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ABSTRACT 
 
The mass spectrum of the S-wave charmonium mesons and its leptonic decay widths is considered in the frame work 
of semi-relativistic quark  model. A good agreement is obtained with the experimental masses. The role of one-
gluon-exchange potential is discussed.  
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INTRODUCTION 
 

Though QCD is accepted as the fundamental theory of strong interactions, there exist no exact solutions to the 
theory in the non-perturbative low energy regime. The QCD is not exactly solvable in the non-perturbative regime 
which is required to obtain the physical properties of the hadrons. Hence various approximation methods have been 
employed to solve QCD in the non-perturbative regime. The most promising of these is through lattice gauge 
theories [1-3]. The lattice gauge theories involve gigantic computation hence the progress has been slow and 
detailed predictions of the hadron properties have not been made. As a consequence, our understanding of hadrons 
continues to rely on insights obtained from the experiments and QCD motivated models in addition to lattice QCD 
results. The phenomenological models developed to explain observed properties of hadrons are either non-
relativistic quark models (NRQM) with suitably chosen potential or relativistic quark models (RQM) [4-9] where 
the interaction is treated perturbatively. There are successful NRQM and RQM to explain the meson spectra. The 
NRQM usually contain three main ingredients: the kinetic energy, confinement potential and a hyperfine interaction 
term which has often been taken as an effective one-gluon-exchange potential (OGEP) [10]. There are models both 
non-relativistic and relativistic employed to explain meson spectra with OGEP.   
 
In the present work an attempt has been made to obtain the ground state mass of the heavy mesons in the frame 
work of semi relativistic quark model. Hence, to study the S wave spectra of heavy mesons we have developed a 
semi-relativistic model, we have made use of the successful relativistic harmonic model (RHM) [11-19] in which the 
confinement potential is a Lorentz scalar plus vector potential. Both scalar and vector potential are harmonic 
oscillator potentials. The total Hamiltonian has Lorentz scalar plus vector potential along with OGEP.  The full 
discussion of the Hamiltonian of   is given in section 2. A brief discussion of the parameters used in our model 
follows in section 3. The results of the calculation are presented in section 4 and the conclusions are given in section 
5.  
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2: THEORETICAL MODEL  
2.1 Semi-relativistic harmonic model  
In RHM [11], quarks in a hadron are confined through the action of a Lorentz scalar plus a vector harmonic-
oscillator potential                       
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where 0γ  is the Dirac matrix: 
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 M is the quark mass and A2 is the confinement strength. They have a different value for each quark flavour. In 
RHM, the confined single quark wave function (ψ ) is given by: 
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Where E is an eigenvalue of the single particle Dirac equation with the interaction potential given in (1). The lower 
component is eliminated by performing the similarity transformation, 
 
                 Uψ φ=                                                                                            (5)                                                                                                           

 
Where U is given by, 
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Here, U is a momentum and state (E) dependent transformation operator. With this transformation, the upper 
component φ  satisfies the harmonic oscillator wave equation. 
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,                                                             (7)                               

which is like the three dimensional harmonic oscillator equation with an energy-dependent parameter2
nΩ : 

 

                                       ( )1 2

n nA E MΩ = +                                                             (8)                                                       

 
The eigenvalue of (7) is given by, 
 

                                                     2 2 2(2 1)n nE M n= + + Ω .                                         (9)                                 

Note that eqn. (7) can also be derived by eliminating the lower component of the wave function using the Foldy-
Wouthuysen transformation as it has been done in [19]. 
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Adding the individual contributions of the quarks we obtain the total mass of the hadron. The spurious centre of 

mass (CM) is corrected [20] by using intrinsic operators for the 
2

ii
r∑  and 2

ii
∇∑  terms appearing in the 

Hamiltonian. This amounts to just subtracting the CM motion zero point contribution from the 2E  expression. It 
should be noted that this method is exact for the 0S-state quarks as the CM motion is also in the 0S state.  
 
We come now to the description of the quark-anti-quark potential; it is given by the VOGEP. Among the several 
versions of the VOGEP, we have used the following one, first derived in [10] from the QCD Lagrangian in the non-
relativistic limit.   
 

)]().
3

2
1(

1
[.

4
)( ijji

jiij
ji

s
ijOGEP r

MMr
rV δσσπλλα

+−=                             (10)           

                      
where the first term is the residual Coulomb energy and the second term the chromo-magnetic interaction leading to 
the hyperfine splittings. The αs is the quark-gluon coupling constant.  
 
2.1: Leptonic decays 
Mesons exhibit several different decay modes such as leptonic, semileptonic, hadronic, radiative, two photon decays 
etc. Depending on the decay products and the force involved, the various models are classified.  It is to be noted that 
the description of the meson spectra is a necessary but not a sufficient condition for aiming at a good explanation of 
non perturbative QCD, since the strong, electromagnetic and weak couplings of mesons can also give important 
clues to the nature of an observed state.  Hence one needs other observables which rely essentially on the same 
dynamical operators like transitions between various states, in order to test the model under study. So, one of the 
tests for the success of any theoretical model for mesons is the correct prediction of their decay rates. The leptonic 
partial widths are a probe of the compactness of the quarkonium system and provide important information 
complementary to level spacings. The quark-antiquark assignments for the vector mesons, as well as the fractional 
values for the quark charges, may be tested from the values of their leptonic decay widths. The decay of vector 

meson into charged leptons proceeds through the virtual photon (qq l l+ −→ ). The 3S1 and 3D1 states have quantum 

numbers of a virtual photon, JPC = 1-- and can annihilate into lepton pairs through one photon. 
 
