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ABSTRACT

Comparative molecular field analysis (COMFA) which is a three-dimensional quantitative
structure activity relationship (3D-QSAR) technique was performed on 1,3,4-thiadiazole
derivatives having anti-inflammatory activity. This study was performed using 28 compounds, in
which the CoMFA model was devel oped using a training set of 25 compounds. Three compounds
(selected at randomly served as a test set), which were not used in model generation, were used
to validate the CoOMFA model. CoMFA derived QSAR model shows a good conventional squared
correlation coefficient r? and cross validated correlation coefficient r?cv 0.980 and 0.617
respectively. In this analysis steric and electrostatic field contribute to the QSAR equation by
71.7% and 28.3% respectively, suggesting that variation in biological activity of the compounds
is dominated by differencesin steric interactions.

Keywords: 3D-QSAR, CoMFA, 1,3,4-thiadiazole derivatives, Anflammatory agents.

INTRODUCTION

Comparative Molecular Field Analysis (CoMFA) is lade-dimensional quantitative structure
activity relationship (3D-QSAR) approach, introddcen 1988 by Cramer [1,2]. It was

developed slowly. From the very first formulatiohablattice model to compare molecules by
aligning them with a putative pharmacophore andnlapping their surrounding fields to a three-
dimensional grid, CoMFA approach was an applicatibthe dynamic lattice oriented molecular
modeling system (DYLOMMS), as it was called till8R A real advance resulted in 1987, the
method was still named DYLOMMS but now it used gridcluding several thousands of points,
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partial least squares (PLS) analysis and most itapfyra cross-validation procedure to check the
predictive ability of different models. CoMFA is biar the most often employed receptor-
independent (RI) 3D-QSAR approach, reflecting a ahoeonceptually satisfying scientific
approach reduced to practice as a well-written\grdatile software package. In this method a
relationship is established between the biologicélities of a set of compounds and their steric
and electrostatic properties [3-6].

There are many reports in the literature of sudaéspplication of CoMFA that have not only
led to predictive models within an analogue seokbiologically active molecules, but also to
insightful information on the general requiremefaisthe expression of the activify-14]. For
establishing relationship between structure andlobical activities of the synthesized
compounds [15-17] quantitatively, three-dimensiogaantitative structure activity relationship
(CoMFA) study was carried out.

MATERIALSAND METHODS

Data Set: A dataset of 28 molecules [15-17] synthesized ea(li,3,4-thiadiazole derivatives)
having anti-inflammatory activity has been takenthe present studyl @ble-1). Selected data
set, their biological activity is shown ifable-l and 2 forming the training and test set
respectively. For CoOMFA studies, we have convetledpercent paw oedema inhibition data to
percent percent paw oedema inhibition per micronaflelrug per kilogram of body weight
(BA), then logarithmic value of biological activifjog BA) was taken [18].

Table-1: Structureand biological activities of training set molecules (25)

!
/ S>\NH/\CH2X

R
Compound R X AA* Mol. Wt. | BA** log BA
S. No.
1 H / 48.57 318.44 0.1546 -0.81
2 H \ 25.71 318.44 0.0818 -1.09
_|\>7
3 H / 45.71 304.41 0.1391 -0.86
—N

30

Scholars Research Library



Sanmati K. Jain et al

J. Comput. Method. Mal. Design., 2011, 1 (3):29-38

4 H /_/7 37.14 346.49 0.1286 -0.89
_NLL

5 H i 31.42 346.49 0.1088 -0.96
_N\_<

6 H Q 28.57 398.57 0.1139 -0.94
_NO

7 H : : 25.71 302.42 0.0777 -1.11
—N

8 H Nij 42.85 288.37 0.1235 -0.91

9 H N;/j 14.28 302.35 0.04317 -1.36

O

10 CH,O- / 28.57 348.46 0.09935 | -1.00

11 CH,O- \ 8.57 348.46 0.02986 -1.52
_’\>7

12 CH,O- / 37.14 334.44 0.1242 -0.91
—N

13 CHO- /_/7 28.57 376.52 0.1075 -0.97
_NLL

14 CH,O- i 8.57 376.52 0.03226 -1.49
_N\_<
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15 CH,O- Q 17.14 428.59 0.07346 -1.13
_NO

16 CH,O- / \ 5.71 334.39 0.0191 -1.72
—N O

__/

17 CH,O- 14.28 332.42 0.04746 -1.32
—N

18 CH / 30.00 332.46 0.0997 -1.00

19 CH \ 14.28 332.46 0.0475 -1.32
_’\>7

20 CH /_/7 31.42 360.52 0.1132 -0.95
_NLL

21 CH Q 22.85 412.59 0.0943 -1.02
_NO

22 CH Nij 28.57 302.39 0.0864 -1.06

23 CH N;/j 05.71 316.38 0.0181 -1.74

(@)

