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ABSTRACT

Predictive Microbiology is a branch of Food Microtogy that studies the microbial responses agasesteral
environmental factors that can be controlled, givas a result responses that are quantified andnsarzed using
mathematical equations. This study makes a revietheodescription and importance of some predictivadels
used as a tool in food conservation. Due to the flaat the application of mathematical models te growth of
microorganisms allows us to predict microbial beloavin storage conditions, its application may git@ the
establishment of the product’s shelf life a greatecision.

Key words: predictive microbiology, microbial recount metlwbalgy, microbial growth models.

INTRODUCTION

Microbial diagnosis is based in laboratory techegthat require time associated to the growth efeoirganisms,
which has a detrimental impact on making decisi@specially in the industry [32]. The require tirffze cell
revitalization and cell recount through CFU (Coldrgrming Units) is at least 48 hours. Moreover, fathogen
identification it is common to turn to biochemidabts or selective mediums, this leads to waitdays or even
weeks to get results. Because of this, quicker autihave been developed to obtain results (3dudimg the ones
developed by Predictive Microbiology.

Predictive Microbiology has become a worldwide icigftedge tool that allows us to evaluate, througitable
mathematical models, the response of microorgantsnesivironmental factors. This discipline has bapplied in
great measure to pathogenic bacteria and micrommanassociated to food spoilage. However, Preicti
Microbiology can extend its reach to other fieldsls as Medicine, Biology and even Pharmacy, whestudies the
growth and inactivation of microorganisms [32].
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Predictive microbiology can be used to model thengh, survival and death of microorganisms in tewhshe
main factors of food preservation, especially wttesse factors are used together in so-called cadhimethods of
preservation.

Nowadays, given the fact that predictive modelsehavolved from the basic research labs to beind usehe
industry and in regulatory agencies they must hesicer as initial estimates of microbial behaviod serve as
guidance to asses potential problems [7 & 46].

Predictive models do not replace completely theluatmn of microbial behavior neither the judgmenitan
experimented microbiologist. However, they may atewseful information to make a decision in thenafacture
and conservation of food [46].

Hence, the goal of this review describe some ofrtleelels used in Predictive Microbiology and hightigheir
importance and application as a tool for food prest@on.

LITERATURE REVIEW

Definition and history of Predictive Microbiology

Predictive Microbiology is the detailed knowledg€ microbial responses to certain environmental diors,
which allows an objective evaluation of the effdwt processing and storage parameters have dodbdequality
and safety. This response includes the accumulaticn series of knowledge of the behavior of micgamisms
found in food, consequently resulting in the depetent of mathematical models [22].

Predictive Microbiology is based on using matheostmodeling to describe microbial behavior anddfmting
growth. With this technique, problems with food #pge caused by microorganisms and food safety lman
resolved through an objective analysis based ansfic knowledge [32]. This is remarkable since thcrease of
infections caused by toxins present in food in meoyntries.

It has been recognized that the origin of predéctivodels in food was a model developed by [12] usatkscribe
the thermal treatment needed to destro\f@Blostridium botilinuntype a spores [46 & 24]. This model described a
process with a broad margin of safety and probéablgontinuous use prevented it from being recagphiat that
time as a predictive model.

Other references place the beginning of Predidtlirobiology in the 1930°s, when Scott establiskteat knowing
the growth rate of certain microorganisms at défegrtemperatures was vital for fresh meat spoiktgdies. Once
this information was obtained one could predict rislative influence exerted by various organismsspoilage at
each storage temperature. Scott understood thentfteof gathering kinetic data about the respomde
microorganisms, to predict useful life and foodesgP4].

After a long time of silence from Predictive Miciology in the scientific literature, in the 1960asd 1970°s
predictive models were used to resolve food porgpproblems, particularly botulism [26, 35& 39].

However, it was not until the 1980°s that the iestrin Predictive Microbiology started as a resifil massive
outbreak of food poisoning and therefore the publked to provide healthy and safe food. Two pathioge
microorganisms transmitted in food, one traditioaal Salmonella and one emergdtisteria monocytogenesf
psychotropic origin favored placing food researstagriority for the United States, United Kingdohustralia and
New Zealand governments [22].

During the 1980°s and part of the 1990"s varioysr@gches of growth kinetic models dominated thedietiee
Microbiology scene, but nowadays the return ofpghabability models for growth is clear, which caa &ttributed

to the following:

a)Recognizing that the variability of responses ireatimated time period (generation time and lapentod) does
not show a normal distribution, but it is commorgscribed by an inverse Gaussian distribution, w/itbe
response’s variance is directly proportional tostp@are or cube of the mean response time [34].

b)In the case of potentially dangerous pathogé&sstierichia coliO157:H7), in situations when the microorganism
is found in a low infectious dose, it is require koow it, in order to recommend conditions to avdais
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multiplication, thus the probability of finding ghkind of organism is more important than knowitsggrowth rate,
maximum population density or generation time.

