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ABSTRACT 
 
Theoretical studies for reaction mechanism of the gas phase elimination of 2-petnanone were carried out at 
B3LYP/6-31+g(d) level of theory. The mechanism for elemination is Norrish type II. The elimination reaction 
proceeds via a six-membered cyclic transition state with the formation of ethelene and propen-2-ol (acetone enol), 
which rearranges to the ketone. The calculated kinetic and thermodynamic parameters are in reasonable agreement 
with the reported experimental values. Analysis of the progress along the reaction coordinate, in terms of 
geometrical parameters suggest these reactions are dominated by the abstraction of a hydrogen atom from the γ -
carbon by the carbonyl oxygen to give the diradical, and together with an important cleavage of Cα-Cβ bond in the 
transition state through concerted reaction mechanism. 
 
Keywords: 2-pentanone, Six-membered ring transition state, Density Functional Theory. 
_____________________________________________________________________________________________ 

 
INTRODUCTION 

 
Ketones are a major class of organic chemicals and are widely used as solvents. They are important in the chemistry 
of the atmosphere and in combustion systems from direct emissions and as intermediates[1,2]. Their 
photodissociation in the lower atmosphere results in formation of free radicals and may influence the atmospheric 
oxidation capacity. Ketones are also used as fuel tracers for monitoring fuel properties, such as concentration, 
temperature, density, pressure, velocity, and distribution, using laser-induced fluorescence [1,2] and as fuel additives 
in reducing soot emissions [3,4] . 
 
Chemical kinetics and dynamics of unimolecular reactions of isolated molecules in the gas phase are well 
understood [5,6]. The framework of a unimolecular process is often applied, at least as an idealization, to condensed 
phase processes although the effects of the environment on the process can be profound [7]. 
 

Photo induced hydrogen abstraction reaction, which is better known as the Norrish type II reaction, has been a 
highlight in the development of a general picture of how photochemical reactions occurs[8]. The rate constant for 
internal hydrogen abstraction depends on electronic configuration, on C-H bond strength or inductive substituent 
effects, and on conformational factors. These factors will determine the observed product ratios of photoreactions 
where more than one product is possible. 
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Carbonyl compounds are widespread in the atmosphere. Certain carbonyls are directly emitted by various sources, 
but the vast majority of them are produced in the atmosphere by oxidation of hydrocarbons [9]. Photolysis is an 
important removal pathway for atmospheric carbonyls. In the lower atmosphere, where the availability of radiation 
is limited to a wavelength of above 290 nm, the photolysis of carbonyls is driven by their weak absorption band in 
the wavelength range 240–360 nm as a result of a dipole forbidden n →π* transition [9,10]. Photolysis of Ketones, 
that have at least one γ- hydrogen on a chain connected to the carbonyl group such as pentanone, in this pathway 
(Norrish type II process), cleavage occurs at the Cα-Cβ bond to give, as the major product, a ketone of shorter chain 
length and an alkene. Thus for 2-pentanone is known to occur through the following pathways in equation (1): 

(1)

 
 
This reaction occurs in an interesting way. Whatever the nature of th n →π* excited state, S1 or T1, the primary 
photochemical reaction is the abstraction of a hydrogen atom from the γ-carbon by the carbonyl oxygen to give the 
diradical 1, as in equation (2):  
 

(2)

 
 

The subsequent dark reactions readily are understood as typical of diradicals, cleavage of 1 at Cα-Cβ gives ethene 
and an enol, as in equation (3). 
 

(3)

 
A large number of gas-phase unimolecular reaction, which have been studied, appeared to take place by way of 4-
centre and 6-centre cyclic activated complexes [11]. 
 

Serinyel et al [12]. for example, have published on the combustion kinetics of 3-pentanone and used 
thermochemistry and kinetic parameters corresponding to studies on acetone in their model development. Several 
studies on the fundamental thermochemistry of the intermediate radicals on ketones or their elementary oxidation 
kinetics have recently appeared. Sebbar et al.[13]. published on the thermochemistry of 2-butanone and show that 
although the primary C−H bond on butanone adjacent to the carbonyl is similar to acetone, the secondary C−H bond 
energy is more than 5 kcal mol−1 weaker. Hudzik and Bozzelli [14] have also reported on thermochemical 
parameters of series of ketones as a function of temperature and reveal problems with matching entropy and heat 
capacity experimental data with vibration analysis using only frequencies from DFT and ab initio methods. 
 
