
Available online at www.scholarsresearchlibrary.com 

Scholars Research Library

European Journal of Applied Engineering and
Scientific Research, 2017, 5(2):6-13

       ISSN: 2278-0041 

6Scholars Research Library

Development of State Duration and Expectation Model for Evaluating 
Remaining Life of Manufacturing Systems

Nwadinobi Chibundo Princewill1*, Nwankwojike Bethrand Nduka2, Abam Fidelis Ibiang2

1Department of Mechanical Engineering, Abia State Polytechnic, Aba, Abia State
2Department of Mechanical Engineering, Micheal Okpara University of Agriculture, Umudike, Abia 

State, Nigeria

ABSTRACT

The key goal of predicting the state expectation of an engineering system is to predict the remaining life of the 
system so as to aid in maintenance decision-making activities. In this paper, a maintenance model for predicting 
the state expectation of industrial machines has been developed. It incorporates various stages of deterioration and 
maintenance states. Given that a current state has been attained, from inspection and diagnosis, this model is capable 
of computing the predicted average time before a system failure occurs. This study focuses on using real data of an 
industrial Bottle filler machine to test the effectiveness of the State Expectation model and its effect on the reliability 
and maintainability of the machine. The model is tested for various scenarios by changing one of the main parameters 
during each calculation while others are kept constant. For the state duration sensitivity analysis, as the failure 
rate continuously increases from 0.0178 to 0.7060, the expected mean sojourning time for each degradation state 
decreased from 220.97 h to 1.59 h. Subsequently at uniform incrementally varied repair/maintenance rate (0.0861 
to 0.7663), the state expectation of the equipment increases from 168.11 h to1189.98 h. This allowed us to determine 
the most suitable decision to improve the reliability of the Bottle filler machine. The prediction result identifies the 
effectiveness of the proposed method in predicting RUL of manufacturing systems. 
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INTRODUCTION

In traditional maintenance technique, equipment is either repaired after failure (reactive maintenance) or scheduled 
for time-based preventive maintenance (planned maintenance). In recent years, a more cost-effective strategy called 
condition-based-maintenance (CBM) [1,2] has been implemented. Condition-Based Maintenance is a method that 
recommends maintenance decisions based on the actual health status of a machine or its components [3,4]. The 
application of CBM technique brings down maintenance costs and increases efficiency by taking maintenance 
interventions only when the system exhibits abnormality in its functions [5]. To be able to schedule maintenance 
based on the condition, Condition Monitoring (CM) to collect condition data; and Remaining Useful Life (RUL) 
prediction based on condition data are required [6]. Estimation of RUL (or time to failure) of a component or system 
which can be obtained based on their use and performance can be performed and is known as prognostics/forecasting [7]. 

As deterioration in equipment sets in, certain performance parameters in the system tend to change, thereby 
characterizing degradation. Degradation measures consist of sensed measurements, such as vibration analysis, 
oil analysis, infrared thermography, ultrasonic test and others, or inferred measurements, such as model based 
predictions. [8] defined RUL as the duration from current time to end of useful life for an equipment/component. 
It is the time left for a component to perform its functional capabilities before failure. There are several prediction 
methods used for determining the RUL of systems. RUL prediction can be achieved through degradation measures 
collected. The degradation signal should be strongly linked to the failure of the system and contains important 
information about its health status. In general, Remaining Useful Life (RUL) predictions are typically undertaken 
using model-based, analytical-based, knowledge-based, and hybrid-based approaches and tools [9,10]. In Model-
Based, Remaining Useful Life prediction done using statistical and probabilistic approaches [11]. These models are 
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derived from operational, failure and historical data and utilised in maintenance decision making. Markov Models is 
used in this case where the time frequency features allow more precise results [12]. Also, no foreknowledge of the 
physics of the formation of a component is required [8]. The Analytical-based RUL prediction approach represents 
the physical failure technique attributing to Physics-of-Failure (PoF). It requires the combination of experiment, 
observation, geometry, and physical changes condition parameters. The limitation of this method is that there is a 
need for full study of the system under consideration and intensive model development computation, making the 
approach difficult or even impossible to implement in many real life systems [11]. Knowledge-Based model is a 
combination of Computational Intelligence and experience. It relates to the collection of stored information from 
experts and interpretation [13]. A hybrid model is a collection of methodology and technique using several techniques 
for RUL estimation to improve accuracy. 

