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ABSTRACT

Delta opioid receptor (DOR) is an attractive objdot docking experiments, because is the targetndkphalins,
which are endogenous opioid pentapeptides with Qu#erences. The aim of this study is to estaldistimal
fitting polynomial function for modelling of therwtture-activity relationship of a series éfopioid selective
enkephalin analogues, basing on the quantitativeipeters of in vitro bioassay (efficacy, affinitydapotency) and
the results of the molecular docking with theomdtimodel of DOR (PDBe:1ozc). The relationship ditaty with
the GoldScore scoring function and with the totaérgy was modelled with first- to fourth-degreeypalmials and
surface fitted method. The polynomial surface eftttird order has the best fit, assessed by metiitehst squares.
The finding, established in this study, suggesist: {1) the third order polynomial could be sucsfedly used for
modeling of the relationship between the efficaty-selective enkephalin analogues and results frackithg
procedure; and (2) the combination of ligand-basedl structure-based approaches of virtual scregns a
reliable search of effectiweselective enkephalin candidates.

Keywords: Surface fitting, Docking, Delta opioid receptor fifdfty, Efficacy

INTRODUCTION

The discovery of potent and selective ligands ®dblta-opioid receptor (DOR) is related with agéaamount of
investigations with enkephalin analogues, becangkemhalins are endogenous opioid pentapeptide®, [3] with
DOR preferences [4]. Enkephalin analogues with oupd 3-properties are an attractive purpose because they:
mediate analgesia [5]; - share morphine’s positierapeutic effects, but reduce negative propef@ies]; and —
reveal a minimum potential for development of phgsdependence [8]. The structure modificatiomsiig a key
role in the affinity and selectivity of enkephaligands, are the substitution at position 2 andatlterations in the C
terminal. It was established in our previdnsitro studies [9, 10], that incorporation of hydrophilys(GNH,) at
position 2 in the enkephalin molecule greatly iases the potency and selectivity of the respectnadogues at
DOR. Moreover, basing on tlie vitro bioassay data and the so-called hyperbolic madelpartial agonism [11], it
is possible to calculate with the explicit formulaat only the potency (I, or concentration, which produce 50 %
of the maximal response of the tissue) and thaigff{dissociation constant) of the respective agats, but their
relative efficacy, as well.

During the last years the computer drug design rtdal screening has become an integral part ef drug
discovery process. Although, the various computatidechniques are suggested, they would be dividedat least
two broad categories of virtual screening [12]igamhd based, or the so-called pharmacophore muadedre the
guantitative structure-activity relationship (QSARJ] studies are used to screen a respective dfaswlecules;
and a structure-based, which involves docking ofdadate ligands into a protein target or receptmisuring the
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scoring function to estimate the likelihood that tompound will bind to the receptor; the molecudlacking as a
powerful computational tool have played an incnegsble in the functional study of receptors, pnas at all and
structure-based drug design [14, 15]. Thus, itdde very useful to find a relationship betweee tjuantitative
parameters of thim vitro tests (efficacy, affinity, potency) and the resuwf studies of the molecular docking (the
minimum energy of the ligand-receptor complex, biveding affinity values of the scoring functionsc.¢ in order
to predict biological activity.

However, the data with virtual screening of selex#&nkephalin analogues and opioid receptors aralkscares in
the pertinent literature [12]. On the other handhe docking programs an important problem isdaeelopment of
energy scoring function that can quickly and acwmlyadescribe protein-ligand interaction. Bindinffiraty is
calculated by docking, based on different kindsairing functions such as PLP, ASP, G-score, FesdagScore,
GoldScore, ChemScore, ChemPLP etc. In our prestudy [16] docking was performed with publishedottetical
model of DOR (PDBe:1lozc) using Molegro MoleculardRer. Data obtained with this software did not l¢ad
significant correlation with biological activity.his was the reason to use different software wifergnt scoring
functions. Then docking experiments were performvéd GOLD 5.2 and it was proved that the GoldScsrering
function reveals the best correlation with bioladiactivity [17, 18].