In this work, the mechanism of unimolecular elimination reaction of 2-pentanone to give ethene and enol will be 
discussed by means of the description of the energy, the geometry, and the stability of transition state structures 
involved in such reaction. This information provides a detailed energy profile for 2-pentanone elimination that 
matches conclusions which have been obtained experimentally. 
 
 



Musa E. Mohamed                             J. Comput. Methods Mol. Des., 2015, 5 (3):63-68  
______________________________________________________________________________ 

65 
Available online at www.scholarsresearchlibrary.com 

METHOD OF CALCULATIONS 
2-pentanone was chosen as model compound to study the mechanism of intramolecular elimination reaction. In the 
present study Density Functional Theory Study B3LYP (DFT) level of theory calculations were performed with the 
Gaussian09 [15] software packages, running in an Intel Pentum (R) 1.86 GB personal computer. All structures were 
fully optimized at the Density Functional Study (DFT) level, using the high level 6-31+g(d) basis set in gas phase. 
Also, the geometries of the reactants, products, intermediates, and transition states involved in the reactions were all 
fully optimized by using B3LYP/6-31+g(d). The structures thus obtained were subjected to vibrational analysis 
calculations toward their characterization as local minima (all positive force constants) or transition states (one 
imaginary force constant only). For the later structures, IRC[16] calculations were performed along the transition 
vector defined by the vibration mode of this imaginary frequency in order to asses that the saddle point structure 
connected downhill the corresponding forward and backward minima. This methodology allowed the identification 
of the reaction intermediates and transition state structures along the reaction path.  The standard state is 1 atm., 
which is the default in Gaussian calculations.                                                                                                                   

 
RESULTS AND DISCUSSION 

 
The elimination reaction of aliphatic ketones is kind of a Norrish type II reaction, which generally is the 
photochemical intramolecular abstraction of a γ-hydrogen by the carbonyl group to produce a 1,4-biradical as a 
primary photoproduct through cyclic transition state. 
 
The mechanism of intramolecular elimination reaction of 2-pentanone to give ethene and enol (1-3 in scheme 1), 
scheme 1 shows the atoms directly involved in the reaction and the overall process. Figure 1 shows the energy 
profiles for the process in the gas phase with B3LYP/6-31+g(d). Tables 1 and 3 show the relative energies, ∆Hº, ∆Gº 
and ∆Sº data for the structures involved, and table 2 show the bond length for each steps of the structures of the 
reaction path from reactants to products in Angstrom. 
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Scheme 1: Mechanism of Intramolecular elimination Reaction of 2-pentanone 
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Figure 1. Energy profile for the elimination of 2-pentanone, Energy is in a.u. 
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Table 1. Energies (RB3LYP) for each of the structures of the reaction path from the standard thermochemistry output of a frequency 
calculation a 

 

Structure   ENERGY  E(RB3LYP)      
Reactantsb 

Transition state 

Products 

-271.7935  
-271.6962 
-271.7377  

aAll structures were fully optimized. Cartesian coordinates of all structures are available as supplementary material. Energy in a.u. 
bReactants, cyclic transition state-TS, and product respectively (refer to Scheme 1). 