24 Cl Q 08.57 433.01 0.0371 -1.43
_NO

25 Cl ij 31.42 322.81 0.1014 -0.99

* = Percent percent paw oedema inhibition per nmwte of drug per kilogram of body weight orally.
** = Percent percent paw oedema inhibition per meole of drug per kilogram of body weight.
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Table-2: Structure and biological activities of test set molecules (3)

Compound R X AA Mol. Wt. BA log(BA)

S. No.

1 H / 51.42 318.44 0.1637 -0.79
—N

2 H i 20.00 360.52 0.0721 -1.14
_N\_<

3 CH;O- /~ \ 14.28 318.39 0.0455 -1.34
—N 0

__/

* = Percent percent paw oedema inhibition per nmwte of drug per kilogram of body weight orally.
** = Percent percent paw oedema inhibition per onicole of drug per kilogram of body weight.

Molecular Modeling

Molecular Modeling and CoMFA studies were perforneadSilicon Graphics Octane computer
using molecular modeling package SYBYL 6.5 using ttandard TRIPOS force field.
Structural manipulations were performed with molacumodeling package SYBYL 6.5 using
the standard TRIPOS force field. Partial atomicrgha of ligands were calculated using within
MOPAC. The structures were then optimized by enengipimization using the Powell
algorithm to a final root mean square gradient.66(kcal / mol.

Alignment

The alignment, i.e. molecular conformation and r@é&on, is one of the sensitive inputs for
CoMFA. One of the most active compounds used asfeaence compound. The compounds
were fitted to the active analogue compound.

GRID Size

Once the molecules are aligned a grid or lattieestablished which surrounds the set of analogs
in potential receptor space. CoMFA studies use grslution most often, 2°AThe choice of
grid resolution represents a compromise betweerpuatational practicality and detailing of the
fields. If the grid resolution is too small, themlber of field—points (cells) becomes too large to
perform a timely analysis. Moreover spatial infotima on field preference can be lost, through
a ‘smearing out’ effect, if the cells become toca#inThe grid resolution in the 1 to 2 Aange
corresponds to, at best, differentiating singléoarcarbon (1.54 A from one another.

CoMFA Interaction Energy

The steric and electrostatic (potential fields)rgres were calculated at each lattice intersection
of a regularly spaced grid box. The lattice spaciag set a value of 2.0°ACoMFA region was
defined automatically which extends the latticelsvakeyond the dimensions of each structures
by 4.0 A’ in all directions. The Lennard-Jones Potential @udbumbic term which represent,
steric and electrostatic fields respectively, wakeulated using the TRIPOS force fields.
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An sp’ carbon atom with a van der Waals radius of 1.82md a +1.0 charge served as the probe
atom to calculate steric and electrostatic fieldse default value of 30.0 kcal/mol was used as
the maximum electrostatic and steric energy cutoff.

Partial least squares (PLS) and Cross-validation in CoM FA

The last step in a CoMFA is a patrtial least sq@araysis to determine the minimal set of grid
points which is necessary to explain the biologmetivities of the compounds. Partial least—
squares is an iterative procedure that appliesctiteria to produce its solution. First, to extract
new component, the criterion is to maximize therdegof commonality between all of the
structural parameter columns (independent variabtdectively and the experimental data
(dependent variable). Second, in the evaluatiors@haf a PLS iteration, the criterion for
acceptance of the principal component just gengrigtan improvement in the ability to predict,
not to reproduce, the dependent variable.

The technique used in PLS to assess the prediability of a QSAR is cross-validation [19].
Cross-validation is based on the idea that the Wwagt to assess predictive performance is to
predict. When cross-validating, one pretends the or more of the unknown experimental
value is, infect, unknown. The analysis being cnaglated is repeated, excluding the
temporarily ‘unknown’ compounds and then using tesulting equation to predict the
experimental measurement of the omitted compound{s cross-validation cycle is repeated
until each compound has been excluded and predietadtly once. The results of cross-
validation are the sum of the squared predictionrsey sometimes called the predicted residual
sum of squares (PRESS). For evaluation of the dvaralysis, the PRESS is commonly
expressed as a cross-validated correlation coeficicv, or xv-f value.

RESULTSAND DISCUSSSION

General structure of 1,3,4-thiadiazole derivatigeshown inFigure-1.

