetgyamd orders will be present in equation
(3). The effective index of refraction n on equat{@) is defined by

MECE, = 1 + X(1) (4)
only a function of I. Itis in general a complexaaity, since
X(1) = X(1) + ix(1) (5)

Contains a real and an imaginary part related speaitsive and absorptive mechanism. Optical
bistability has been observed with both types afcpss. Broadly speaking the physical
mechanisms that are response for the intensityndkgpeé X' and X are the optical Kerr effect
and the intensity dependent absorption respective.

The optical Kerr effect is conventionally definasl [5]
n=n+mnl (6)

where n is the real index refraction and
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np= 3x%
ré(z) &oC (7)
and X¥ is the third order susceptibility of the mediunfided by

PP (w) = 38 X® (w, -0, w) |EfE (8)

we assume thab is far from any resonance of the medium and we thag neglect the higher
order terms in equation(3) hard nonlinearity. Distm of the valence electronic densities,
vibrational, rotational and translational motion wiblecules are the main mechanisms that
contribute to equation (8), the later ones can lemadhermal changes of the index or to
electrostriction. Optical Bistable operation hasrachieved with all these mechanism but first,
the purely electronic one, is by far the most ative (fast response, time, no losses, wideband
operation); It is also the one where the least y@eg) has been made because of lack of
appropriate nonlinear materials.

The classical example of intensity dependent altisorps the saturable absorption where the
index of absorption becomes

o= a
|+ 14 9

where @ is the low intensity absorption coefficient (limeabsorption) andslis a material
characteristic, the saturation intensity. In thesaaption case one takes advantage of the
occurrence of resonance to enhance the nonline@aty nonlinearity). Absorptive bistability
has now been seen in a number of gaseous systéomiqaor molecular) and excitons in
semiconductors.

Both dispersive and absorptive mechanisms may catgpé certain cases and at presently the
most promising case is the semiconductors, thexddige band density of states over a very

extended frequency range allows one to combine ronlye advantages of the dispersive and
absorptive cases and keep the spatial dimensioak. sm

THEORETICAL CONSIDERATIONSAND CALCULATIONS
The electric field E of the incident monochromatic beam of frequeacsets up an electric field
inside the cavity.

E(z, t) = Re(E&") (10)
which induces a polarization at the same frequency.

p=p™ + p® = Repe* ™) (11)

where we neglect higher order nonlinearities asti@esw far away from any resonances of the
medium (loss — less propagatiop}® given by equation (8) so that

p=XY+ XIEDHE=X()E (12)
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The envelopes E and P are slowly varying functminthe time and space variables, E (z, t) and
p(z, t) respectively. We assume that the effecsiveceptibility X satisfies a Debye relaxation
equation [2]

X + X = XOE®)F (13)

or in integral form
X=X+ x® J'E(s):fe'(t's)
T-00 Tds (14)

where 1 is a phenomenological relaxation time. Assumirandrverse plane waves Maxwell
equation gives

¥E -1 &
5z° 2 at? (E% ) (15)
E=Re{E&“+Ee"}e™ (16)

for the field inside the cavity using the slow Jagy envelope [6] approximation (SVEA) in
equation (15) and separating the forward (+) artzkward (-) travelling components one finds
[8, 6]

By a8 kLX) & X ¢ (178)
]

+ —_ = + -- - -

Xi= 22 6@ ) & (2 5) ey

In the stationary regime these equations reduct[7]

+

“s¢ = -K{EF +2[EF} E. (18a)
se = -k {|EF + 2|E}} E. (18Db)
5€

where E = wz/c and k = 3X/2n, with solution
E=E é”+=E ™ **{|E.f+2|E.}} & (19)

with E. andOd ~ determined by the boundary conditions. Sincerkas (nolosses)  |.E do not
vary with& but, - (1. does [8] or

O, -0.=2n& + 2 {|E-f+2EP} € - O, (20)

where [, is chosen so thafl, = 0. at & = wlL/c, from this and the conditions for flux
conservation at the back mirror.
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(I - R) n|Ef= I, (21)
| EF = RIEF (22)

one obtains expression for the transmission with
0 =58 +0T; (23)

whered, = 41t n, L/A andd' = 4rt ny(1+R)L/(1-R)
Expression can also be written as

It _ EI - Do
Ii - aiIi =G (24)

so that the operation point of the nonlinear Fabigerot cavity is the intersection of the Airy
function and the straight line and this allows tirephical solution depicted in fig. 1 which

clearly shows the Bistable operation and hysterésd, further increases one obtains additional
hysteresis loops and multistability.

TaA

|

A >

Fig. 1 Graphical solution of the hysteresisloop in dispersive bistability

The hysteresis is obtained because the interseatitre straight line and the dashed part of the
Airy function is an unstable point or stated diffietly if the system is forced to operate there
even the smallest deviation will grow monoticallittwtime. To prove this the time evolution of
the field amplitude Eand phasé&] must be taken into account. To a good approximatie may
assume G and reach their stationary solutions established ala@eerding to the equations.

