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ABSTRACT

Two important method of finding the irreducible representations of group were considered, the Burnside method
and the Great Orthogonality Theorem. The irreducible representations of cyclic group of order 8 (Cg) and the
dihedral group (D,) of the same order were obtain using the two methods, and the result were compared. Both
method can be used to find the irreducible representations of D, and Cgrespectively. The Burnside method is lengthy
and can be applied to any group, while in the case of the Great Orthogonality Theorem method the groups type need
to be identified first.
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INTRODUCTION

A group is an abstract object; this may createdliffies in dealing with many of its structured plems. Therefore,
it is reasonable to seek an automated processdking a bijection between group theory and somerdimiliar
theories. Representation theory is a tool, whicluces group theoretical problems into problemsniear algebra,
which is a very well understood theory.
There are five groups of order 8, which consistwad non-abelian and three abelian groups. In thisep, two
groups were considered, one abelian that is, thicogroup of order 8() and the other is the dihedral group of
the same ordeD,) , which is non-abelian.

MATERIALS AND METHODS

2. PRELIMINARIES
To begin, we shall need some preliminary fact atef ldiscussion of notation.

2.1 Definition
A representation of a groupwith representation spateis a homomorphism

p:g - p(g)of G into GL(V).

From the homomorphism property we havedph € G:
vp(gh) = vp(g)p(h),

vp(1) = vl
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2.2 Definition
Let p: G —» GL(n, F)be a representation of a group G over a field Fe Tunctiony: G —» F defined byy(g) =

tr(p(g))is called character ¢f.

The character satisfies the following properties:
1.x,(e) = deg(p).

Z.Xp(xgx_l)ip(g)‘v’x,g €G.

3.7 = x,(9)

2.3Burnside Method

Burnside method proposed by Burnside in 1911, aeeta obtain the irreducible representations ofoaig Using
this method, three formulas are involved in findithg irreducible representations of a group thatreducible
representatiorks Using these formulas, class multiplication cagéfints, characters of irreducible representations i
term ofd,and the numerical values fdjare obtained.

The first step in getting the irreducible repreatinhs is to obtain the class multiplication coséfnts. Following
Cracknell(1968), the result of multiplying togetheo classe§and(jis the sum of several classgs

CiCj = Zs Cijs Cs (1)

Wherec;; care the class multiplication coefficients. Usingiatipns (1), the class multiplication coefficients,can
be evaluated.

The next step is to obtain the characters of thmedircible representations in term of tkehirreducible
representation. Following Burns(1977) the characéee given in the form of:

hlh]){Lk){jk = dk 22:1 Cij_shs)(bl'( (2)

Where h;the order of the classds ykis the character of the elements in cl@ga the irreducible representation
k,d,is the dimension of théthirreducible representatian; sis the class of multiplication coefficient amt the
number of classes in the group.

The last step of getting the irreducible repred@nta | to obtain the numerical values thrusing Craiknell (1968):
1 b xk = N&, (3)

WhereNis the order of the groupgj,is the Kronecker Delta symbol, which has the vdlueheni = j, but has the
value 0 wher # j, ris the number of classes in the gromfr;\ndxi"are the characters of element in cldss

2.4 Great Orthogonality Theorem Method
The Great Orthogonality Theorem is given by:

TrTiR)mn] [T (R) ™ = %&,ﬂmmﬁm (4)

Whereh is the order of the group;is the dimension of théh representation, which is the order of each ef th
matrices which constitute iR is the generic symbol given to the various operetiin the groupl’;(R)»iS the
element in thenth row and theith column of the matrix corresponding to an operafi in theith irreducible
representation.The three simpler equations obtdnoed Great Orthogonality Theorem are as follows:

ZR 1Hi(R)mnrj(R)mn =0if i '_'tj (5)
SrTi(R)mnli(R) pyyy =0 if m #= m"and/orn = n' (6)
ZR 1Hi(R)mnrj(R)mn = h/ll (7)

There are five important rules to find irreducibdpresentations and their characters.