Prediction models allow us to interpolate experitakrdata points, helping predict responses for udist
conditions [13]. Moreover, predictive growth modeglise us the chance to estimate food’s useful éfaluate
hygienic conditions in which the food was procesgedidentify critical points in the process, toidg on how
environmental variables affect the pathogen’s hiehand to determine the microbiological safetyfaufd [23].

Kinetic parameters of the models

In Microbiology, growth refers to an increase ollc@er unit of time in a microbial population [20h this case, it
is important to consider the presence of coenoegt@roorganisms i.e. multinucleated, where the @arctivision is
not followed by cell division, whereby, growth cagsan increase in size but not in cell number. Gramauses an
increase in the number of cells when microorganisspsoduce by binary fission or budding [31]. Thewgth curve
of a microorganism can be divided in four differgitasesiag phase, exponential phase, stationary phase and
death phase (Fig. 1)The lag phase is the period of time when cells tatta@ culture medium before starting to
grow. The logarithmic or exponential phase is whka microorganisms grow and divide themselves umtil
maximum is reached, all of this as a function & thedium, growth conditions and genetic potentiathis period
there is a linear relation between the logarithmthef number of cells and the incubation time. Siecery cell
divides at slightly different rates, the growth weirincreases slowly instead of having big fluctmagi The
stationary phase is when the growth rate slows dawm result of the decrease in nutrients availabthe effect of
toxic metabolic products accumulating. Finally, ttheath phase is a consequence of various factoesmbst
important is the depletion of the microbial celftsergy reserves. In this phase there is also arlirtation between
viable cells that decrease as time goes by [20]& 31

Along the growth process, there are various fadimrshe microorganism to adapt, such as the coitipoof the
medium or the physical state of the strain. This,variability of microbial responses influencedifferent ways

the prediction of the microorganism’s kinetics.d3a@sponses can be reflected on growth paramestark,as: latent
period, generation time and growth rate (Figure 1)

Stationary
phase

FNE

A Time [h}

Log M/No

Fig 1.Phases of microbial growth function of time 20]

Latent period (). During this period there is anadjustment in which microbial cells take advantage of the new
environment and start an exponential growth pefid The growth and multiplication of pathogenic food
spoilage microorganisms is not desired. Therefoieimportant to accurately estimate their laeatiod, which in
most cases is not achieved with a good trust IRR&L In the matter of microbial inactivation kimeg, the latent
period is observed as a “shoulder” in the logarithimactivation curve [15].

Generation time. Generation time is the time needed to double tiveotnial population. The generation time varies
depending on the type of microorganism. A great Imemof bacteria have a generation time of 1 to Gréiait is
very hard to find microorganisms that reproduc&@mminutes. Nonetheless, this parameter is usefuidicate the
physiological state of a microbial population. Witte generation time one can evaluate the positine negative
effect of a particular treatment upon a microbigpplation [20].
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Growth rate (um).The growth rate is defined as the pendant in tipeantial growth phase and it is related to the
generation time. The growth rate is the increasselhmass per unit of time and it is influencedemnvironmental
factors (temperature, composition of the mediung athers) as well as the microorganism geneticactaristics
[20].

Maximum population density (A). It is the logarithmic growth curve’s asymptotafsinary phase), it is presented
in Fig.1.

Types of model®redictive models are classified by their compiexis primary, secondary and tertiary. Here is
presented a brief description of these three tgp@sodels.

Primary models. Primary models deal with the description of the nges of the microbial number (growth,
multiplication, and inactivation) over time. Foraqtifying microorganisms one can use Colony Fornlihgts
(CFU), biomass, absorbance or measuring producedbwiges [17]. Most of the primary models that édween
developed so far determine the amount of micrgimglulation. In these models, the development ota humber
of cells from a population is described by a singpleup of parameters: maximum population density, ¢kowth
rate (um) and latent periodl)(J41].

The literature suggests that the sum of singléxb&havior is the same as the population’s. Thighiat leads to the
development of more mechanical approaches for €tregliMicrobiology [2]. This leads to probabilistmodeling
techniques, in which the model parameters are tgdgliatributed within the total population. Thiseans that the
parameters of the model are part of a random kligtan, which may represent the biological varigpibetween
single cells. Probability models become more usghen the amount of inoculum is small and thevitiial latent
period within this small population is highly vasla [41]. An example of primary models is the Gontpequation
(Ec. 1), [2 & 35] equation and the three-phasedimaodel.

y = aexp (-exp (b-cx))Ec.1
Where: A is themaximum population density, pm=th& growth rate and
A = c is the latent period.