The aim of the current study is to apply the mdtiat describes relationship between the biologacdilvity of -
selective enkephalin analogues and docking redulterder to achieve this purpose the followingethiproblems
should be solved: (Iperformance of molecular docking calculations whboretical model of DOR (PDBe:10zc)
and d-selective enkephalin analogues, and also caloulati the total energies of ligand-receptor compaéer
docking experiments; (Xletermination of a correlation between the quantgaparameters of thim vitro tests
(efficacy, affinity, potency) and the results oétmolecular docking (scoring function); and {ding a function
z = f(x,y) from some class polynomials, that can fit givedistinct data point§(x;, y;, z;)}i=, on a surfacéM in

R3.
MATERIALS AND METHODS

1.1.0bjects

* Receptor - DOR

The theoretical model of thieopioid receptor (DOR) published in RCSB ProteirtdDBase (PDBe accession code
lozc) was used. The protein is composed of 268@atids in a chain.

 Ligands

Eleven ligands, investigated for their potencyestiVity and efficacy to DOR witin vitro bioassay in a previous
study [9, 10] were selected for docking studiese Tdllowing generally accepted terms forvitro assay are used:
A-opioid agonist;ICsq (potency) — concentration of an agonist A (liganghich produce 50% of the maximal
response of the tissue Kl (affinity) — Kais dissociation constant with units A of the ligarg, (efficacy) — relative
efficacy of the agonist A, which is unitless [1Q].1Their primary structure, including that of selge ligand
DPDPE ([D-Pef”-enkephalin, selectivé-opioid receptor agonist) [19] and endogenous elmidips ([Led]- and
[Met-enkephalin) and their analogues are presentedfifeTl.

Table 1: Ligands used in this study

Primary structure Mouse vas deferens
Ligand 1G¢ (nM) Ka (nM) Qel

1
Tyr-D-Pen-Gly-Phe-D-Pen DPDPE 6.18+1.17 180+35 30.2+10.0
Tyr-Gly-Gly-Phe-Leu [Lef]-enk 11.45+2.06 54.9+13.1 5.8+1.0
Tyr-Gly-Gly-Phe-Met [Mef]-enk 18.91+2.15 48.4+7.5 3.6+0.3
Tyr-Cys(Bzl)-Gly-Phe-Leu [Cys(BA) Leu]-enk 8.30£1.40 68.5+29.7 9.3%£3.2
Tyr-Cys(Bzl)-Gly-Phe-Met [Cys(BA) Mef]-enk 9.53+1.20 23.843.0 3.5+0.3
Tyr-Cys(O2NH2)-Gly-Phe-Leu [Cys(O:NH,)? Lel]-enk 1.29+0.31 36.4+16.4 29.249.5
Tyr-Cys(O2NH2)-Gly-Phe-Met [Cys(#IH,)? Mef]-enk 2.22+0.45 14.145.4 7.3+2.0
Tyr-D-Cys(O2NH2)-Gly-Phe-Leu [DCys(@iH,)?, Leu]-enk 11.40+2.01 73.4£12.7 7.4+1.9
Tyr-D-Cys(O2NH2)-Gly-Phe-Met [DCys(#H,)? Mef]-enk 75.96+11.67 463+161 7.1+1.8
Tyr-HCys(O2NH2)-Gly-Phe-Leu [HCys@™H,)? Lel]-enk 31.9245.10 76.4+7.1 3.4+0.2
Tyr-HCys(O2NH2)-Gly-Phe-Met [HCys(#DIH,)?, Met]-enk 16.09+1.90 55.7+6.1 4.5+0.3

Target: Humand-opioid receptor (DOR), published in PDBe (id: 10Z{20].

