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ABSTRACT 
 
The main schemes of optical bistability and phase conjugation is review with particular 
emphasis on the instabilities and routes to chaos that occur there. Their impact on the 
performances of nonlinear optical devices is discussed. 
______________________________________________________________________________ 
 

INTRODUCTION 
 

An optical beam propagating in a medium can modify its own optical path by means of the 
optical nonlinearity that it induces in the medium and under certain conditions profoundly affect 
its own propagation characteristics. Similar effects may be also occur when a beam crosses the 
optical path of a second beam. Up to certain light intensities the observed effects can be simply 
discussed within the framework of perturbation theory of the optical response of the medium [1] 
as is known this amounts into assuming a series expansion of the polarization around the zero 
field intensity. It is however an essential features of nonlinear interactions that such a scheme 
breaks down if the light intensity reaches certain critical values. The feedback that experiences 
the light beam through the material nonlinearity then may lead to multistable behaviour, whereby 
several realizable states may appear same of which are unstable and this is the origin of the 
appearance of hysteresis cycles and optical instabilities eventually leading to chatic behaviour 
under different conditions the optical nonlinearity may also give rise to highly stable pulse forms 
the so called solitary waves or solitons.   
 
These effects provide some of the most convincing manifestations of the general laws that 
govern nonlinear phenomena and are intensively studied. Along with this much of the present 
interest in these effects has been spured by their potential use in important and far reaching 
application such as all optical treatment of information, real time adaptive optics, reshaping and 
compression of optical pulses e.t.c. In the process of optimizing the performances of such 
devices however one stumbles on same limitations intrinsically interwoven with the nonlinear 
optical processes themselves and much effort is concentrated in understanding and properly 
describing the mechanisms underlying these limitation and to find the appropriate materials. 
 
The propagation proprieties of an optical beam over a distance s in a material medium are 
characterized by the optical path. 
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            (1) 
 
where λ is the wavelength of the light wave in vacuum and n is the effective refractive index of 
the medium. For sufficiently large light intensities the later also depends on the electric field 
intensity E(z, t). Thus an optical beam can act on itself and modify its time and space 
characteristics. [2] Under certain conditions this self-action has striking influence. For instance, 
as will be discussed later, by inserting the material inside an Fabry-Perot cavity are obtains [3] a 
multistable transmission characteristic for the later, furthermore as some of the states are 
unstable a hysteresis cycle will appear and the system can function as a real time memory 
element. Such a behaviour, which goes under the name of optical bistability can be encountered 
[4] and has been observed in a multitude of other configurations whereby a cavity is not the sole 
agent of the feedback of the optical beam on itself. The conditions for this phenomenon to occur 
essentially depend on the dynamic and spatial dependence of ψ as a consequence of the action of 
the optical beam and other external factors: interfaces, external fields, temperature e.t.c. 
Although a description of the optical bistability can be built up with equation (1) as a starting 
point. 
 
The physical origin of the electrical field dependence of the index of refraction is the nonlinear 
polarization set up by the electric field in the material. To simplify things we momentarily 
consider the stationary regime and monochromatic beams. Furthermore we concentrate on media 
that possess inversion symmetry. Then the induced polarization can be written  
 
  ρ = ξo X (I) E         (2) 
 
where the effective susceptibility X(I) is solely a function of the light intensity I= ξo c|E|2/2. 
Below certain intensities one may use a series expansion and write [4, 5] 
 
ρ = ρ(1) + ρ(3) +ρ(5) +-------- = ξo(X

(1) + X(3|E|2 + X(5)|E|4)E  (3) 
 
where X(n)(w, -w, w---) and ρ(n) are the n –th order susceptibility and polarization (at frequency 
w) respectively, because of the assumed symmetry only odd orders will be present in equation 
(3). The effective index of refraction n on equation (1) is defined by 
 
  n2Ec2/ξo = 1 + X(I)        (4) 
 
only a function of I. It is in general a complex quantity, since 
 
  X(I) = X(I) + iX”(I)        (5) 
 
Contains a real and an imaginary part related to dispersive and absorptive mechanism. Optical 
bistability has been observed with both types of process. Broadly speaking the physical 
mechanisms that are response for the intensity dependent  X’ and X’’ are the optical Kerr effect 
and the intensity dependent absorption respective. 
 
 The optical Kerr effect is conventionally defined as [5] 
  n = no + n2 I         (6) 
 
where no is the real index refraction and  

ψ = 2∏ 
        λ 

 

∫ nds 
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  n2 =  3X(3) 
          no

(2) ξo c         (7) 
and X(3) is the third order susceptibility of the medium defined by 
 
 ρ(3)(ω) = 3 ξo X

(3) (ω, -ω, ω) |E|2E       (8) 
 
we assume that ω is far from any resonance of the medium and we may then neglect the higher 
order terms in equation(3) hard nonlinearity. Distortion of the valence electronic densities, 
vibrational, rotational and translational motion of molecules are the main mechanisms that 
contribute to equation (8), the later ones can lead to thermal changes of the index or to 
electrostriction. Optical Bistable operation has been achieved with all these mechanism but first, 
the purely electronic one, is by far the most attractive (fast response, time, no losses, wideband 
operation); It is also the one where the least progress has been made because of lack of 
appropriate nonlinear materials. 
 