Secondary modelsPredictive secondary models describe the paramtitat can appear in the primary models, as
a function of the environment conditions such asperature, pH, @ etc., observing the interaction between two or
more factors with microbial growth.

Formerly, secondary models for the lag phase rfleonly to the effect that incubation temperatuad; however,
nowadays new models have emerged, and they inabtider important factors such as the pre-enrichment
conditions.

Other authors have developed secondary models endept from generation time and latent period, e.g.
polynomial approaches [8, 18 & 49] and low compexnodels of artificial neuronal networks[14, 165&]. Other
examples of secondary models are the ArrheniustiequéEc. 2), square root models and the respoosce
model (8).

M=o exp (- Ea/ RY Ec.2

Where: u is defined as the reaction rate consEatis the activation energy, R is the gas consfiis, absolute
temperature andoptis the preexponential factor.

Tertiary models. Tertiary models can have different forms, startiggcombining the first two models (primary and
secondary) based on laboratory experiments. A septative example of this kind of models is thethiBgen
Modeling Program”, created and put at the sciengfimmunity’s disposal for free by the USDA; saioldel allows
us to import a series of temperature data in a@eredict the useful life. Another example is tBeafood Spoilage
Predictor” (10), which includes seafood specifidedi@rative microorganisms. Finally, tertiary mosl@nable to
incorporate predictive models into a microbiologidak evaluating network, like SERA $almonella enteritidis
Risk Assessment”) by the USDA. This kind of modais computer based [17].
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Building predictive models.

Building a predictive model involves the followirgjages: selecting the strains, generating the a@aialying a
primary, secondary or tertiary model and validatiugh model. The initial stages of this processfamdamental
for its success, therefore they are described here:

Strain selection.There are various criteria that are used whensihgahe strain for building a model. The strain
can be chosen isolated or mixed (cocktail). Befalecting a strain it is very important to havdesacidea to where
the model is aimed, for example: Is the model beisgd to predicting possible growth of a specifithpgenic
species? Or is it a model for deteriorative micgamisms in a specific food?

To use a strain that has been previously studierthiar scientific research or even for creatingeotimodels gives
and advantage of having knowledge on this spesifain. On the other hand, selecting an isolatednsfrom food
you want to create a model for, gives the advants#genowing the product [33]. The hypothesis thatiation
between strains could be equal or less than therempntal statistical variation was studied by [4Ifjey studied
the growth, survival, inactivation and productioihtaxins from 17 differen&. coli strains and observed that the
variations between strains were greater than thertainties related to the experimental error.

[37]Compared the growth of non-pathogeBicoli M23 with the growth of different pathogeriiccolispecies; they
only found little differences in the growth respessetween the strains. The generated model twintode of
great help, since several researchers do not lessato adequate laboratory facilities to worlhwlie pathogenic
strain of E.coli and the model that appears to predict the behafi&:coli M23 is also capable of describing the
behavior of pathogeni€ coli strains includindz.coli O157H:7.

Mixed strains are being broadly used in predictiadels, because they have a more real pictureeddithation in
food.

Viable cells recount method.The most used method to monitor the growth of aesed population is recounting
viable cells. However, as it has been discussedaqursly, the conventional microbiological analykas different

limitations such as the time required torevitalizarich and incubate the samples. Probably the mgsbrtant

limitation is that for identifying a microorganisone requires selective mediums and biochemicad,tegdtich can

delay the results by days or even weeks. Due sethmitations, it has been necessary to turneadivelopment of
quick methods that provide results in hours [30].

For the exact estimation of the growth curve’s petars it is important the number and the qualitthe recounts
performed by the technicians [5 & 29]. [45]reconmuiéhaving 10 values per point, minimum. [3]Compatiee
adjustment of three models with groups with fewueal per point and groups with several values pémt,po
indicating that the inaccuracy in the estimatedpsaters was clearly related to the amount of data.

In order to facilitate the recount of microbial gith, alternative methods such as flux cytometrybitlimetry,
impedanciometry among others, have been develajed [

When comparing with viable recounts, turbidimetng ampedanciometry are considered automatic methukish
allow analyzing a high number of experiments, wiilex cytometry and microscopy allow us to get aidaial
information, such as the physiological state ofdéks [33].

Flux cytometry. Flux cytometry allows us to measure different ptglsand chemical features of singles cells in
suspension, providing an indication on the hetanedg of eucariotic and procariotic cell populasan a matter of
minutes [1, 11 & 27].

