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ABSTRACT 
 
Predictive Microbiology is a branch of Food Microbiology that studies the microbial responses against several 
environmental factors that can be controlled, giving as a result responses that are quantified and summarized using 
mathematical equations. This study makes a review of the description and importance of some predictive models 
used as a tool in food conservation. Due to the fact that the application of mathematical models to the growth of 
microorganisms allows us to predict microbial behavior in storage conditions, its application may give to the 
establishment of the product´s shelf life a greater precision.  
 
Key words: predictive microbiology, microbial recount methodology, microbial growth models.  
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 
Microbial diagnosis is based in laboratory techniques that require time associated to the growth of microorganisms, 
which has a detrimental impact on making decisions, especially in the industry [32]. The require time for cell 
revitalization and cell recount through CFU (Colony Forming Units) is at least 48 hours. Moreover, for pathogen 
identification it is common to turn to biochemical tests or selective mediums, this leads to wait for days or even 
weeks to get results. Because of this, quicker methods have been developed to obtain results (30), including the ones 
developed by Predictive Microbiology.  
 
Predictive Microbiology has become a worldwide cutting edge tool that allows us to evaluate, through suitable 
mathematical models, the response of microorganisms to environmental factors. This discipline has been applied in 
great measure to pathogenic bacteria and microorganisms associated to food spoilage. However, Predictive 
Microbiology can extend its reach to other fields such as Medicine, Biology and even Pharmacy, where it studies the 
growth and inactivation of microorganisms [32]. 
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Predictive microbiology can be used to model the growth, survival and death of microorganisms in terms of the 
main factors of food preservation, especially when these factors are used together in so-called combined methods of 
preservation. 
 
Nowadays, given the fact that predictive models have evolved from the basic research labs to being used in the 
industry and in regulatory agencies they must be consider as initial estimates of microbial behavior and serve as 
guidance to asses potential problems [7 & 46].  
 
Predictive models do not replace completely the evaluation of microbial behavior neither the judgment of an 
experimented microbiologist. However, they may provide useful information to make a decision in the manufacture 
and conservation of food [46]. 
 
Hence, the goal of this review describe some of the models used in Predictive Microbiology and highlight their 
importance and application as a tool for food preservation. 
 
LITERATURE REVIEW 
Definition and history of Predictive Microbiology 
Predictive Microbiology is the detailed knowledge of microbial responses to certain environmental conditions, 
which allows an objective evaluation of the effect that processing and storage parameters have on the food quality 
and safety. This response includes the accumulation of a series of knowledge of the behavior of microorganisms 
found in food, consequently resulting in the development of mathematical models [22]. 
 
Predictive Microbiology is based on using mathematical modeling to describe microbial behavior and predicting 
growth. With this technique, problems with food spoilage caused by microorganisms and food safety can be 
resolved through an objective analysis based on scientific knowledge [32]. This is remarkable since the increase of 
infections caused by toxins present in food in many countries. 
 
It has been recognized that the origin of predictive models in food was a model developed by [12] used to describe 
the thermal treatment needed to destroy 1012Chlostridium botilinum type a spores [46 & 24]. This model described a 
process with a broad margin of safety and probably its continuous use prevented it from being recognized at that 
time as a predictive model.  
 
Other references place the beginning of Predictive Microbiology in the 1930´s, when Scott established that knowing 
the growth rate of certain microorganisms at different temperatures was vital for fresh meat spoilage studies. Once 
this information was obtained one could predict the relative influence exerted by various organisms on spoilage at 
each storage temperature. Scott understood the potential of gathering kinetic data about the response of 
microorganisms, to predict useful life and food safety[24]. 
 
After a long time of silence from Predictive Microbiology in the scientific literature, in the 1960´s and 1970´s 
predictive models were used to resolve food poisoning problems, particularly botulism [26, 35& 39]. 
 
