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ABSTRACT  
 
This paper deals with conventional Fourier Stieltjes transform of Lebesgue integrable function  in dual space. The 
present paper mainly provides inversion formula for the conventional Fourier Stieltjes transform. The aim of the 
paper is to extend  inverse  Fourier Stieltjes transform and develop different versions for it. 
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INTRODUCTION 
 

Now a days, Fourier Stieltjes transform plays an important role in signal processing and       many other scientific 
disciplines which is defined by,  
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for a Fourier Stieltjes transformable function ( )xtf , .

  

If ( )ysF ,  is the distributional Fourier Stieltjes transform of ( )xtf ,  then in the sence of convergence in ( )Ω'D ,  
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(1.1) 

where σ  and 'σ  are any fixed real number such that 21 σσσ <<<< ba  ,  '' 21 σσσ <<  and 2F  is partial 

derivative of ( )ysF ,  with respect to y . 

 

The idea of the above result is to transfer the inversion formula onto a transform of ( ) )(, Ω∈ Dxtϕ  and to use the 

fact that the resulting expression converges to ϕ . 
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MATERIALS AND METHODS 
 
The notation and terminology of this work will follow that of [1]. We will also proceed on similar lines [1] to 

develop the different formulae for  inverse Fourier Stieltjes transform of a convensional function ( )xtf ,  defined in 

(1.1). 
 

RESULTS AND DISCUSSION 
 

 For 1>p , an integration by parts with respect to y  brings equation (1.1) to the form, 
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As ∞→'r ,first term tends to zero. Hence, 
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This is less general since it only valid for 1>p . It is convenient  to have x independent contours and so the change 

of variable xzy =  allows to rewrite equation (1.1) in the alternate form, 
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The integral converges for 1>p .The counterpart of equation (3.2), obtained by integration by parts namely, 
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Since this is only well defined for 1>p , equations (1.1) and (3.2) are more general than equation (3.3). 

Setting 1=p  equation (1.1) gives an expression that can be integrated explicitly to give, 
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For analytic and asymptotic properties of ),( ysF , it is a simple consequence of Cauchy’s theorem that this is the 

correct solution of equation, 
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for 0>x . 
Let us define the quantity that appears on the right hand side of equation (3.4) to be, 
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for 0>h . 

We can prove that ( ) ),(, hsxtf ∆=  when 1=p , but this is not the case for other values of p . By shrinking the 

contour down to the cut equation (1.1) takes the form, 
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In  similar fashion equation (1.1) gives rise to , 
 

However  these  formulae are  only correct if the behavior of  ( )ysF ,  near the origin is such that these integrals 

exist. The contour integral version of these formulae is more general since they do not have this restriction. 
 
Equations  (3.5) and (3.6) have the structure of  Abel transform . The inverse Abel transform is well known and  can 
be used to give a formula for the discontinuity across the cut, ),( hs ∆  in terms of the original generalized function 

),( xtf . A version that is suitable if  2<p   and  ( ) 00,0 =F  is, 
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where ( )xtf ,2  stands for partial derivative of ( )xtf ,  with respect to x . 

 
CONCLUSION 

  
A  definitions for Fourier Stieltjes transform and its inverse are introduced in this work. These definitions are used to 
generate the concepts of other versions for the same transform which are most frequently used tools in speech 
processing radar and quantum physics. 
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