1.2.Docking procedure

The docking experiments were carried out with safevGOLD 5.2 (Genetic Optimisation for Ligand Do),
which uses a genetic algorithm and considers ifydind conformational flexibility and partial proteflexibility [15,
21, 22]. Docking experiments were carried out usatigfour GOLD scoring functions, GoldScore, Chemi®c
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Astex Statistical Potential (ASP) and ChemPLP, Wwhinakes it possible to verify the binding ability the
appropriate ligand with the receptor.

In this article it was described the implementatibthe ColdScore function as a scoring functionG®LD 5.2 and
its usefulness to perform docking precisely, todprethe binding energies, and to realise the Igiclal effects of
investigated compounds.

GoldScorescoring function (Eqg. 1) is a molecular mechariige—function with four terms. The fitness score is
taken as the negative of the sum of the compomeargy terms, so that larger fitness scores arerbett

(1) GOldSCOT‘e = Shbext + Svdwext + Shbint + Svdwint'

where

Shp_ext - Protein-ligand hydrogen-bond energy (externdddthd);
Svaw ext - Protein-ligand van der Waals (vdw) energy (exaéraw);
Shp_int - intramolecular hydrogen bonds in the ligand;

Svaw ine - INtramolecular strain in the ligand.

The total energies of ligand-receptor complex weaéculated by Molegro Molecular Viewer (http://mgte-
molecular-viewer.software.informer.com), (MMV Varsi 2.5) [23], using MolDock algorithm. For analygithe
docking results it was used Ligand Energy Inspetttot of MMV. It allows getting detailed informaticabout the
energy interactions for the protein-ligand complexthis study, in order to calculate the total rgiyeof the ligand-
receptor complexes it was used MolDock scoring tiong(Eq. 2).

(2) Escore = Einter T Eintra

whereE,,,. is a docking scoring functioik;,,..,- ligand-protein interaction energy, afg,.., - internal energy of
the ligand [3].

1.3.Correlation and fitting methods

+ Correlations

Determination of a correlation between the quatngaparameters of thia vitro tests (efficacy, affinity, potency)
and the results of the molecular docking (scoringcfion) was carried out by software GraphPad Présén

(http://www.graphpad.com/scientific-software/prismh this study was used this software for caléntptthe

Pearson correlation coefficient (Eq.3). It is a m@a of the correlation (linear dependence) betviexth variables.
Concerning the choice of the criterion it has tokbpt in mind: that the Spearman correlations aset on ranks,
not the actual values, and so it could be assuimadin this investigation, the proper criterion \wbbe that of
Pearson.

3) 2iei(xi =0 =)

N e T e

Where(x; — x) is eachx-value (quantitative parameters of thevitro tests) minus the mean xf(y; — ¥) is eachy-
value (results of the molecular docking) minusrieany.

« MATLAB’

The fitting of experimental data can be presengefbbows (Eq:4):
m 2

(4) minimize F (ayg, ..., Ggn) = Z Z — Z a;xt y!

(apo,-»aon) ot

s=1 0s<i+jsn

where

(5) z= Z a;jx'y!

0<i+j<n
In (Eg.5)s is the number of pointsn is the number of ligand-receptor complexess a dependent variable,andy
are independent variables. The valueszgt, ..., z, represent the efficacy as vitro parameter; the values of
X1, X, ..., X, represent the result from the docking proceduwerisg function); the values of, y, ...,y, represent
the total energy for ligand-receptor complex; are the parameters of the model. Heres the degree of the
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polynomial, 0 < i+ j < n. The degree gives the number of coefficients tdfiband the highest power of the
predictor variable.