The classical example of intensity dependent absorption is the saturable absorption where the 
index of absorption becomes 
   

δ =                ao    
                        

                     I + I/Is        (9) 
 
where ao is the low intensity absorption coefficient (linear absorption) and Is is a material 
characteristic, the saturation intensity. In the absorption case one takes advantage of the 
occurrence of resonance to enhance the nonlinearity (soft nonlinearity). Absorptive bistability 
has now been seen in a number of gaseous systems (atomic or molecular) and excitons in 
semiconductors. 
 
Both dispersive and absorptive mechanisms may cooperate in certain cases and at presently the 
most promising case is the semiconductors, there the large band density of states over a very 
extended frequency range allows one to combine many of the advantages of the dispersive and 
absorptive cases and keep the spatial dimensions small. 
 
THEORETICAL CONSIDERATIONS AND CALCULATIONS 
The electric field E1 of the incident monochromatic beam of frequency ω sets up an electric field 
inside the cavity. 
 
  E(z, t) = Re(Ee-iwt)        (10)   
 
which induces a polarization at the same frequency. 
 

  ρ = ρ(1)  +  ρ(3) = Re(ρeikz – iwt)      (11) 
 
where we neglect higher order nonlinearities and assumes ω far away from any resonances of the 
medium (loss – less propagation). ρ(3) given by equation (8) so that  
 
   ρ = X(1) + X(3)|E|2) E = X(I) E      (12) 
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The envelopes E and P are slowly varying functions of the time and space variables, E (z, t) and 
p(z, t) respectively. We assume that the effective susceptibility X satisfies a Debye relaxation 
equation [2] 
  τ X + X = X(3)|E(t)|2        (13) 
 
or in integral form 
  X = X(1) + X(3) |E(s)|2e-(t-s)  
                                        τ -∞          τds        (14) 
 
where τ is a phenomenological relaxation time. Assuming transverse plane waves Maxwell 
equation gives  
 
         =                        (E +      )       (15)  
 
 
 
  E = Re { E+ e

ikz + E- e
-ikz} e-iwt       (16) 

 
for the field inside the cavity using the slow varying envelope [6] approximation (SVEA) in 
equation (15) and separating the forward (+) and backward (-) travelling components one finds 
[8, 6] 

 
         
In the stationary regime these equations reduce [7] to  
 
      = -ik {|E+|

2 + 2|E-|
2} E+       (18a)  

    
     = -ik {|E-|

2 + 2|E+|
2} E -       (18b) 

 
 
where E = wz/c and k = 3X(3)/2no with solution 
 
   E+ = E±

° ei∅ ± = E±
° ei∅±° ± ik { |E±|

2+2|Ez±|
2} ξ    (19) 

 
with E±

° and ∅ ° determined by the boundary conditions. Since k is real (nolosses)      | E±|
2 do not 

vary with ξ but ∅+ - ∅- does [8] or 
 
  ∅+ - ∅- = 2no ξ + 2n2 {|E+|

2+2|E-|
2} ξ - ∅ο     (20)   

 
where ∅ο is chosen so that ∅+ = ∅- at ξ = ωL/c, from this and the conditions for flux 
conservation at the back mirror. 

∫ 

δ2E 
δz2 

1 

c
2
 

δ2 

δt2 
ρ 
Eo 

δE+ 
δE 

δE 
δE 
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  (I – R) no|E+|
2 = It        (21) 

 
  | E-|

2 = R|E+|
2         (22) 

 
one obtains expression for the transmission with  
  ∅ = δo + δ1Tt         (23) 
 
where δo = 4π no L/λ and δ1 = 4π n2(I+R)L/(I–R) 
Expression can also be written as  
 
   =              = G        (24) 
 
so that the operation point of the nonlinear Fabrg – Perot cavity is the intersection of the Airy 
function and the straight line and this allows the graphical solution depicted in fig. 1 which 
clearly shows the Bistable operation and hysteresis. As Ii further increases one obtains additional 
hysteresis loops and multistability. 
  
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 1 Graphical solution of the hysteresis loop in dispersive bistability 
 
The hysteresis is obtained because the intersection of the straight line and the dashed part of the 
Airy function is an unstable point or stated differently if the system is forced to operate there 
even the smallest deviation will grow monotically with time. To prove this the time evolution of 
the field amplitude E+ and phase ∅ must be taken into account. To a good approximation we may 
assume G and ∅ reach their stationary solutions established above according to the equations. 
 
  τ1∅ + ∅ = δo + δ1GIi        (25) 
 
       τ1G + G =         (26) 
 
 
Then according to the stability criterion the solution {∅o, Go} is stable if  
 

I > Go ∅o           (27) 
 
otherwise it is unstable; one can easily see that the latter situation occurs for the intersection 
points along the dashed parts of the Airy function. We also see that there will be a critical 
slowing down so that this type of optical bistability shares many common features with other 
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first order phase transitions. When the complete time evolution of equation (18) and equation 
(13) is taken into account new instabilities appear even for the other points according to a well 
defined pattern which leads to chaos. 
 