 
Six-member ring Transition state Formation: The starting point for this step process is structure 1(scheme 1) 
where the incoming carbonyl oxygen (O6) of 2-pentanone is the site of the nucleophilic attack, where the hydrogen 
atom (H16) abstracted from the γ -carbon by the carbonyl oxygen (O6). The distance H16-O6 is 3.30402 Å at the 
start (table 2, scheme 1), which shortened to 1.19210 Å in transition state, simultaneously the bond H16…C9 
(1.09712 Å) in the reactant stretched to 1.42206 Å in the transition state, the bond C9…C12,which distance is 
1.53370 Å is shortened to 1.40189 Å, partial formation of double bond (table 2), the carbonyl bond C5…O6 
distance is 1.22013 Å, which stretched to 1.30932 Å i.e partial formation of sigma bond in the transition state, 
simultaneously  there is a partial formation of the double between C7…C5, from 1.52423 Å to 1.38304 Å. The bond 
between C12…C7, starts to break from 1.54405 Å to 2.26644 Å in the transition state. This mechanism occurs via 
six-membered ring transition state TS.  The calculated result of the vibrational analysis shows that there is only one 
strong imaginary frequency in the transition states, and the imaginary frequency of TS is −1320.38i. The vibration 
vector direction of corresponding imaginary frequency represents the fracture and generation of the molecular bond 
to construct the six-membered ring cyclic transition state. The transition state are verified by the intrinsic reaction 
coordinate (IRC) analysis, that is, TS connects directly the reactant and product  in the reaction path , The reaction 
pathway includes only a one-step elementary reaction process, figure 2. 
 

 
 

Figure 2. Intrinsic Reaction Coordinate (IRC) analysis of six-membered ring transition state using B3LYP/6-31+g(d) methods 
 
The energy barriers for the elimination reaction of 2-pentanone to form six-membered ring transition state (TS) is 
56.13 kcal mol-1 (table 3), downhill from these transition state structure, the system evolves to form products 
(scheme1) via the formation of an C9-C12 double bond and complete transfer of the (H16) to oxygen (O6), and 
complete breaking of C7-C12 bond to form ethelene and enol, scheme 1 and figure 3.  
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Table 2. Bond length for the structures of the reaction path from  reactants to products in Angstrom 
 

Bond length in Å Reactants Transition state TS Products 
O6-H16,  3.30402 1.19210  0.97526 
H16…C9, 1.09712  1.42206  2.54581 
C9…C12, 1.53370  1.40189  1.33686 
C12…C7, 1.54405  2.26644  4.39922 
C7…C5, 1.52423  1.38304  1.34218 
C5…O6,  1.22013  1.30932  1.37134 

  

    
Reactants                             Transition state -TS 

 
Products 

 
Figure 3. Optimized structures of reactants , six-membered ring transition state- TS, and products calculated by B3LYP/6-31+g(d) 

 
According to the results obtained above in the energy profile for the elimination of 2-pentanone figure 1, and 
Intrinsic Reaction Coordinate (IRC) analysis figure 2, the reaction is endothermic. 
 

Table 3:Calculated energies of reactants, six-membered ring transition states, and   products using B3LYP/6-31+g(d) in kcal mol-1 a,b of 
elimination of 2-pentanone 

 
Compound      ∆E 

kcal mol-1 
   ∆G 
kcal mol-1 

   ∆H 
kcal mol-1 

    ∆S 
Cal mol-1K-1 

Reactantsc 
Transition state 
Products 

  0 
56.1313 
22.3554 

  0 
57.3474 
34.3049 

    0 
56.1307 
21.7624 

  0  
-4.079 
42.065 

a All structures were fully optimized. Cartesian coordinates of all structures are available as supplementary material. 
b  Energies reported relative to the sum of energies of  separated  reactants. 

c Reactants, cyclic transition state and product refer to Scheme 1. 
 
If we consider the energy values (table 3) calculations (B3LYP) show that the initial elimination has energy barrier 
of 56.13 kcal mol-1, whereas the potential energy barrier to form the product is 22.35 kcal mol-1. This suggests that 
the elimination reaction of 2-pentanone is endothermic and one step process. Similar conclusions for this type of 
reaction have been drawn from the theoretical and experimental results for other simple ketones [17]. 
 
If Gibbs energy is considered, B3LYP calculations show barriers of 57.34 kcal mol-1for elimination of 2-pentanone 
to form six-membered ring transition state and 34.30 kcal mol-1 to form the ethelene and enol.  
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CONCLUSION 

 
On the bases of our elimination model, carbonyl oxygen is main role in hydrogen transfer from γ -carbon to form 
biradical through six-membered ring transition state.  
 
Intramolecular elimination of 2-pentanone take place by concerted reaction mechanism. 
 
According to thermodynamic point of view the reaction is endothermic reaction. 

 
Supplementary Informations 
Supplementary information (output results of B3LYP calculations) are available free of charge, on request. 
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