The leptonic decay width of the vector meson is given by the Van Royen-Weisskopf formula [21], 
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In the above equations, mnS and mnD are the masses of  nS and nD vector meson, Q is the charge content of the quark, 

mq is the mass of the quark, emα  is the fine structure constant, RnS(0) is the radial S wave function at the origin and 

(0)nDR′′  is the second derivative of the radial D wave function at the origin. The vector meson is described by the 

wave function ψ(r)
r

 for quark-antiquark pair where q qr r r= −r r r
.The leptonic decay width is proportional to the 

average value of the squared charge, the squared wave function at the origin which gives the probability that the 
quark and antiquark will interact with the photon at the origin of their relative coordinates and the mass of the vector 
mesons. Several experimental quantities are sensitive to squared wave function at the origin. Of these, the one best 
measured and free from theoretical ambiguities is the rate for vector meson decay into lepton pairs.  The average 
values of the squared charge for different vector mesons are calculated using their wave functions. For charmonium 
system there are four parameters associated with the calculation of leptonic decay width. These are the masses of the 
c and b quarks, the confinement strength ac, the harmonic oscillator size parameter b. The quark-antiquark 
assignments for the vector mesons, as well as the fractional values for the quark charges, may be tested from the 
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values of their leptonic decay widths. The leptonic decay width is proportional to the average value of the squared 
charge, squared wave-function at the origin and the mass of the vector mesons. Using (11 &12) we have computed 
leptonic decay widths of light vector mesons which are listed and are compared with experimental values [4] in table  
IV.  
 
3. Fitting Procedure 
The parameters are the masses of charm (Mc) which is taken as parameter. The other parameters are confinement 
strength A2, the oscillator size parameter b and the strong coupling constant αs. The value of b is fixed by 
minimizing the expectation value of the Hamiltonian for the pseudo scalar mesons. The confinement strength A2 is 
fixed by the stability condition for the variation of the mass of the mesons against the size parameter b. The αs is 
fixed by the J/Ψ - ηc mass splitting. The mass difference arises from the colour magnetic term of OGEP. The values 
of the parameters used in our calculation are listed in table I. 
 
4 Results of S wave Meson Spectra and leptonic decay widths  
In the present study, the product of quark-antiquark oscillator wave functions is expressed in terms of oscillator 
wave functions corresponding to the relative and CM coordinates. The Hamiltonian matrix is constructed for each 

meson separately in the basis states of  2 10, 0; S
CM CM JN L L+= =  and the masses of the pseudo scalar mesons 

(PSM) and vector mesons (VM) after diagonalisation for successive values of maxn  in M1 are listed in table II and 

table III respectively. We get a very good agreement with the experimental masses [24] of the ground-state of PSM 
and VM. The OGEP is attractive for PSM hence the diagonalisation in the space of radially excited states brings 
down the value of PSM to their physical mass. The calculated values of leptonic decay widths for/J ψ , 

(2 )Sψ and (4040)ψ   are given in table IV. The agreement is not very good   in comparison with the available 

experimental data [22].  
 

Table I .Values of the parameters used in our model .  
 

Parameters   
Mc (MeV) 847 
Ω( fm) 0.77 

           sα  
0.6 

     A2 (MeV fm-2) 3693 
 

                 Table II. The PSM masses (in MeV) for successive values of nmax  

 

nmax )( cccη  

1 3215.42 
2 3093.24 
3 3022.42 
4 2988.94 
5 2983.34 
Expt. 2980±1.2 

 

 
     Table III. The VM masses (in MeV) for successive values of nmax. 

 

nmax )(/ ccJ ψ  

1 3186.73 
2 3137.17 
3 3121.69 
4 3101.56 
5 3099.67 

Expt. 3096.916±0.011 
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Table IV Leptonic decay widths of charmonium states [in keV]. 
 
 

 
 
 
 
 

CONCLUSION 
 

In our present work, we have investigated the masses of ground state charmonium mesons in the semi relativistic 
model.  The calculation shows that the computation of mesonic masses and mass splittings using OGEP   is adequate 
for both PSM and VM. For the attractive OGEP for PSM, the contribution from the off-diagonal elements is found 
to be significant. For the VM, there is no substantial change in the masses by increasing nmax as OGEP is repulsive 
and hence perturbative techniques are adequate and are justified. There is a significant contribution from the colour 
electric term of OGEP.   The masses for both PSM and VM converge to the experimental values when the 
diagonalisation is carried out in a larger basis. The proposed model does not give a very good prediction of leptonic 
decay widths of charmonium.   
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Meson 
Exptl leptonic 

width [22] 
Calculated 

leptonic width 
J/ψ(1S) 5.55 ± 0.14±0.02 4.27 
Ψ(2S) 2.38 ± 0.04 1.89 
Ψ(4040) 0.86 ± 0.07 0.43 


