
Available online at www.scholarsresearchlibrary.com 
 

 
 

 
 

 

Scholars Research Library 
 

Archives of Physics Research, 2012, 3 (4):277-282  
(http://scholarsresearchlibrary.com/archive.html) 

 

 
ISSN : 0976-0970 

CODEN (USA): APRRC7   
 

277 
Scholars Research Library 

Calculation of the energy deposited on the surface of 60C  molecule resulting 
from the fall of the fast ++++Si  ions using the Beth - Bloch equation 

 
Mohammed Fadhil Al Mudhaffer 

 
Department of Physics-College of Education –University of Basrah 

_____________________________________________________________________________________________ 
 
ABSTRACT 
 

The energy deposition of slow ++++Si  ions interacting with 60C  molecule is determined theoretically, by using Bethe–

Bloch equation which is applied at high energy. The obtained result is compared with Local Density Approximation 
equation at the energy (0.5 MeV) and found good agreement between the two formulas. The behavior of energy 
deposition with the atomic numbers has been calculated. Stopping number for both equations has been compared 
too.  
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INTRODUCTION  
 

The energy deposition of a swift particle in matter per unit path )dx/dE(−−−− , referred to as the stopping power of 

the material, has been made in the context of a model where energy transferred from ion projectile to the electron 
,and to a lesser extent , to the nuclei of the target material [1,2]. The energy loss rate (stopping power) of matter for 
energetic particles is of recurring interest in physics, the understanding of the slow down of these particles is of great 
fundamental and applied physics relevance [3]. The high velocity ions are passing through a matter is usually 
assumes two major simplifications in stopping theory: (1) the ions are moving much faster than the target electrons 
and fully stripped of its electrons, (2) the ions are much heavier than  the target electrons [4]. The transferred energy 
occurs from energetic projectile to surface electrons and nucleus, fraction of this energy is deposited to electronic 
degree of freedom. The deposited energy is partly spent for ionization (binding energy of electrons and their kinetic 
energy) and excitation the target atoms. However, some part of the deposited “electronic energy” is transferred to 
the vibration degree of freedom (i.e. to the internal energy of the molecular ion) [4, 5]. Most studies used Local 
Density Approximation (LDA) equation to calculate the electronic energy loss; it was introduced by Lindhard [4]. 
The Lindhard treatment is a many –body self-consistent treatment of an electron gas responding to a perturbation by 
a charged particle. It naturally includes the polarization of the electrons by the charged particle and the resultant 
charge screening and the plasma density fluctuations. It treats smoothly both individual electron excitation and 
collective plasmon excitation without separate 'distant' and 'close' collision processes. Lindhard's approach to the 
interaction of particle with a free electron gas makes the following assumption: 
 
• The free electron gas consists of electrons at zero temperature (single electrons are described by plane wave) on a 
fixed uniform positive background with overall charge neutrality. 
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• The initial electron gas is of uniform density. 
• The interaction of the charged particle is a small perturbation on the electron gas. 
• All particles are non-relativistic. 
 
Under this assumption Lindhard and Scharff in recent study were suggested considering each volume element of the 
target atom independently as an electron gas of uniform density that is equal to the electron density of the atom. 
 
In this work the Bethe –Bloch equation has been used to calculate the deposition energy  (which applied at high 
energy limit) and compared it with LDA equation at the primary energy (0.5 MeV) for the incident ion.  The 
behavior of energy deposition as a function of atomic number has been found it .The bethe stopping number and 
LDA stopping number have been comported. 
 
In this study, the use of equation Beth - Bloch to calculate the residual energy resulting from the fall of the ions on 
the surface of silicon particle in carbon energy ---- After a closer the following: as density scatterometer are the 
same density of electrons. The result was compared with the equivalent density approximation spot. System was 
considered atomic unit in our calculations. 
 
2. Mathematical description of Local Density approximation and Bethe –Bloch equation:  
2.1-Local Density Approximation: 
 The electronic energy loss can be described by the following equation [6, 10]: 

)),r((L)r(
Z2

dz

dE
2

2

υρρ
υ
π=                                        (1) 

Where Z , υυυυ  and r    are the charge , velocity and position of the incident ion, measured from center 60C  molecule 

, )(rρρρρ  is electron density and it is given by the analytical expression[11,12]: 
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Fig.(1) represent collision incident ion at an impact parameter b with target atom. 
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Fig.(2) Contour plot showing the electron density of  the 60C  experienced by the projectile along its path at 

different impact parameters[6]. The electron density is expressed by the density parameter 3/1
s ))r(

3
4

(r −−−−==== πρπρπρπρ [13]. 

Where 22 zbr ++++====  , b represent the impact parameter,z  is the direction of the incident ion (see fig.(1)) , in the 

fig. (2) at )0z( ====  the incident ion enter in the maximum inelastic energy loss region . )),(( υυυυρρρρ rL  is the 

stopping number  
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)(rFυυυυ  is the Fermi velocity, 3/12 )](3[)( rrF ρρρρππππυυυυ ==== with plasma frequency    2/1)](4[)( rrp πρπρπρπρωωωω ==== , the 

deposition energy )(bEd calculated by integration of  eq.(1) along the direction of incident ion  ( axisz −−−− ): 
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2.2 Bethe –Bloch equation:  
 Consider energetic ion passing through surface target has the charge )( 1eZ , moving at velocity, υ  with impact 

parameterb . There are two basic approaches used to evaluate a particles's energy loss to target electrons. These are 
Bohr approach, which is dependent on the impact parameter between the particle's trajectory and target nucleus, and 
the Bethe approach which depends on the momentum transfer from the particles to target electrons. 
 