Equation (26) can be assumed to be a consequence of equation (18) when the time evolution of 
the field amplitudes is taken into account. Equation (25) on the other hand follows from equation 
(13) which is based on a simple Debye theory of polarization relaxation. One can easily show 
that the nonlinear index of refraction obeys equation [2, 12] 
 

 
 
where n2

 is the stationary value defined by equation (6). In terms of equation (28) one may set up 
a dynamic equation for the optical path equation (1). Introducing equation (28) in equation (13) 
and differentiating with time one finds 
 
  τ∅ + ∅ = n2LI(t)        (29) 
 
which is precisely the equation (25) 
 

RESULTS AND DISCUSSION 
 
Optical Bistable operation in the dispersive regime has now been observed on a number of 
systems both in the stationary and dynamic (or transient) regime. This is the case in same atomic 
[9, 10] and molecular [11] vapours under near resonant conditions where the Kerr index can be 
substantially enhanced by the resonance condition. There have also been observations in the 
purely dispersive case (far from any resonance) in liquid crystal, [12] Polydiacetylene Crystals 
[16], LiNbo3 [17] and other hybrid configuration [18]. The use of liquid crystals [12] as the 
nonlinear medium among other things allowed a detailed study of the dynamic behaviour of the 
optical Bistable operation, there one can critically modify the Kerr coefficient and its dynamics 
by varying the temperature as well as the cavity and one is able to cover all cases of transient 
regime up to and including the stationary case, the linear round trip phase shift ∅o, the pulse 
duration, the Debye relaxation time τ, the stationary Kerr coefficient n2, the round trip time were 
varied at will relative to each other and different transient and stationary regimes were studied. In 
fig. 2 we show some experimental hysteresis loops obtained in different cases. 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig 2. Experimental hysteresis loops (a) optical fiber ring cavity (ref. 62) (b) InSb cavity (ref. 37) 
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It was also hinted that not all stationary solutions are stable and this was the origin of the 
hysteresis. It turns out that the actual situation is much more complicated and beyond certain 
critical values of the external parameters even initially stable solutions become unstable 
eventually leading the system to be chaotic state [19] by a succession of instabilities. Instabilities 
are inherently built in these nonlinear systems follows from quite general [20] features of the 
structure of their stationary solutions.  
 
It has been predicted [13] that optical instabilities and chaos will also occur intrinsically as a 
consequence of the anharmonic motion of the bound charges, the same one that gives rise to the 
intrinsic bistability. The starting point is the Duffing equation for a damped anharmonic 
oscillator with a driving sinusoidal force. For small fields E and amplitudes R the motion can be 
arranged [14] in terms of simple limit cycles and fixed points. As the electric field becomes large 
the motions becomes much more complicated and contains [15] a periodic solutions very 
sensitive to the initial conditions. 
 
This behaviour is particularly easy to visualize when |R| is depicted as a function of ω/ωο, or a 
given intensity of the electric field exceeding certain critical value. For ω/ωο >1 the solutions 
corresponds to limit cycles but as ω/ωο, decreases below 1 then a set of cascading biffurcations 
at frequencies ωn starts which ends at a frequency ωTh where a chaotic state is established 
characterized by the appearance of a strange attractor in phase space. Quite revealing is also the 
power spectrum which shows sharp peaks for ω/ωn but becomes smooth as ω < ωTh. fig 3 also 
shows the behaviour of the system as ω is increased from ω << ωn to ω >> ωο. 

 
 

Fig. 3 Hysteresis and Instabilities and route to chaos in the Duffing oscillator (ref. 60) 
 
It is also interested to note that the behaviour of the harmonics of ω depicted in fig 4 and as can 
be seen hysteresis and instabilities occur there as well. 

 
Fig. 4 Hysteresis and Instabilities in (a) the fundamental and (b) the third of the forced Duffing oscillator 
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CONCLUSION 
 
The accumulated results in the passive system already had a tremendous  impact on the choice of 
some parameters for designing optical Bistable devices but still the picture is not clear. 
Furthermore, they reveal some intrinsic limitations in some proposed schemes of optical 
bistability which will not be easily overcome. Despite intensive studies the optical bistables 
devices based on the nonlinear fabry-Perot cavity in the dispersive regime are far from the 
expectations required for these devices to become competitive with the electronic ones, these are 
low powers (o, 1 – 1 MW) fast switching times (∼ 10 – 100ps) for both states small dimensions 
(1 - 10µm) and room temperature operation (300oK). No existing schemes meet all these 
requirements and additional ones in order to be of practical use for real time treatment of optical 
information. The efforts however to meet these requirements led to much deeper understanding 
of the nonlinear optical interactions, enriched the area of nonlinear optics with new and powerful 
concepts and allowed to draw analogies with other nonlinear processes in mechanics, 
hydrodynamics phase transitions etc and this is one of the major motivations for the continuing 
activity in this area. 
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