Consequent to the limitations that most of the condition monitoring processes depend only on physical changes data 
form that is not always available in real industrial cases due to operational logistics and high costs of monitoring 
sensors, data acquisition, analysis, expert training, and so on. Also, these methods often have poor prediction 
accuracy due to undesired values in the data set. Notwithstanding, there is the need to curtail equipment failure and 
a timely awareness of failure mechanism for maintenance decisions regards to real life engineering practice. To this 
end, this work is implementing a model-based method for predicting system degradation states duration and RUL of 
equipment with a minimal computational requirement. This is achievable through extracting information from the 
operational and breakdown data of systems to produce reliable information about the state of the particular system 
and its remaining useful life. These variables include the total operational period, the no of breakdowns, the total 
downtime, mean time between failures of the component, and mean time to repair of the component that is directly 
obtained in the field and have a direct influence on the equipment under consideration. The benefits to be gained by 
using this effective process of predicting the future state of a system is that it enhances the effective mangement of 
equpment and infrastructure.

METHODOLOGY

To predict the remaining useful life, it is important to sufficiently understand the functioning of the engineering 
system under consideration, estimate the state-of-health and identify the possible future period at which system 
continuous operation becomes inefficient [14]. The time-instant as mentioned earlier is known as the end-of-life 
(EOL) and it is possible to identify it by evaluating the expectations of the states. The computation of the RUL may 
be computationally intensive since it runs until EOL is reached. The proposed method applies to all cases where the 
state-of-health of the system is steadily decreasing as a result of deterioration. 

The first step of estimating the present state serves as the prelude to predicting the future state of a system and RUL 
computation. The health status of the system uniquely informs the level of damage in the system. Furthermore 
after estimated the state at time ti, the next step is to predict the future states of the equipment. From the proposed 
formulation, equation (11) is used for this purpose. This equation can be discretized and used to predict the states at 
any future time instant t>ti. Lastly, the machine remaining useful life estimation is done by calculating the period of 
the immediate time to the death status time. Some machine parameters such as failure and repair rates are used in this 
evaluation. Machine operating regions are divided into four states.  This model can predict the time trajectory of the 
machine states using some collected reliability data. 

Model description

The failure-maintenance model as shown in Figure 1 is a state space model. Three types of maintenance action will be 
adopted on the basis of the requirement of the system. The three types of maintenance actions are Minor maintenance 
(mM), Intermediate maintenance (IM) and Major maintenance (MM). In state D1, the system is new, therefore require 
minimal/minor maintenance to remain in state D1. Also, in state D2 for an operational system, there is deterioration 
compared to the system in state D1. Due to this reason, it is presumed that the system would go back to stages D1 or 
D2 based on the type of maintenance action carried out. Again, for a system degrading from state D2 to D3, there is 
the probability that the system requires any of the maintenance actions or no maintenance to go back to the desired 
state. This series of action applies to state D4 before failure due to degradation F1, though random failure F0 can occur 
within the life of the system. 
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Figure 1: System/equipment maintenance model

State duration model development

Considering a system that is repairable and maintainable having N components, each subject to deterioration. Each 
component i is assumed to have rate of failure occurrence, λi(t),where t is the actual time, (t>0). The rate of failure 
occurrence given as:
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Where Pi, Fi and MTBFi indicates the total operational period (duration), the no of breakdowns (frequency) and mean 
time between failures of component i, respectively.

At a degradation stage or failed state, repairs are undertaken at a repair rate. The repair rate is given as:
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Where Bi, Fi and MTTRi  indicates the total downtime (duration), the no of breakdowns (frequency) and mean time to 
repair of component i respectively.

Consider a repairable system with failure rates λi and repair rates μi and let Ti denote starting time from state i, it takes 
for the process to enter state i+1, i ≥ 0. We can compute E(Ti), i ≥ 0, by starting with i=0. The transition rate from 
state i to state i+1 (failure rates) is denoted λi. Therefore, the expectation in state i is E(Ti) and it can be represented as 

( )
1

i
iE T

λ =                                           									                  (3)

Also, the transition rate of the ith state is given as the reciprocal of the expectation of state i. 