However, it was not until the 1980´s that the interest in Predictive Microbiology started as a result of a massive 
outbreak of food poisoning and therefore the public need to provide healthy and safe food. Two pathogenic 
microorganisms transmitted in food, one traditional as Salmonella and one emergent, Listeria monocytogenes of 
psychotropic origin favored placing food research as a priority for the United States, United Kingdom, Australia and 
New Zealand governments  [22]. 
 
During the 1980´s and part of the 1990´s various approaches of growth kinetic models dominated the Predictive 
Microbiology scene, but nowadays the return of the probability models for growth is clear, which can be attributed 
to the following:  
a) Recognizing that the variability of responses in an estimated time period (generation time and latent period) does 
not show a normal distribution, but it is commonly described by an inverse Gaussian distribution, where the 
response´s variance is directly proportional to the square or cube of the mean response time [34]. 
b) In the case of potentially dangerous pathogens (Escherichia coli O157:H7), in situations when the microorganism 
is found in a low infectious dose, it is require to know it, in order to recommend conditions to avoid its 
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multiplication, thus the probability of finding this kind of organism is more important than knowing its growth rate, 
maximum population density or generation time.  
 
Prediction models allow us to interpolate experimental data points, helping predict responses for unstudied 
conditions [13]. Moreover, predictive growth models give us the chance to estimate food´s useful life, evaluate 
hygienic conditions in which the food was processed, to identify critical points in the process, to guide on how 
environmental variables affect the pathogen´s behavior and to determine the microbiological safety of food [23]. 
 
Kinetic parameters of the models  
In Microbiology, growth refers to an increase of cells per unit of time in a microbial population [20]. In this case, it 
is important to consider the presence of coenocytic microorganisms i.e. multinucleated, where the nuclear division is 
not followed by cell division, whereby, growth causes an increase in size but not in cell number. Growth causes an 
increase in the number of cells when microorganisms reproduce by binary fission or budding [31]. The growth curve 
of a microorganism can be divided in four different phases: lag phase, exponential phase, stationary phase and 
death phase (Fig. 1). The lag phase is the period of time when cells adapt to a culture medium before starting to 
grow. The logarithmic or exponential phase is when the microorganisms grow and divide themselves until a 
maximum is reached, all of this as a function of the medium, growth conditions and genetic potential. In this period 
there is a linear relation between the logarithm of the number of cells and the incubation time. Since every cell 
divides at slightly different rates, the growth curve increases slowly instead of having big fluctuations. The 
stationary phase is when the growth rate slows down, as a result of the decrease in nutrients available or the effect of 
toxic metabolic products accumulating. Finally, the death phase is a consequence of various factors; the most 
important is the depletion of the microbial cell´s energy reserves. In this phase there is also a linear relation between 
viable cells that decrease as time goes by [20 & 31]. 
 
Along the growth process, there are various factors for the microorganism to adapt, such as the composition of the 
medium or the physical state of the strain. Thus, the variability of microbial responses influences in different ways 
the prediction of the microorganism´s kinetics. Said responses can be reflected on growth parameters, such as: latent 
period, generation time and growth rate (Figure 1) 
 

 
 

Fig 1.Phases of microbial growth function of time [20] 
 
Latent period (λ). During this period there is anadjustment in which the microbial cells take advantage of the new 
environment and start an exponential growth period [7]. The growth and multiplication of pathogenic or food 
spoilage microorganisms is not desired. Therefore it is important to accurately estimate their latent period, which in 
most cases is not achieved with a good trust level [23]. In the matter of microbial inactivation kinetics, the latent 
period is observed as a “shoulder” in the logarithmic inactivation curve [15]. 
 
Generation time. Generation time is the time needed to double the microbial population. The generation time varies 
depending on the type of microorganism. A great number of bacteria have a generation time of 1 to 3 hours; it is 
very hard to find microorganisms that reproduce in 10 minutes. Nonetheless, this parameter is useful to indicate the 
physiological state of a microbial population. With the generation time one can evaluate the positive and negative 
effect of a particular treatment upon a microbial population [20]. 
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Growth rate (µm).The growth rate is defined as the pendant in the exponential growth phase and it is related to the 
generation time. The growth rate is the increase in cell mass per unit of time and it is influenced by environmental 
factors (temperature, composition of the medium, and others) as well as the microorganism genetic characteristics 
[20]. 
 