To study the fitting behavior of several polynondealgree functions, it has been performed seriéitiofys, starting
from the first degree until the fourth one. The f8ce Fiting Tool of MATLAB®
(http://wvww.mathworks.com/products/matlab) [24] wagplied when we analyzed the behavior of one kbria
which depended on more independent variables amdntlividual model could be interpreted as a swrféiting
function of the experimental data by method oftegsiares (Eq.4). All analyses were done using MABland by
Surface Curve Fitting Toolbox. All models for dditing were tested (fit a linear, quadratic, cyband it was
evaluated how well those models fitted the datateowd precisely they could predict. Surface Fittirapl allows us
to visually explore one or more data sets andd#sscatter plots, graphically evaluate the goodpégi using
residuals and prediction bounds, access additinteffaces for fitting data, and compare fits aathdset.
Mathematically, the residual for a specific predictalue is the difference between the responsgevabnd the
predicted response valgfe(residual = data — fit).

» Parameters to evaluate the goodness of fit
After using graphical methods to evaluate the gesdrof fit it should be examined the goodnesstaddtéitistics.
The Surface Fitting Toolbogoftware supports these goodness-of-fit statifbicparametric models.
- SSE(Sum of squares due to error) - the total deviatibthe response values from the fit to the respasadues or
the summed square of residuals (Eq.5). A SSE vada to 0 shows that the model has a smaller raretoon
component and then the fit will be more usefulgoediction.

n

(6) SSE = w,(yi -9

i=1
Herey; is the observed data valyg,is the predicted value from the fitting curve andis the weighting applied to
each data point, usually; = 1.

-R-Squarg(r?) - measures how successful the fit is in expl@nie variation of the data and it is the squarthef
correlation between the response values and thaicped response values (EqQ.7). It is called theasgjwf the
multiple correlation coefficients:? is defined as the ratio of the sum of squares®fegression (SSR) and the total
sum of squares (SST) about the mean (Eq.8). R-eauaar take on any value between 0 and 1, withwewabser to

1 indicating that a greater proportion of variaicaccounted for by the model. R-square value ®@hieans that the
fit explains 100% of the total variation in the aatbout the average.

SSR SSE

2 - = —_—
D =r =157

(8) SSR =X, w;@;—¥)?, SST =X w;(y; —y)*, SST =SSR + SSE

-Degrees of Freedom the number of response valuesninus the number of fitted coefficients estimated from

the response values € n —m). Herev is the number of independent pieces of informatiwolving then data
points that are required to calculate the sum o&sep.

-Adjusted R-squaréEq. 9) - the best indicator of the fit quality eshcompare two models that are nested - that is, a
series of models each of which adds additionalfimdefits to the previous model. Theljusted r? statistic can
take on any value less than or equal to 1, witlalaescloser to 1 indicating a better fit. Negatwadues can occur
when the model contains terms that do not helpadipt the response

SSE(n—1)
. 2 _ _
(9) adjustedr® =1 “SST(0)

-RMSE (Root Mean Squared Error) - the standard errgh@fregression and an estimate of the standarcitiavi
of the random component in the data (Eg.10). A RM@kie closer to O indicates a fit that is morefuiséor
prediction.

(10) RMSE =s = VMSE

MSE - the mean square error or the residual mean sqUadiE = SSE /v).
-# Coeff - the number of coefficients in the model.
» Optimal solution and guarantee for global extreme
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By using the method of least squares we found #nameter values, i = 1, . . . , k. This method is a mathematical
procedure for finding the best-fitting curve to i@eym set of points by minimizing the sum of the aa@s of the
offsets (residuals) of the points from the curweotder to have high probability for the solvinglie the global
minimum it was applied the following procedure mneconended in MATLAB: (1) the procedure was startethvei

large number of different initial parameter valugsi = 1, ..., k, If the found solution is(agr’, ..., agr®), then
again it was started the procedure from pofaf8° + €, ...,alr" + &), wheree, € [0, 200],t = 1, ..., k, whereg,
are high enough and again was reacheﬁﬂ’t, ) agzt) as a problem solution. (2) In order to avoid aergual

local extreme it was applied a procedure resembiirgy "simulated annealing” method (a global optatian
technique that is used to avoid falling into a loedreme), the optimization procedures was regeatany times,

by starting from poin(agf)’t + g, ...,aggf + g), where the initiak;, t = 1, ..., k are not high and we reached again

(aFt, ..., alP") as a problem solution.