111
Scholars Research Library



M. A. Mohammed et al Arch. Appl. Sci. Res., 2013, 5 (5):110-118

1. The sum of the squares of the dimensions ofrtbducible representations of a group is equah&order of the
group, that is,

SE=0F+134+-=h (8)
Wherd;is the dimension of thih representation and h is the order of a group

2. The sum of the squares of the characters inreggucible representation equal to the ordehefdgroup, that is

Trlti(R)? =h 9)
Proof: From (4) we may write
h
D TRl iR =T S
R L

Summing the left hand side oveandm’, we obtain

Z Z Z Li(R)mnl iRy = % 8,
= Z [Z Ti(R)mn Z T(R) ]

=2 Xi(R)xi(R)

= ®r
R

While summing the right side overandm’, we obtain

hzz(s R
I L, mm T
m m

3. The vectors whose components are characteveodifferent irreducible representations are ortha, that is,
YrXi(R)xi(R) = 0 wheni = j
Proof: Settingn = nin (5), we obtain

ZRXi(R)mmXi(R)mm =0 ifi '_'tj

D 0 E®HR) = Y 1 TR T (R
R R m

=Zm[ZR FL(R)mml"](R)mm] = O

4. In a given representation (reducible or irreble)i the characters of all matrices belonging fierations in the
same class are identical.

5. The number of irreducible representations ofcaup is equal to the number of classes in the group

There is specific method to find the irreduciblpresentations for cyclic groups using this methayclic group

is abelian and each of itlements is in a separate class. It alsortiadimensional irreducible representations. In
order to obtain the irreducible representationsafayclic group, the exponential below is usechapth irreducible
representatior,, (C,,):

€P=exp (?): cos (?) + isin(zzip) (10)
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RESULTS

lllustration 3.1 (Burnside Method)
Irreducible representations of Dihedral groDp,

D, ={(1), (1 3).(2 4),(12)(34),(13)(24). (1 4)(2 3).434),(1432) }

The conjugacy classes bf are:
C, = (1), C, =(12), (34),C; = (12)(34),C, =(13)(24) (14)(23) ard, = (1234), (1432).

The first step to obtain the irreducible represéoma is to use equation (1) to obtain the clasdtipligation
coefficients. For instance, the clagshas two elements, namely (1234) and (1432). Théptication table ofCsis
shown below

Table I: The multiplication table of Cg

| (1234) (1432)
(1234) | (1,3)(2,4) @)
(1432) [6) (1,3)(2,4)

Since 1 is the element in claSgsand (1,3)(2,4) is the element of the clé&ssthe table shows thdls. Cs = 2C; +
2C;.

Therefore, from (1),

20, + 2C5 = ¢551C1 + €552C5 + €553C5 + 55404 + C555Cs-

This impliescss ; = 2 andcgg 3 = 2

Evaluating equation (1) for all cases, the non-ztsies multiplicationcoefficients are obtained alfofvs:

€111 =1 C22.1=2 €331=1 Casq =2 Cs5.1=2
C122=1 C22.3=2 C344=1 Cas3=2 C55.3=2
€133=1 C232=1 €355=1 C452 =2

C144=1 C245=2

€155=1 C254=2

Next, the characters of the irreducible represanmtatin term ofd, are found using equation (2). For example, in the
casel =j=1:

5
hﬂh)(f)(f =dy Z Cr1s hoX¥

s=1

= di(Cro1ha Xt + Cr12hoX5 + C113h3 X5 + c11ahaXs + c115hsxE)
= dk(cll.lhl)(f + (O)hz)(éc + (O)h3)(§c + (0)h4)(zlf + (O)hs)(zl;{)
= dkC11.1h1X{{-

Sincec;;; = 1, hy = 1,thusyf = d,.

Similarly, calculations in the case= j = 3 will yieldyX = +d,. Considering all calculations in cases when
ci1s # 0,i,j,s = 1,..5, the following results were obtained. For negatiatie ofy%, the value ofy¥andyXturn out
to be 0. For positive values pf, we get the following results:

i If x¥ =dy, x¥=dthenyX =d,,

i. If ¥ =d,, xk=—d,thenyt =-d,,
ii. If ¥ = —dy, x¥=d, theny* = —d,,
iv. If x¥ =d, — x¥ = —d, theny¥ = d,,
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All of these characters of the irreducible représtons ofD,are shown in the table below, where entries in row
i(i = 1,...5)correspond to the irreducible representation.

Table II: Characters of the irreducible representaions of D,in term of d,;

G G G Cy Cs
di  dy dy dy dy,
di  dy dy d dy
dy dk dy dy dk
dy di  dk die  dg
dy 0 - 0 0

Lastly, equation (3) is used to obtained the nuca¢ralues forl,.