That is
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Since T0 is exponential with rate , we have: ( )0
0
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For i>0, a condition whether the first transition can probably take the progression into state i-1 or i+1. That is, let
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This follows since, independent of whether the first transition is into state i-1 or i+1, the time until it occurs is 
exponential with rate λi+μi if this first transition is a i+1 state, then no additional time is needed; whereas if it is i-1 
state, then the added time required to reach i+1 is equivalent to the time needed to return to state i (this has mean/
expectation [ ]1iE T − ) plus the additional time it then takes to reach i+1 (this has mean/expectation E(Ti)).
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 Hence, since the probability that the first transition of i+1 is ( ) [ ] [ ]( )1
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Starting with ( )0
0

1E T
λ

= , as the last state (as the end-of-life (EOL)), we can successively compute efficiently E (T1) 

E(T2) and so on. This procedure is used to determine the expected time to go from state i to state j where i<j, as this 
will give quantities that will equal ( ) ( ) ( )1 1i i jE T E T ....... E T+ −+ + + . Applying this to Figure 1, we have:
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RESULTS AND DISCUSSION

The developed model was implemented and the obtained results analyzed using reliability data for a Bottle filler 
machine from line 1 of 7 up Bottling Company, Aba plant. The rates utilized are as obtained from the machine’s 
operational data. Three scenarios are involved in the implementation (to test the validity/effectiveness of the model) 
of the mathematical model to obtain effective results for the machine under consideration. The first scenario involves 
calculating the values of Expected time of Normal State (E(Tnormal)) by keeping the constant values repair rate or 
failure rate and varying the value of repair rate or failure rate as the case may be. Table 1 presents the calculated 
values, and the graph is plotted in Figure 2. This procedure is repeated for Expected time of PM State and Expected 
time of CM State.

Table 1: Sensitivity analysis of repair rate and failure rate on expected time of normal state 

CASE 1 CASE 2
µnormal λnormal E(Tnormal) µnormal λnormal E(Tnormal)
0.0947 0.0178 10405.22 0.0947 0.0178
0.1305 0.0178 25626.41 0.0947 0.0536 212.75
0.1663 0.0178 51298.6 0.0947 0.0894 48.88
0.2021 0.0178 90164.13 0.0947 0.1252 22.05
0.2379 0.0178 144965.3 0.0947 0.161 13.28
0.2737 0.0178 218444.5 0.0947 0.1968 9.27
0.3095 0.0178 313344 0.0947 0.2326 7.05
0.3453 0.0178 432406.2 0.0947 0.2684 5.67
0.3811 0.0178 578373.4 0.0947 0.3042 4.73
0.4169 0.0178 753987.9 0.0947 0.34 4.05
0.4527 0.0178 961992.1 0.0947 0.3758 3.54
0.4885 0.0178 1205128 0.0947 0.4116 3.15
0.5243 0.0178 1486139 0.0947 0.4474 2.83
0.5601 0.0178 1807766 0.0947 0.4832 2.57
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0.5959 0.0178 2172752 0.0947 0.519 2.35
0.6317 0.0178 2583840 0.0947 0.5548 2.17
0.6675 0.0178 3043771 0.0947 0.5906 2.02
0.7033 0.0178 3555288 0.0947 0.6264 1.88
0.7391 0.0178 4121134 0.0947 0.6622 1.76
0.7749 0.0178 4744050 0.0947 0.698 1.66

Figure 2: Sensitivity data plot for E(Tnormal)

The results obtained from the sensitivity analysis of the estimated filler machine lifespan in Table 1, shows the state 
duration of Pnormal at varying repair and failure rates with one held constant as the case may be. The results are plotted 
as shown in Figures 2a and 2b. From the plots, at constant failure rate and varied repair/maintenance rate, the state 
expectation of the equipment was observed and the result obtained was graphically represented in Figure 2a. Here, 
the graph shows that the repair rate is directly proportional to the computed state expectation time of the equipment 
under consideration. It was also observed that at commissioning of the equipment, the rate of repair is very low. As 
the machine ages, rate of repair increases. On the failure rate variation, the resulting graph show that as the failure rate 
continuously increases, the expected mean sojourning time for the degradation state decreases. The reduction appears 
sharp at the early stage implying that there have been minimal maintenance actions. But over time, the effect of failure 
rate becomes negligible as a result of improved maintenance actions.  