« Criteria for comparing the classes of models

After finding the best model which gives an optifiiéing of data we apply the Akaike’s informatiamiteria (AIC)
(Eq.11) [25, 26, 27] and Bayesian information crde(BIC) (Eq.12) [1,14,30] to select one of thelymomial
models, according to the criteria of optimal setettFor calculation and comparison of the criter@dues of AIC
and BIC it was used the program “Comparing Mod¢&8]. Given a set of candidate models for the dtie,
preferred model is the one with the minimum AlCueal

RSS n
n*ln(T)+2*k, —>140

_ k—
(11) AIC = RSS 2¢kx(k+1) n
n*ln(—)+2*k+—, — < 40
n n—k-1 k

RSS
(12) BIC = nxIn (T) + k x In(n),

Wheren is the number of data pointsjs the number of parameters fit by the regresplas one (since regression
is “an estimating” of the sum-of-squares as welltlees values of the parameters). Here RSS (resisual of
squares)RSS = Y, (y; — f(x;)? is the sum of the squares of the vertical dewstixom each data point to the
fitted line.

RESULTS AND DISCUSSION

Docking results and calculation of total energy

For surface fitting of the relationship betweeriaaities of enkephalin analogues, total energy taties by MMV
and GoldScore scoring function were applied withthods described in Section 2. The results are pteden
Table 2.

Table 2: The values of the main parameters used faurface fitting: GoldScore scoring function calcuhted by GOLD 5.2, total energy
calculated by MMV and g obtained byin vitro bioassay

Ligands GoldScore function total energy g
[Cys(BzlY-Leu]-enk 64,68 -107.022 9.3
[Cys(BzlP-Met]-enk 81,49 -89.091 35
[Cys(Q:NH,)*Leur]-enk 67,72 -97.619 29.2
[Cys(Q:NH)*Mef]-enk 73,91 -91.246 7.3
[DCys(O:NH,)*Lel’]-enk 74,73 -84.852 7.4
[DCys(O:NH,)*Met’]-enk 75,13 -86.221 7.1
DPDPE 57,67 -109.709 30.2
[HCys(O:NH,)*Lel’]-enk 68,43 -62.774 34
[HCys(O:NH,)*Met’]-enk 78,65 -93.301 45
[Leu’]-enkephalin 73,42 -81.869 5.8
[Met®]-enkephalin 73,26 -118.971 3.6

Docking was performed with the theoretical modeD&R (PDBe:1ozc) and all 11 ligands in GOLD 5.2,[2%].
The binding site of the receptor is known from literature. It is the residues within 10 A aroundaspartic acid
residue, Asp128. (For example in Figure 1 it isveh the ligand-receptor complex between theoretivadlel of
DOR and ligand [Let}-enkephalin, obtained in MMV). Given a proteindat in our case DOR (PDBe:lozc),
molecular docking with GOLD 5.2 generates severabgble ligand binding orientations/conformatioristlze
active site around the receptor. A GoldScore firfesiction is used to rank these ligand orientatioonformations
by evaluating the binding density of each of thebable complexes. The results of the docking (Ralshow the
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relative pose prediction performance of GOLD 5.2 thg GoldScore fitness function [18]. These valaes
calculated using only the best scored pose owtdoh binding site (solution with the highest score)

The total energy of the ligand-receptor complexhabretical model of DOR (PDBe:1ozc) and the besepof the
corresponding ligand was calculated by MolDock &tgm [23] in MMV (Tab.2).