For eachl < k <5.
5

Z hi O)? = haxtf Xt + hoXs x5 + hax5 25 + haxixs + hsx§xé

Sk + 2k + bk + 25k + 2k k=8,

F50r example, using the character of the third wcdole representation, whén= 3.
Z hy (Xf)? = dsds + 2(=d3)(—ds3) + dsd; + 2d3ds + 2(—d3)(—d3)

i=1
=8d;% = 8.

ThUS,d3 = 1

Therefore,d, = 1 for the first four irreducible representations adyd=2 for the fifth irreducible representation.
Thus forD,there are five irreducible representations.

Table Ill: Character Table of D,

G G G G G
L, 1 1 1 1 1
, 1 1 1 -1 -1
r, 1 -1 1 1 -1
r, 1 -1 1 -1 1
, 2 0 -2 0 0

lllustration 3.2 (Burnside method)
Irreducible representations of Cyclic groQip,

The groupCghave 8 conjugacy classes as listed below:
¢, =), ¢, =(1,23456,78),C; =(1,3,5,7)(2,4,6,8),C, = (1,4,7,2,58,3,6),
Cs = (1,5)(2,6)(3,7)(4,8), Cs = (1,6,3,8,5,2,7,4),C, = (1,7,5,3)(2,8,6,4), Cs = (1,8,7,6,5,4,3,2)

Evaluating equation (1) for all cases, the non-ztases multiplication coefficient are as follows:
€111=1 €231 33571 €447=1 C551=1 Cee3=1 C775=1 cggr=1

C122=1 23471 34671 C458=1 C562=1 Ce74=1 C786=1

€133=1 €571 35771 €461=1 C573=1 cCegs=1

C144=1 C56=1 C368=1 C472=1 cC5g4=1

C155=1 C6771 €37171 cCug3=1

C166=1 C378=1 c35,=1

€177=1 €381 =1

188 =1

Next, the character of the irreducible represeonatin term ofi,are found using equation (2). For example, in the
casei =j = 1:
8
hhoxfxt = dy Z Cios hsX¥
s=1
= dk(cll.lhl)(f + C11.2hz)(£c + C11.3h3)(§c + C11.4h4)(z’tc + C11.5hs)(éc
+er16heXé + Ciirhoxy + crighsxs)
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di((Dhyxt + (0 hyxs + (0 hsx¥ + (0)hyxs + (0)hsyxs
+(0)hex& + (0)hyx¥ + (0)hgxk)
= dkhl)(f-
Sinceh, = 1,thus ¥ = d,
8

hshs)(é()(é( =dy Z Css.s hsxe
s=1
= dy(css1hi X¥ + Css2hoxs + Css3haxs + Cssahaxi + cssshsxt
+esseheXe + Cssohy Xy + Cssghsxs)
di((Dhyxf + (0 hyxs + (0)ha x5 + (0)hyxi + (0)hsx&
+(0)hexe + (0)hyx¥ + (0)hgxi)
= dkhl){f'
Sinceh; = hs = 1 and y¥ = d,, thus
XExs = dg,
X = +dy

Considering all cases whep, ; # 0,i,j,s = 1,...8,
If x¥ = d,, theny¥ = +d,;

If x¥ = —d,, theny¥ = +d,i;

If ¥ = d,, theny¥ = +d,;

If x% = —d,, thenyk = +d,i;

If x§ = dii, theny§ = tdye; wheree = i%;

1
If x¥ = —di, theny¥ = +d,e*; wheree* = (—i)2
And the other can be similarly be shown.

All of these characters of the irreducible représgons ofCgare shown in the table below, where entries in row
i(i =1,..8)correspond to thé&h irreducible representation.Lastly, equationi§3used to obtained the numerical
values ford,,. For eachl < k < 8.

8
Z hi (X)? = Xt x¥ + ho xS xX + hax5x% + haxfx¥ + hsxbxk

i=1
+hex¥x& + hox¥x% + hoxkxk
SXEXE  XSXE + XS+ KX XEXE + xExE ¥ + xExs=8.