10 +0 =&, + 8'Gl; (25)

1
I + F%sin’00/2

UG +G = (26)

Then according to the stability criterion the sant{[1,, G} is stable if
1> Go o (27)

otherwise it is unstable; one can easily see tmatldtter situation occurs for the intersection
points along the dashed parts of the Airy functidve also see that there will be a critical
slowing down so that this type of optical bistalilshares many common features with other
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first order phase transitions. When the completes tevolution of equation (18) and equation
(13) is taken into account new instabilities app®aen for the other points according to a well
defined pattern which leads to chaos.

Equation (26) can be assumed to be a consequeratpiafion (18) when the time evolution of
the field amplitudes is taken into account. Equat2b) on the other hand follows from equation
(13) which is based on a simple Debye theory o&zdtion relaxation. One can easily show
that the nonlinear index of refraction obeys equafR, 12]

t ‘
Nn=ng+ —”T2—j“1[5} e-(t-s)frye (28)
0

where nis the stationary value defined by equation (6Xehms of equation (28) one may set up
a dynamic equation for the optical path equation Ifitroducing equation (28) in equation (13)
and differentiating with time one finds

0 + 0 = mpLI(t) (29)
which is precisely the equation (25)
RESULTSAND DISCUSSION

Optical Bistable operation in the dispersive regihgs now been observed on a number of
systems both in the stationary and dynamic (orsteam) regime. This is the case in same atomic
[9, 10] and molecular [11] vapours under near ragbigonditions where the Kerr index can be
substantially enhanced by the resonance condilibere have also been observations in the
purely dispersive case (far from any resonanceigind crystal, [12] Polydiacetylene Crystals
[16], LiNbo3 [17] and other hybrid configurationdJL The use of liquid crystals [12] as the
nonlinear medium among other things allowed a tetastudy of the dynamic behaviour of the
optical Bistable operation, there one can criticatiodify the Kerr coefficient and its dynamics
by varying the temperature as well as the cavity ane is able to cover all cases of transient
regime up to and including the stationary case,littear round trip phase shift,, the pulse
duration, the Debye relaxation timgthe stationary Kerr coefficieng,the round trip time were
varied at will relative to each other and differgansient and stationary regimes were studied. In
fig. 2 we show some experimental hysteresis lodygioed in different cases.

A

It A It

I;

v

Fig 2. Experimental hysteresisloops (a) optical fiber ring cavity (ref. 62) (b) InSb cavity (ref. 37)
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It was also hinted that not all stationary solusicare stable and this was the origin of the
hysteresis. It turns out that the actual situai®much more complicated and beyond certain
critical values of the external parameters evetialty stable solutions become unstable
eventually leading the system to be chaotic stE@¢lpy a succession of instabilities. Instabilities
are inherently built in these nonlinear system$ofd from quite general [20] features of the
structure of their stationary solutions.

It has been predicted [13] that optical instalgiitiand chaos will also occur intrinsically as a
consequence of the anharmonic motion of the bouadges, the same one that gives rise to the
intrinsic bistability. The starting point is the fing equation for a damped anharmonic
oscillator with a driving sinusoidal force. For dirfeelds E and amplitudes R the motion can be
arranged [14] in terms of simple limit cycles andetl points. As the electric field becomes large
the motions becomes much more complicated and iosnfd5] a periodic solutions very
sensitive to the initial conditions.

This behaviour is particularly easy to visualizeewhR| is depicted as a functionw/fw,, or a
given intensity of the electric field exceedingtear critical value. Fo/u, >1 the solutions
corresponds to limit cycles but a¥w,, decreases below 1 then a set of cascading katiores

at frequenciesn, starts which ends at a frequeney, where a chaotic state is established
characterized by the appearance of a strangetattiacphase space. Quite revealing is also the
power spectrum which shows sharp peaksufon, but becomes smooth as< wr. fig 3 also
shows the behaviour of the systenuais increased fromy << w, to W >> wy,.
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Fig. 3 Hysteresisand Instabilities and route to chaosin the Duffing oscillator (ref. 60)

It is also interested to note that the behaviouhefharmonics ofo depicted in fig 4 and as can
be seen hysteresis and instabilities occur theveelis

I *

Fig. 4 Hysteresisand Instabilitiesin (a) the fundamental and (b) the third of the forced Duffing oscillator
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CONCLUSION

The accumulated results in the passive systemdgliead a tremendous impact on the choice of
some parameters for designing optical Bistable adsvibut still the picture is not clear.
Furthermore, they reveal some intrinsic limitatioms some proposed schemes of optical
bistability which will not be easily overcome. Déspintensive studies the optical bistables
devices based on the nonlinear fabry-Perot cawityhe dispersive regime are far from the
expectations required for these devices to becamgetitive with the electronic ones, these are
low powers (0, 1 — 1 MW) fast switching timds 10 — 100ps) for both states small dimensions
(1 - 1Qum) and room temperature operation (300 No existing schemes meet all these
requirements and additional ones in order to beractical use for real time treatment of optical
information. The efforts however to meet these mequents led to much deeper understanding
of the nonlinear optical interactions, enriched @nea of nonlinear optics with new and powerful
concepts and allowed to draw analogies with othenlinear processes in mechanics,
hydrodynamics phase transitions etc and this isafriee major motivations for the continuing
activity in this area.
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