Figure 1: Schematic diagram of ligand-receptor comiex between DOR (PDBe:10zc) and endogenous ligarice[°]-enkephalin. The
receptor is presented in ribbons and helixes. Thégand is presented in yellow circles. This diagrarwas generated with the MMV

Correlations and fitting

The results of correlations between the data fieendiocking with all four scoring functions availalh GOLD 5.2

and the values oin vitro bioassay (16 , Ka, €e) [9, 10, 11] were obtained with GraphPad Prism. 3.be

commonly-used criterion for affinity prediction tise Person's correlation between the calculateresqurocedure
and the experimental data. The results are showalite 3.

Table 3: The values of Pearson's correlation betweaen vitro parameters (IGso, Ka, €«) and all four scoring functions of GOLD 5.2 for
the theoretical model of DOR (PDBe:10zc)

Functions 1Go Ka Gl

ASP -0.09349 -0.2418 -0.2518
ChemPLP -0.05332 -0.3422 -0.4721
ChemScore -0.2801 -0.2678 -0.08067
GoldScore 0.2069 -0.09418 0.720¢

As it can be seen from Tab. 3 the highest valuethefPearson’s correlation coefficient were obw@ibetween
GoldScore fitness function ang.,;, (r = —0.7273, Fig. 2A) [18].The correlations between the otlwervitro
parameters and GoldScore function are low: betv@adScore and 1§, r = — 0.2069, between GoldScore and
Ka, 7 = —0.09418. There is a low correlation between the valuetheftotal energy of ligand-receptor complex
and e,.; (r = —0.3748, Fig. 2B). This data indicate that GOLD 5.2 softevgives reliable results in the docking of
delta selective enkephalin analogues with theaktimdel of DOR (PDBe:1ozc).
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Figure 2: Correlations between the values of the GdScore scoring function of enkephalin analogues ahe. (A) and the values of the
total energy and g, (B) .

In order to determine of the relationship betweitolgical activity and docking results of the stedliobjects it was
applied the software MATLAB software with its Suréa Curve Fitting Toolboxthat provides applications and
functions for fitting curves and surfaces to ddta.reach this objective it was tested the polyndbmmiadels of the
first to fourth degree for fitting the experimentidta. These models were obtained by the methdehst squares
[24]. Then they obtained models were evaluated @n tvell they fitted the data and how precisely tloeypld
predict. All of these models were estimated witd $tatistical criteria of goodness of fit, whichrerelescribed in
Section 2. The results are presented in Table 4.

Table 4: Assessing the goodness of fit for the polgmial models obtained by least squares method

Degree SSE R-square Adjr-square  RMSE Coefficients
First 443.5817 0.5446 0.4308 7.4463 3
Second 167.1000 0.8285 0.6569 5.7810 6
Third 0.0092 1.0000 0.9999 0.0960 10

Fourth  Needed at least 15 data points to deterfrfBrepefficients

As it can be seen from the results in Tab. 4 thedgess of fit statistics shows that the obtainedehéor fitting of
the data with the third order farand the third order foy is a good one. The polynomial model of third dege
with the highest value of? = 1.0, and the value closer to 1 indicating that a gnearoportion of variance is
accounted for by the model. The valueSSE = 0.009207, which is near to 0. Therefore this valueS6E shows
that the model has a smaller random error compaahthen the fit will be more useful for predictidhe degrees
of freedom for the obtained model are 1. The valfiedjusted r?> = 0.9999 and it is closer to 1. This indicates
that the obtained polynomial model for the surféiting data is a good model. Therefore this maadgdlains a high
proportion of the variability in experimental dasamd is able to predict new observations with ltgtainty [30].

For the polynomial model of the third order it wagplied techniques for avoiding falling into lo@attreme that
guarantees with a very high probability that théiropl solutions found in the article are globalt tmcal. These
techniques were described in Section 2.