Maximum population density (A). It is the logarithmic growth curve´s asymptote (stationary phase), it is presented 
in Fig.1.  
Types of models. Predictive models are classified by their complexity as primary, secondary and tertiary. Here is 
presented a brief description of these three types of models.  
 
Primary models. Primary models deal with the description of the changes of the microbial number (growth, 
multiplication, and inactivation) over time. For quantifying microorganisms one can use Colony Forming Units 
(CFU), biomass, absorbance or measuring produced metabolites [17]. Most of the primary models that have been 
developed so far determine the amount of microbial population. In these models, the development of a total number 
of cells from a population is described by a simple group of parameters: maximum population density (A), growth 
rate (µm) and latent period (λ) [41]. 
 
The literature suggests that the sum of single cell´s behavior is the same as the population´s. This is what leads to the 
development of more mechanical approaches for Predictive Microbiology [2]. This leads to probabilistic modeling 
techniques, in which the model parameters are casually distributed within the total population. This means that the 
parameters of the model are part of a random distribution, which may represent the biological variability between 
single cells.  Probability models become more useful when the amount of inoculum is small and the individual latent 
period within this small population is highly variable [41]. An example of primary models is the Gompertz equation 
(Ec. 1), [2 & 35] equation and the three-phase linear model.  
 
y = a exp (-exp (b-cx))Ec.1 

 
Where: A is themaximum population density, µm=b is the growth rate and 
 
 λ = c is the latent period.  
 
Secondary models. Predictive secondary models describe the parameters that can appear in the primary models, as 
a function of the environment conditions such as temperature, pH, aw, etc., observing the interaction between two or 
more factors with microbial growth.  
 
Formerly, secondary models for the lag phase referred only to the effect that incubation temperature had; however, 
nowadays new models have emerged, and they include other important factors such as the pre-enrichment 
conditions.  
 
Other authors have developed secondary models independent from generation time and latent period, e.g. 
polynomial approaches [8, 18 & 49] and low complexity models of artificial neuronal networks[14, 16 & 51]. Other 
examples of secondary models are the Arrhenius equation (Ec. 2), square root models and the response surface 
model (8).  
 
µ = µ∞ exp (- Ea/ RT)                 Ec.2 

 
Where: µ is defined as the reaction rate constant, Ea is the activation energy, R is the gas constant, T is absolute 
temperature and µ∞ is the pre-exponential factor.  
 
Tertiary models. Tertiary models can have different forms, starting by combining the first two models (primary and 
secondary) based on laboratory experiments. A representative example of this kind of models is the “Pathogen 
Modeling Program”, created and put at the scientific community´s disposal for free by the USDA; said model allows 
us to import a series of temperature data in order to predict the useful life. Another example is the “Seafood Spoilage 
Predictor” (10), which includes seafood specific deteriorative microorganisms. Finally, tertiary models enable to 
incorporate predictive models into a microbiological risk evaluating network, like SERA (“Salmonella enteritidis 
Risk Assessment”) by the USDA. This kind of models are computer based [17]. 
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Building predictive models. 
Building a predictive model involves the following stages: selecting the strains, generating the data, applying a 
primary, secondary or tertiary model and validating such model. The initial stages of this process are fundamental 
for its success, therefore they are described here:  
 
Strain selection. There are various criteria that are used when choosing the strain for building a model. The strain 
can be chosen isolated or mixed (cocktail). Before selecting a strain it is very important to have a clear idea to where 
the model is aimed, for example: Is the model being used to predicting possible growth of a specific pathogenic 
species? Or is it a model for deteriorative microorganisms in a specific food?  
 