Pa P, Pi
Figure-1: General structureof 1,3,4-thiadiazole derivatives

The results of the CoMFA studies are summarize@able-3. From this table it is evident that
the COMFA derived QSAR shows a good cross validgté@l617) and conventionat (0.980),
therefore indicates a considerable predictive aodetative capacity of the model. In this
analysis both steric and electrostatic field cantie to the QSAR equation by 71.7% and 28.3%,
respectively, suggesting that variation in biolayi@ctivity of compounds is dominated by
differences in steric (van der Waals ) interactions
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Table-3: Summary of CoMFA results

2

r° conventional 0.980
Standard error of estimate 0.04b
F value 143.51;
P value 0.000
r* cross-validated 0.617
Standard error of predictions 0.198
No. of components 6
Steric contribution 0.717
Electrostatic contribution 0.283

* Results from leave one out (LOO) cross
validation analysis using six components.

The real test for model predictiveness is to pitetthie activity of ligands, which were not used in
the model generation. Our test set has 3 ligand®mpounds, which were randomly kept aside
as a test set. The CoMFA model exhibited a goodigtigeness on these ligandBaple-4 and
5).

Table-4: Datafrom PLS Cross- validated analysis (For Training Set)

Compound | Actual Calculated | Residual
log (BA) | log (BA)
01 -0.81 -0.84 0.03
02 -1.09 -1.10 0.01
03 -0.86 -0.89 0.03
04 -0.89 -0.80 -0.09
05 -0.96 -0.95 -0.01
06 -0.94 -0.90 -0.04
07 -1.11 -1.09 -0.02
08 -0.91 -0.88 -0.03
09 -1.36 -1.45 0.08
10 -1.00 -0.97 -0.03
11 -1.52 -1.49 -0.03
12 -0.91 -0.91 0.00
13 -0.97 -1.04 0.07
14 -1.49 -1.48 -0.01
15 -1.13 -1.13 0.00
16 -1.72 -1.71 -0.01
17 -1.32 -1.37 0.04
18 -1.00 -1.02 0.02
19 -1.32 -1.28 -0.04
20 -0.95 -0.98 0.03
21 -1.03 -1.07 0.05
22 -1.06 -1.06 0.00
23 -1.74 -1.69 -0.05
24 -1.43 -1.44 0.01
25 -0.99 -0.99 0.00

BA = Biological Activity.
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Table-5: Predicted biological activities of Test set molecules
(From CoM FA Modél)

Compound Actual Calculated | Residual
log (BA) log (BA)

01 -0.79 -1.07 +0.28

02 -1.14 -1.13 -0.01

03 -1.34 -1.58 +0.24

To visualize the CoMFA steric and electrostatiddsefrom PLS analysis, contour maps of the
product of the standard deviation associated with CoMFA column and coefficient (SD x
Coeff.) at each lattice point were generated. Thataur maps are plotted as percentage
contribution to the QSAR equation and are assatwmith the differences in biological activity.

In Figure-2 the regions of high and low steric tolerance dnews) in green and yellow
polyhedral, respectively. The areas of high bulkremce (80% contribution) are observed near
P1 position of the ligandg={gure-1). The active analogue (SM-1) shownhkigure-2, shows
that propyl group embedded in the green regionlatsBbsite. The anti-inflammatory activity
shown by the compounds 3, 4, 5, 8, and 15 was dube presence of bulky groups in P1
position surrounded by green contours in the sfegid plot.

In the present sterically unfavored yellow regiorese observed near the P3 position. The steric
bulk in this region has a negative effect on thevig as represented by low activity of the
compounds 14, 17, 26, 36 and 42. Sterically unfdvgrellow contours are also present at P1
position, embedded in the surrounding green costosuggesting that there is a definite
requirement of a substructure with appropriate stiaexhibit high activity.

Figure-2: Steric contour plot: favored (contribution level 80%) and unfavored (contribution level 20%) areas
arerepresented as green and yellow contours, respectively.

CoMFA electrostatic fields are shown as blue arlpgelyhedral inFigure-3. A low electron
density within the molecules near blue and red Ipedyal, respectively, increases or decreases
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the activity and vice versa. Presence of a blugotwrat P1’ and P3 position suggesting that a
low electron density in this area will have a pesiteffect on the biological activity and
substructures with high electron density will reglube activity. A predominant feature of the
electrostatic field plot is the presence of redtoars at P1”, P2 and P3 position suggest that high
electron density in this region increases the dgtihough the electrostatic field contributions
are less, a small change in electrostatic interastiwill have a considerable effect on the
activity. Graph between actual and predicted bicklgactivity for training and test is shown in

Figur

e4.

Figure-3: Electrostatic contour plot: positive (contribution level of 80%) and negative (contribution level of
20%) chargefavoring areas arerepresented asblue and red contours, respectively.

Graph between actual and predicted biological activity for

Training Set
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Figure-4: Graph between actual and predicted biological activity for Training set and Test set.
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