After finding the polynomial models of first, seaband third degree we apply AIC [25, 26, 27] an€ §25, 26,
31] criteria to select one of these model, callad'aptimal” model, according to the criteria of opéal selection.
One of the most commonly used criteria for modida®n is AIC. Its idea is to select the modeltthienimizes the
negative likelihood penalized by the number of paters [25, 26, 27]. The model that minimizes BIS lthe
highest posterior probability. AIC and BIC criterdiffer only in that the coefficient multiplies theumber of
parameters, i.e. the criteria differ by how stroritjley penalize large models. In general, modetseh by BIC will
be more parsimonious than those chosen by AIC. ¢Fiteria AIC and BIC are calculated for any of tloaind
polynomial models by program “Comparing Models"J28d the values are presented in Table 5:

Table 5: Assessment of models with AIC and BIC infianation criterion.

Polynomial models AIC BIC

First degree 55.33 50.26
Second degree 81.26 46.71
Third degree -319.95 -51.57
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As it can be seen in Tab. 5 the “optimal” modethis polynomial model which is a model with the Ieivealue for
AIC =-319.95 and BIC = -51.57. Therefore, the o model is the model of third degree.

The best results for fitting data according to itsults in Table 4 and Table 5 were obtained fdiase fitting by a
cubic polynomial in three-dimensional withdegree of 3 and @ degree of 3 for determining the relationship
between biological activities and docking resultesgnted in Table 3. In this case, the polynomiatieh may
provide a good approximation of the relationshig. 8ing a polynomial least squares surface fitteghnique, a
third order cubic polynomial was fitted to the datad is represented as the following Eq.(13):

(13)f(x,y)=a00+a10*x+a01*y+a20*x2+a11*x*y+a02*y2+
tagy*x3+ ay xx2xy+a, * x*xy?+ag; xy?

Herex represents the values of GoldScore scoring funetiwhit is normalized by mean 71.74, with the vaitithe
standard distribution of the data 6.693epresents the values of total energy and it isnatized by mean -92.97,
with the value of the standard distribution of tisa 15.3.

Empirical testing found that this third order pabynial surface fit was the best compromise in teofngoodness of
fit and the overall representation of the experitabdata. Additionally, the mean surface was calad for all
ligands and the polynomial coefficients of this éite presented in Table 6. The confidence boundshen
coefficients determine their accuracy. In this gtubey are with 95% confidence bounds and are agleto
evaluate and compare fits.

The coefficients of the surface fitting by a cup@ynomial in three dimensions are presented inéléb

Table 6: The mean values (confidence bounds) of tiveefficients of the third order polynomial model ©iosen as optimal model

Coefficients  Mean (with 95% confidence bounds)

oo 1151 (9.823, 13.19)
i -11.07 (-16.13, -6.008)
oy -22.37 (-33.1, -11.64)
a0 16.71 (14.65, 18.78)
a, 3.451 (-6.742, 13.64)
oy -0.6185  (-3.866, 2.629)
s -12.15 (-14.89, -9.411)
ay 19.03 (11.96, 26.11)
iy 44.7 (29.97, 59.43)
o3 14 (7.377, 20.62)

The efficacy as a function of the values of Gold8ditness function of docking experiments andakies of the
total energy was presented in Figure 3 (A,B,C andvidh a polynomial surface fitting of first to tli order in
MATLAB.

As it can be seen from the graphical representaifahe experimental data (Table 3) the best patyinbsurface
fitting is obtained for third order of polynomialadel (Figure 3 C and D). In Figure 3 (D) it is preted the
polynomial surface fitting with the third degree pblynomial after applying the validation with theame
experimental data and it was obtained very goodtefr them again (SEE=0.0092 and RMSE=0.0289).

o=

CALLEN T 7
C GoldScore N 0
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Figure 3: A three-dimensional surface fitting of eperimental data with polynomial of third degree
which representing the efficacy as a function ofvifllees of GoldScore scoring function from doclpngcedure and the
values of the total energy for ligand-receptor céempThe surface fitting with the first degree ofypomial model is presented
in (A); with the second degree in (B); with the dhitegree in (C) and in (D) after validation the saexperimental data. These
diagrams were generated with MATLAB.