To use a strain that has been previously studied in other scientific research or even for creating other models gives 
and advantage of having knowledge on this specific strain. On the other hand, selecting an isolated strain from food 
you want to create a model for, gives the advantage of knowing the product [33]. The hypothesis that variation 
between strains could be equal or less than the experimental statistical variation was studied by [47]. They studied 
the growth, survival, inactivation and production of toxins from 17 different E. coli strains and observed that the 
variations between strains were greater than the uncertainties related to the experimental error. 
 
[37]Compared the growth of non-pathogenic E.coli M23 with the growth of different pathogenic E.colispecies; they 
only found little differences in the growth responses between the strains. The generated model turns out to be of 
great help, since several researchers do not have access to adequate laboratory facilities to work with the pathogenic 
strain of E.coli and the model that appears to predict the behavior of E.coli M23 is also capable of describing the 
behavior of pathogenic E coli strains including E.coli O157H:7. 
 
Mixed strains are being broadly used in predictive models, because they have a more real picture of the situation in 
food.  
 
Viable cells recount method. The most used method to monitor the growth of a bacterial population is recounting 
viable cells. However, as it has been discussed previously, the conventional microbiological analysis has different 
limitations such as the time required torevitalize, enrich and incubate the samples. Probably the most important 
limitation is that for identifying a microorganism one requires selective mediums and biochemical tests, which can 
delay the results by days or even weeks. Due to these limitations, it has been necessary to turn to the development of 
quick methods that provide results in hours [30]. 
 
For the exact estimation of the growth curve´s parameters it is important the number and the quality of the recounts 
performed by the technicians [5 & 29].  [45]recommend having 10 values per point, minimum. [3]Compared the 
adjustment of three models with groups with few values per point and groups with several values per point, 
indicating that the inaccuracy in the estimated parameters was clearly related to the amount of data.  
 
In order to facilitate the recount of microbial growth, alternative methods such as flux cytometry, turbidimetry, 
impedanciometry among others, have been developed [4]. 
 
When comparing with viable recounts, turbidimetry and impedanciometry are considered automatic methods, which 
allow analyzing a high number of experiments, while flux cytometry and microscopy allow us to get additional 
information, such as the physiological state of the cells [33]. 
 
Flux cytometry. Flux cytometry allows us to measure different physical and chemical features of singles cells in 
suspension, providing an indication on the heterogeneity of eucariotic and procariotic cell populations in a matter of 
minutes [1, 11 & 27]. 
 
Single cells go through a measurement window; in which different parameters of millions of cells can be measured 
per second can be measure at the same time with high accuracy [43]. The dispersion of light measures the size and 
structure of the cells, while fluorescent measurements determine cell content of any component that can be marked 
with a fluorescent dye [44]. This way, flux cytometry combines the advantage of being a technique for single cells, 
with the power to measure millions of cells in a short amount of time. The resulting data is not only an average of 
the cell measurements but also a distribution of the assessed cell parameters.  



Cerón-Carrillo, T. G  et al                               Annals of Biological Research, 2014, 5 (2):18-25 
______________________________________________________________________________ 

23 
Scholars Research Library 

With flux cytometry the possibility of measuring a distribution of data gives an estimation of the microbial 
population´s heterogeneity and this way, also the possibility of detecting subpopulations that for example are 
resistant to a treatment under research conditions. The use of flux cytometry in Predictive Microbiology is limited 
by the cost of equipment. Such is the case, that the research of [38], who used flux cytometry to enumerate viable 
cells of Debaryomyceshanseniiin different environmental conditions. Growth data was used to model the latent 
period (λ) and the maximum growth rate (µmax) as a function of temperature, pH and NaCl concentration.  
 
Turbidimetrymethod. Turbidimetry is a method used to study bacterial growth through optical density 
measurements, which allows us to have a sequence of microbial growth in real time [4 & 9]. Optical density (OD) or 
absorbance has been used for several years to measure concentration, which can be expressed in cell mass, number 
or mean length of bacterial suspensions [25].  
 