Table IV: Character Table of Cgin term of d;,

G G G Gy Gs Ce G Cg
dy dy dy dy dy dy dy dy
dy  —dy dy —dy. dy —dy dy —dy
dy dyi —dy, —di dy dyi —d, —di
d,  —dii —d,, dyi dy —di —d, dyi
dy die di —dye® —d, —de —dii dye”
d, —dge di dye” —dy dye —dyi  —dye*
dy dy —dpi  —dpe —d, —die’ dy dye
d,  —dge’  —dii dye —d,, dge” dy —dge

From the second to sixth irreducible representsatignis necessary to take the complex conjugatqijefnce
complex numbers are involved. For example, usirey d¢haracters of the fifth irreducible representgtivhen
k=5,

o1 hi (f)? = (ds)(ds) + (dsi)(dst) + (=dse™) (=dse”) +(—ds)(—d5)
+(—dse)(—dse€) + (_dsi)(_dsi)"'(_dsf*)(_dsi*)
=dZ(1+ (e)(&) + D@ + (=€) (=€) + (=D (=1) + (—e)(=e)
+(=D(D) + (€)(E)=8.
Since(e)(€) =1 (=€) (=€) =1 and ()() =1,
8dZ =8,
ds =1.
For this group,d, =1, 1 <k < 8,for all eight irreducible representations. Thuse ttharacter Table of the
irreducible representations Gfis given below:
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Table V: Character Table Cg

C, G Cq c, C C, ¢ Cq
L, 1 1 1 1 1 1 1 1
r, 1 -1 1 -1 1 -1 1 -1
1 i -1 =i 1 i -1 =i
r, 1 - -1 i 1 -i -1 i
I 1 € i - -1 —-e —=i €
o 1 —€ i €* -1 € —i  -€"
r, 1 €* - - -1 =—€ i €
g 1 —e =i € -1 € i -€

lllustration 3.3 (Great Orthogonality method)
Irreducible representations of Dihedral groDp,
D, ={(1), (1 3).(2 4),(12)(34),(13)(24), (1 4)(2 3}.434),(1432) }

The conjugacy classes bf are:
C, = (1), C, =(12), (34),C5 = (12)(34),C, =(13)(24) (14)(23) and; = (1234), (1432).

According to rule 5, there are five irreducible negentations for the group,. By rule 1, we find a set of five
positive integersl,, I, I5, l,and Is which satisfy the equatioh® + 1,* + 1;* + 1,> + 1> = 8. The only values of
[;(i =1,..5) which satisfy this requirement are 1, 1, 1, 1 &dThus, the group,has four 1-dimensional

irreducible representation and one 2-dimensiomadircible representation. By rule 2, in any grahere will be a
1-dimensional irreducible representations whoseattiars are all equal to 1, since

N Ga®)? = D12+ 12 + W12+ @12 + (D17 =8,

The other representations will have to be suchXhél; (R))? = 8, which can be true if and only if eagh(R) =
+1. By rule 3, each of the other three representatiassto be orthogonal to the first irreducible repreation’;.

Thus, there will have to be two +1's and two -T'se fifth representation will be of dimension 2nbey;(C;) =
2. In order to find out the values ofs (C,), xs(C5), xs(C,) andys(Cs), the orthogonality relationships in rule (3):

Z(Xl(R))z = (M@) + Mxs(C) + Mxs(C) + (Dxs(Cy) + (Dxs(Cs) =0
Z:()(z(l’?))2 =M@ + Mxs(C) + Mxs(C3) + (=Dys(Co) + (=Dyxs(Cs) = 0
Z(;@(R))Z =M@ + Dxs(C) + Mxs(C3) + (MDxs(Co) + (=Dyxs(Cs) = 0

Z(XA,(R))Z =M@ + Dxs(C) + Mxs(C3) + (=Dxs(Ca) + (Dxs(Cs) = 0

Givesys(Cz) = xs5(C4) = xs5(C5) = 0andys(C3) = -2
The complete set of irreducible representationd,of found to be:

Table VI: Character Table of D,

C, C C C C.
L, 1 1 1 1 1
r, 1 1 1 -1 -1
r, 1 -1 1 1 -1
r, 1 -1 1 -1 1
, 2 0 -2 0 0

lllustration 3.4 (Great Orthogonality method)
Irreducible representations of Cyclic groQip,

The groupCghave 8 conjugacy classes as listed below:
¢, =), ¢ =(1,23456,78),C; =(1,3,5,7)(2,4,6,8),C, = (1,4,7,2,58,3,6),
Cs = (1,5)(2,6)(3,7)(4,8), Cs = (1,6,3,8,5,2,7,4),C, = (1,7,5,3)(2,8,6,4), Cs = (1,8,7,6,5,4,3,2)
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According to rule 5, there are eight irreduciblpresentations for the groufy. By rule 1, we find a set of eight
positive integers,ly, L, ls, Ly, s, ls, l;and I5 which satisfy the equatidyf + 1% + L% + 1,° + 1> + 1,2 + 1,* +
lg> = 8. The only values of

l;(i = 1, ...8) which satisfy this requirement are all 1s. Thhe,groupCshas eight
1-dimensional irreducible.