Single cells go through a measurement window; iickvidifferent parameters of millions of cells caa imeasured
per second can be measure at the same time withalsituracy [43]. The dispersion of light measuhesdize and
structure of the cells, while fluorescent measummeetermine cell content of any component thatlea marked
with a fluorescent dye [44]. This way, flux cytometombines the advantage of being a techniqusifagle cells,
with the power to measure millions of cells in @gramount of time. The resulting data is not catyaverage of
the cell measurements but also a distribution efasessed cell parameters.
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With flux cytometry the possibility of measuring distribution of data gives an estimation of the noigal
population’s heterogeneity and this way, also thesibility of detecting subpopulations that for exde are
resistant to a treatment under research conditibims.use of flux cytometry in Predictive Microbighpis limited
by the cost of equipment. Such is the case, tlatdbhearch of [38], who used flux cytometry to eatate viable
cells of Debaryomyceshanseimii different environmental conditions. Growth datas used to model the latent
period §) and the maximum growth rate (umax) as a funatiotlemperature, pH and NaCl concentration.

Turbidimetrymethod. Turbidimetry is a method used to study bacteriabwgh through optical density
measurements, which allows us to have a sequeno&adbial growth in real time [4 & 9]. Optical dgity (OD) or
absorbance has been used for several years to maeascentration, which can be expressed in cedlsmpraumber
or mean length of bacterial suspensions [25].

AbsorbanceA) is defined as the decimal logarithm of the quutigetween incident light on the suspension (I@) an
the transmitted light from the suspension (I) (&c[40]

A=log(lo)/(l) Ec. 3

This technique is based on the fact that smalligdast diffract light within certain limits in proption to their
concentration. Measurements are made with a phaéoroespectrophotometer.

According to [23], in turbidimetry, microbial grotatis related to the turbidimetry in the medium. 3&euthors
highlighted the limitations of the method, being thost important one that the vitality recount oaty be made if
the equipment is calibrated to link absorbance govan number of microorganisms [23]. Howeversipbssible to
identify the growth parameters when the inoculuee $6 below the detection threshold. For thiss ihécessary to
know the initial cell recount and the calibratiaquation [6].

TTD Method (time to detection). This method consists in measuring, after an dstad thermal treatment, the
probability of a population of microorganisms nabwging in a suspension at certain culture condgidt is an
analysis that allows us to evaluate the most likelynber of survivors (indirect method). This metltigpends on
the temperature and the time of treatment in oi@echieve a physiological effect [33].

Microscopy method.Microscopy allows direct study of single cells, aimakes it possible to trace that same cell
for large periods of time. Microscopy has gainetkriest with the development of computer programsofttic
interferometry and image analysis. One advantaglisfmethod is that it allows us to study solidteyns whose
situation is similar to which food systems preq@8{. There are few reports on the use of microgdoppredictive
modeling. However, there are comparisons with tAi® Tmethod (time to detection) for determining th&ent
period ofListeria monocytogeneslls, having microscopy an advantage over TTDgesih is a direct method that
allows visual observation of the first cell divisiowhilst TTD depends on time for detection, growdte and
regressive extrapolation to the single cell. Moerpany treatment that results in the absence lbfisésion will

not be detectable through the TTD method [48].

Model validation
Validation of predictive models can be done in tways:

a)Mathematical validation that verifies the accuratyhe generated models.

b)

c)Validacion en el alimento (sistema real), en lal doajue se requiere es demostrar que el modeldige con
exactitud el comportamiento de los microorganisthasinte el procesado, almacenamiento y distribdidh

d)

It is important to validate a model in order to lexae its predictive ability [17]. The accuracy the models is
evaluated graphically when data obtained in theidabompared to the predictions of the model. Meegpthe
correlation coefficient values @R the mean square error and the slant and predaidors are used as confidence
indicators of the models when applied to food [19].

However, it is important to mention that even wiaemodel has proved to be adequate to predict erpatal data,
applying those models to food is still questiongbl@.
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Importance of predictive models
It is interesting to learn how predictive models tee used permanently in scientific research,riastry and even
in everyday life. Here are some of the most impurépplications of predictive models:

 Predictive models help make immediate decisiontherre-process of food, for example, in eventsidetsf the
process such as lack of salt in the product orégadte food refrigeration.

» Predictive models help predict the degree of growatid/or survival of some microorganisms of interest
(pathogenic or deteriorative) under normal storageditions, thereby detecting any flaw in the sgerand/or
distribution process, as well as estimating exgidates in terms of microbial decomposition [28].

* Predictive models allow us to identify critical ¢l points in a process in which a Hazard Analysid Critical
Control Point system (HACCP) has been implemented.

» Predictive models may be a teaching tool, espgciatl people with no training in Food Microbiologihrough
them one can demonstrate the importance of kegipppriate storage conditions [42].

CONCLUSION

Progress in Predictive Microbiology in the last fggars has been impressive in such a way thab#iigy used in a
great variety of research and industry operatiBnedictive models are now acommon tool when doésgarch and
a valuable aid to assess and design food consanvptocesses. However, it is not possible yet fwedd only on
these models to determine unequivocally growthyigal and death of microorganisms present in food.
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