Table 2: Sensitivity analysis of repair rate and failure rate on expected time of PM state  

CASE 1 CASE 2
µ3 λ3 E(T3) µ3 λ3 E(T3)

0.0395 0.0241 220.97 0.0395 0.0241 220.97
0.0753 0.0241 576.22 0.0395 0.0599 34.96
0.1111 0.0241 1114.59 0.0395 0.0957 16.54
0.1469 0.0241 1836.09 0.0395 0.1315 10.57
0.1827 0.0241 2740.71 0.0395 0.1673 7.72
0.2185 0.0241 3828.46 0.0395 0.2031 6.07
0.2543 0.0241 5099.33 0.0395 0.2389 4.99
0.2901 0.0241 6553.32 0.0395 0.2747 4.24
0.3259 0.0241 8190.44 0.0395 0.3105 3.68
0.3617 0.0241 10010.68 0.0395 0.3463 3.25
0.3975 0.0241 12014.04 0.0395 0.3821 2.92
0.4333 0.0241 14200.53 0.0395 0.4179 2.64
0.4691 0.0241 16570.14 0.0395 0.4537 2.41
0.5049 0.0241 19122.88 0.0395 0.4895 2.22
0.5407 0.0241 21858.74 0.0395 0.5253 2.06
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0.5765 0.0241 24777.72 0.0395 0.5611 1.92
0.6123 0.0241 27879.83 0.0395 0.5969 1.79
0.6481 0.0241 31165.06 0.0395 0.6327 1.69
0.6839 0.0241 34633.42 0.0395 0.6685 1.59
0.7197 0.0241 38284.9 0.0395 0.7043 1.5

Figure 3: Sensitivity data plot for E(T3)

Considering Table 2 and Figure 3, it was observed that maintenance action started immediately in this state converse 
to the situation in Pnormal state. Also, it was seen that repair rate increased proportionately over the period of stay in 
this state. The failure rate showed a steady decline at the early life of this Ppm state as the state duration decreases also. 
This implies that proper maintenance actions should be undertaken to prolong the life of the equipment in this state.

Table 3: Sensitivity analysis of repair rate and failure rate on expected time of failure state  

CASE 1 CASE 2
µ4 λ4 E(T4) µ4 λ4 E(T4)

0.0861 0.0258 168.11 0.0861 0.0258 168.11
0.1219 0.0258 221.89 0.0861 0.0616 38.92
0.1577 0.0258 275.67 0.0861 0.0974 19.34
0.1935 0.0258 329.46 0.0861 0.1332 12.36
0.2293 0.0258 383.24 0.0861 0.169 8.93
0.2651 0.0258 437.02 0.0861 0.2048 6.94
0.3009 0.0258 490.81 0.0861 0.2406 5.64
0.3367 0.0258 544.59 0.0861 0.2764 4.74
0.3725 0.0258 598.37 0.0861 0.3122 4.09
0.4083 0.0258 652.15 0.0861 0.348 3.58
0.4441 0.0258 705.94 0.0861 0.3838 3.19
0.4799 0.0258 759.72 0.0861 0.4196 2.87
0.5157 0.0258 813.5 0.0861 0.4554 2.61
0.5515 0.0258 867.29 0.0861 0.4912 2.39
0.5873 0.0258 921.07 0.0861 0.527 2.21
0.6231 0.0258 974.85 0.0861 0.5628 2.05
0.6589 0.0258 1028.63 0.0861 0.5986 1.91
0.6947 0.0258 1082.42 0.0861 0.6344 1.79
0.7305 0.0258 1136.2 0.0861 0.6702 1.68
0.7663 0.0258 1189.98 0.0861 0.706 1.59
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Figure 4: Sensitivity data plot for E(T4)

From results obtained in Table 3, at varied repair rate for the deterioration state Pcm in the developed network model, 
it was observed that expected duration of stay is least. Also, that the repair rate is directly proportional to the expected 
duration given that maintenance actions are sustained else, failure occurs. This results are plotted as shown in Figures 
4a and 4b.

CONCLUSION

A general methodology was developed for estimation of machine remaining useful life using reliability data. This 
mathematical formulation is capable of calculating the expected transition time from any deterioration state to the 
failure state (expected remaining life) of the equipment in consideration. The program was applied to a Bottle Filler 
machine in one of the bottling lines utilized for the study. The model is tested for various scenarios by changing 
one of the main parameters during each calculation while others are kept constant. For the state duration sensitivity 
analysis, as the failure rate continuously increases from 0.0178 to 0.7060, the expected mean sojourning time for 
each degradation state decreased from 220.97 h to 1.59 h. Subsequently at uniform incrementally varied repair/
maintenance rate (0.0861 to 0.7663), the state expectation of the equipment increases from 168.11 h to 1189.98 h. 
This allowed us to determine the most suitable decision to improve the reliability of the Bottle filler machine. This 
model will be of benefit to industries because the ability to predict the future state of a system is a proactivepractice.
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