SinceCgis a cyclic group, the exponential below is used:

Znip)

Ip(Cs) = €P=exp (——

_ 2mip . . 2mip
= cos (T) + Lsm(T) ’
Abbreviating these exponentials,ef§ie, exp (%)], we write the first column of the following tail

Table VII: Multiplication Table of Cgin terms of €.

G, G G G G G G G
I, € € € € e € € ¢
T, €6 e ¢t 6 B el0 12 ot
L, e & 8 & 2 (5 8 2
[, €2 et 8 2 (6 20 2 28
[, e® 5 0 (15 g0 25 30 3
T, €% 6 (2 18 24 30 36 oa
T, €56 &7 elt 2l (28 (35 a2 49
[, € 8 16 g2t 32 10 45 56

The remaining columns follows from the group muigation. It will now be shown that these represgion
satisfy the orthonormalization condition of equati(b).Consider any two representations, $gand I';where
p — q = r. The left-hand side of equation (5) take the form

(Ep)*6p+r+(€2p)*62(p+T)+(E3p)*E3(P+T)+(€4P)*€4(P+T)+(€51’)*65(P+T)+(€6P)*€6(P+T)
+(E7p)*67(p+r)+(€8p)*68(p+r)

Which can be simplified as

21is
€THE2T+e3T+e 4T +e5T 407 4 7T +87 = Z§=1 exp ( . (11)

The representations are normalized, sincg, i I';, thenr = 0 and equation (11) is eight time$, that is 8. If
I,andl,are differenty is some number from 1 to 7 sine&is equal to 1.

Therefore, the sum of equation (11) reduces thd, is,

8

2mis

s=1

Using trigonometric identities
YL . cos (?) = 0and}._, sin (Zlﬁ) =0

Reducing the powers efs to modulo 8, we obtain the table below:
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Table VIII: Reducing The Powers ofe’s to Modulo 8

C, C C C C C C Gy
[ 1 € € € € € € ¢
b 1 € € € 1 € € €°
I 1 e € € et € € €5
r, 1 € 1 € 1 €& 1 ¢
I, 1 € € € € € € ¢
b, 1 € € € 1 € e+ €
I, 1 € € € € € € ¢
1 1 1 1 1 1 1 1

Using equation (10) where? is replaced by, e3by —e*, €, by —1, €, by -¢, €%, by-i, €7, by €*, €%, by 1 and
rearranging the rows, the character tablégis obtained the irreducible representationgof

The complete set of irreducible representation;sf :

Table IX: Character Table Cg

C, G Cq c, G C, ¢ Cq
L, 1 1 1 1 1 1 1 1
r, 1 -1 1 -1 1 -1 1 -1
1 i -1 =i 1 i -1 =i
r, 1 - -1 i 1 -i -1 i
I, 1 € i - -1 —-e —=i €
o 1 —€ i €* -1 € —i  -€"
r, 1 €* - - -1 =—€ i €
g 1 —e =i € -1 € i -€

4.0 Comparison of the two methods

Both the Burnside method and Great Orthogonaliteofem method can be used to obtain the irreducible
representations db,and Cgas shown in table Ill and VI, V and VIII respectiveUsing Burnside method, three
formulas are involved to find the irreducible reggetations. The first and the second formulas aitdengthy since
there isn! calculations for each formula for a group witltlasses. Beside, every equation has to be satisfidue
second formula to find the characters of the iro#tole representations in term @f.

For the Great Orthogonality Theorem method, itfinasimportant rules concerning irreducible reprgatons and
their characters are used. In general, this methadt lengthy as Burnside method. Therefore, deoto to deduce
the irreducible representations for groups usingaGOrthogonality Theorem, the type of the groupsdnto be
identified first.

CONCLUSION

Two of the methods to obtain the irreducible repntations are the Burnside method and the Gre&ioGonality
Theorem method. The two method were used to olttairrreducible representations Bfand Cgand comparison
of the two method are made. Both method produceestahle, but the Burnside is quite lengthy, thae th
Orthogonality Theorem Method. Burnside method carapplied to any type of groups without having dosider
the structure of the group. Great Orthogonality drken is not lengthy as Burnside method but thergpiscific
method for cyclic groups in addition to the Greath©gonality Theorem formula and the five importeunies.
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