Bloch evaluated the differences between the classical (Bohr) and quantum-mechanical (Bethe) approaches for 
particles with velocities much larger than the target electrons. Thus  
 
Bloch found the bridging formulation between the classical Bohr impact –parameter approach, and the quantized 
Bethe momentum transfer approach to energy loss in the fallowing equation which called Bethe –Bloch equation 
[4]: 

)u.a(z  



Mohammed Fadhil Al Mudhaffer                                      Arch. Phy. Res., 2012, 3 (4):277-282 
______________________________________________________________________________ 

280 
Scholars Research Library 

 

n)(L
m

eZZ4

dz
dE Bethe

2

4
2

2

1 υυυυ
υυυυ

ππππ
o

====                                                     (6) 

n  represents the scattering density, m  is the mass of the ion, e is electron charge and 21 ,ZZ  are atomic numbers 

of incident ion and target atoms respectively. To find the deposition energy as an approximation n  is replaced by  

)(rρρρρ   and then by integrating over direction of incident ion, one gets  
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The average value of dE  is estimated from the following [9]: 
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)(υυυυBetheL°°°°  is the Bethe stopping number (including relativistic terms: 
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As usual c/υυυυββββ ====  where c is light velocity and δδδδ  is the density correction term which corrects the relativistic 

polarization effect when projectile velocities become comparable to projectile rest mass [13, 14]. 

o
I  is the averaged excitation potential ( eVZ10I 2≅≅≅≅

o
). In this study consider )u.a10b( ==== [8] and 

)( pp RzR ≤≤≤≤≤≤≤≤−−−−  have been used.pR Is projectile range [15]. 
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Where  R   is the ion range and tρρρρ is the mass density of target surface. 

 
RESULTS AND DISCUSSION 

 
Numerical solution of equations (5) and (8) be clear in Fig (3), one can note the difference between the two peaks. In 
the current study we note the shift of the peak by     (1.5 a.u) because of the different equations used to calculate the 
energy deposited. 
 
The widths of curve of LDA equation is greater than the ones of the Bethe-Bloch equation since the integral in the 
first equation over two quantities ( )),((),( υυυυρρρρρρρρ rLr  ) while in the second equation over one quantity ()(rρρρρ ). 

The area under the two curves (i.e. total energy deposition) is differing by about 26%, for any value of impact 
parameter where the peak occurs at ).3.6( uab ≅≅≅≅ . The correction term does not have an effect on the value of the 

energy deposits. Figures (4) represents the change of energy deposited with the atomic number increases upwards 
and have oscillating behavior with him, this means that the projectile found the average density of electrons. Energy 
deposited by light ions ( 81 <<<<<<<< Z  ) are small because of their small mass and therefore able to penetrate the 

surface and as a result not lose energy, while the heavy ions ( 7030 <<<<<<<< Z ) have a high value of the energy 
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deposited. Fig. (5) represent the behavior of Bethe stopping number in comparison with LDA stopping number as a 
function of ion velocity. Generally the stopping number (L ) increases with the ion velocity. The two quantities 
almost equal each other at high velocities, if we extended the range of the velocity we'll find the Bethe stopping 

number become greater than LDA stopping number. The Bethe stopping number varies )8.9L0( Bethe ≤≤≤≤≤≤≤≤
o

 

more than LDA stopping number. Its has positive value for this range of the ion velocity, below this range the 
stopping number has negative value. 
 

In the present work, the primary energy  )(
o

E  of the incident ion is )34.1( MeV , above this value the numerical 

solution program is terminate because the second term of equation (8) going to infinite value.  The stopping number 
increases with the ion velocity, the Bethe and LDA stopping numbers having same values at high velocities.   

Fig.(3) The deposition energy is displayed as a function of the impact parameter. The (solid line) represent the 
present study and  (dot line) local density approximation (LDA) . 

 
Fig.(5) Represent comparison between  of Bethe –Bloch   stopping number (solid line) and local density 

approximation (LDA) stopping number at  ).10,.10( uazuab ======== ( dot line) . 

  

Fig. (4) The deposition energy is displayed as a function of the atomic number at uab .10====  and primary energy 

( MeVE p 5.0==== ), using surface of 60C molecule as a target. 
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CONCLUSION 
 

In this research was to test the validity Beth equation to calculate the energy deposited at the low primary energy 

( MeVE 5.0=
o

)and found the following : 

 
We got a good consensus between the energy deposited calculated using the equation of Bethe-Bloch equation and 
the LDA. 
 
 Energy deposited increases with atomic number and have the disposal be patchy and low value for the small ions 
and high value for the heavy ions. 
 
was the comparison between the stopping  number is used by Beth-Bloch and the stopping number is used in the 
LDA equation, where we found that they are increasing with the velocity of ion and uncompromising when high 
velocities . 
 
According to these standards Almmattabrp by many researchers conclude that the application of equation Bethe-
Bloch possible to calculate the energy deposited at energy about MeV5.0 . 
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