A graphic representation of the relationship amtrethree numeric variables in two dimensions esented in
Figure 4. The values of the GoldScore function tnedvalues of total energy are for X and Y axes, the values of
the efficacy are for contour levels. For the figtihy a cubic polynomial in three-dimensional suefdlce contour
plot (Figure 4) makes it easier to see points tiaae the same height. As it can be seen in Figuhe d4est results
are obtained for the polynomial model of third degrWhen compared to the surface plots, they maiedse
effective to quickly visualize the overall shape3® data; however, their main advantage is thay #iow for
precise examination and analysis of the shapeeo$tinface. Contour plots display a series of uadestl horizontal
"cross sections" of the surface.

Total energy
-
Total energy

Total energy

60 65 70 75 a0
B0 b5 70 75 il ColdScore B0 b6 70 b 80

GoldScore GoldScore

Figure 4: A two-dimensional contour plot of the thiee-dimensional surface in the Figure 3.
X represents the values GoldScore scoring funeti@hY represents the values of total energy. Teedéegree of polynomial fitting is presented
in (A). The second degree of polynomial fittingrssented in (B). The third degree of the polynofittang is presented in (C).These diagrams
were generated with the Matlab.

Figure 5 represents the residual plot for obtaipelynomial model. It provides visual displays fasassing how
well the model fits the data, for evaluating thestdbution of the residuals, and for identifyingflirential
observations. The top plot of residual plot sholkat the residuals are calculated as the verticdhnce from the
data point to the fitted curve. The bottom plotpthys the residuals relative to the fit, whichhse tzero line. As it
can be seen in Figure 5 the obtained model is rahdecattered around zero. This indicates thatpibignomial
model of third degree describes the data in a gemd
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Figure 5: Residuals Plot for the obtained polynomibemodel.

Polynomial models are among the most frequentlyl esepirical models for curve fitting and they awmpplar for
the following reasons: they have a simple form,lwelown and understood properties, moderate flésgbof
shapes and are computationally easy to use. Poigt®models have two important characteristiaguantitative —
the degrees of the polynomials, respectively theber of parameters of model and a qualitative -rdggession
function is linear in terms of the unknown parametg; (Eq.4). This allows easy to find the optimal resgien
coefficients using method of least squares.

The obtained model for the experimental data skiogeod fitting properties and significant predietiability

(SSE = 0.0092, R? = 1.0,RMSE = 0.0960). Therefore this model of third degree is suitdbledetermination the
relationship structure-biological activity. The @8kore scoring function and total energy obtairredhfdocking

could be used for predicting the efficacy of newsigned compounds. This would be helpful in simimge the

drug design process.

CONCLUSION

The docking procedure was carried out with theoatétimodels of DOR and series of &fopioid selective
enkephalin analogues. The total energies for thelting ligand-receptor complexes were calculafddparameters
of in vitro studies are compared with the results from docKsapring function) in order to find correlation.
GoldScore scoring function correlates (Pearsonilaiion coefficientr = —0.7273) with the efficacy (g)) of 6-
opioid selective enkephalin analogues, calculatechfn vitro experiments.

The polynomial surface of the third order has thesthfit, assessed by method of least squares. ifding,
established in this study, suggests that: (1)hfrd brder polynomial could be successfully usedniodeling of the
relationship between the efficacy &5elective enkephalin analogues and results frookidg procedure; and (2)
the combination of ligand-based and structure-bagguloaches of virtual screening is a reliableteaf effective
d-selective enkephalin candidates.The polynomidiaserfitting model was obtained by Surface Fittirmplbox in
MATLAB.

Analysis and comparison of the data fromvitro tests and docking studies could help to undershkatter the
relationship betweeln vitro biological effects and docking studies and to arswhether the models of the
biological macromolecules (in our case DOR) coroespbto the real 3D structure. On the other handained
model is applicable for predicting the efficacy afmpounds with known score and total energy. Thisns the
scope for further research and the results wippliglished soon.
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