Absorbance (A) is defined as the decimal logarithm of the quotient between incident light on the suspension (lo) and 
the transmitted light from the suspension (l) (Ec. 3) [40] 
 
A=log(Io)/(I)            Ec. 3 

 
This technique is based on the fact that small particles diffract light within certain limits in proportion to their 
concentration. Measurements are made with a photometer or spectrophotometer.  
 
According to [23], in turbidimetry, microbial growth is related to the turbidimetry in the medium. These authors 
highlighted the limitations of the method, being the most important one that the vitality recount can only be made if 
the equipment is calibrated to link absorbance to a given number of microorganisms [23]. However, it is possible to 
identify the growth parameters when the inoculum size is below the detection threshold. For this, it is necessary to 
know the initial cell recount and the calibration equation [6]. 
 
TTD Method (time to detection). This method consists in measuring, after an established thermal treatment, the 
probability of a population of microorganisms not growing in a suspension at certain culture conditions. It is an 
analysis that allows us to evaluate the most likely number of survivors (indirect method). This method depends on 
the temperature and the time of treatment in order to achieve a physiological effect [33]. 
 
Microscopy method. Microscopy allows direct study of single cells, which makes it possible to trace that same cell 
for large periods of time. Microscopy has gained interest with the development of computer programs for optic 
interferometry and image analysis. One advantage of this method is that it allows us to study solid systems whose 
situation is similar to which food systems present [33]. There are few reports on the use of microscopy in predictive 
modeling. However, there are comparisons with the TTD method (time to detection) for determining  the latent 
period of Listeria monocytogenescells, having microscopy an advantage over TTD, since it is a direct method that 
allows visual observation of the first cell division, whilst TTD depends on time for detection, growth rate and 
regressive extrapolation to the single cell. Moreover, any treatment that results in the absence of cell division will 
not be detectable through the TTD method [48]. 
 
Model validation  
Validation of predictive models can be done in two ways: 
 
a) Mathematical validation that verifies the accuracy of the generated models. 
b)  
c) Validación en el alimento (sistema real), en la cual lo que se requiere es demostrar que el  modelo predice con 
exactitud el comportamiento de los microorganismos durante el procesado, almacenamiento y distribución [17]. 
d)  
It is important to validate a model in order to evaluate its predictive ability [17]. The accuracy of the models is 
evaluated graphically when data obtained in the lab is compared to the predictions of the model. Moreover, the 
correlation coefficient values (R2), the mean square error and the slant and precision factors are used as confidence 
indicators of the models when applied to food [19]. 
 
However, it is important to mention that even when a model has proved to be adequate to predict experimental data, 
applying those models to food is still questionable [50]. 
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Importance of predictive models 
It is interesting to learn how predictive models can be used permanently in scientific research, the industry and even 
in everyday life. Here are some of the most important applications of predictive models:  
 
• Predictive models help make immediate decisions on the re-process of food, for example, in events outside of the 
process such as lack of salt in the product or inadequate food refrigeration.  
• Predictive models help predict the degree of growth and/or survival of some microorganisms of interest 
(pathogenic or deteriorative) under normal storage conditions, thereby detecting any flaw in the storage and/or 
distribution process, as well as estimating expiring dates in terms of microbial decomposition [28]. 
• Predictive models allow us to identify critical control points in a process in which a Hazard Analysis and Critical 
Control Point system (HACCP) has been implemented.  
• Predictive models may be a teaching tool, especially for people with no training in Food Microbiology; through 
them one can demonstrate the importance of keeping appropriate storage conditions [42]. 
 

CONCLUSION 
 
Progress in Predictive Microbiology in the last few years has been impressive in such a way that it is being used in a 
great variety of research and industry operations. Predictive models are now acommon tool when doing research and 
a valuable aid to assess and design food conservation processes. However, it is not possible yet to depend only on 
these models to determine unequivocally growth, survival and death of microorganisms present in food. 
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