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ABSTRACT 
 
In order to elucidate the essential structural features for Epidermal Growth Factor Receptor (EGFR) inhibitors, a 
ligand-based pharmacophore hypothesis was built on the basis of a set of twelve known EGFR inhibitors belonging 
to three different classes using Molecular Operating Environment (MOE) software.  In a first step, three alignments, 
one for each group of compounds were generated. All of them were then submitted to MOE pharmacophore search 
in order to obtain a final pharmacophore model representative of the whole dataset. A pharmacophore model 
including three features was developed comprising one hydrogen-donor (F1) and two aromatic/ hydrophobic/ 
acceptor features (F2 and F3). The developed model was used to predict the activities of test set compounds by 
applying linear regression variable selection analysis. The model exhibited excellent linearity with correlation 
coefficient (r) value, i.e., 0.943, and squared predictive correlation coefficient (r2) of 0.889 between experimental 
and predicted activity values of test set compounds. Our model demonstrated good performance in a separate test 
set of 25 compounds: it accurately identified 67.7% of the compounds of medium and high inhibitory activities and 
misclassified only 28.5% of the compounds with low inhibitory activities. The results proved our pharmacophore 
model to be a filter of great sensitivity and specificity. 
 
Keywords:  EGFR antagonists, pharmacophore, docking, MOE. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
  
Cancer is continuing to be a major health problem in developing as well as developed countries.1,2 Surpassing heart 
diseases, it is taking the position number one killer due to various worldwide factors. Although major advances have 
been made in the chemotherapeutic management of some patients, the continued commitment to the laborious task 
of discovering new anticancer agents remains critically important. Protein tyrosine kinases (PTKs) are known for 
their role in cancer. The epidermal growth factor receptor (EGFR) belongs to the ErbB family, a subfamily of four 
closely related receptor tyrosine kinases: EGFR (ErbB1), HER2/neu (ErbB2), HER3 (ErbB3), and HER4 (ErbB4).3 
These receptors regulate intracellular signaling pathways mediating cell proliferation, differentiation, migration, 
survival, and adhesion.4 ErbB family members, including the EGFR (ErbB1), are activated upon dimerization 
induced by binding their ligands, which are EGF, transforming growth factor-α (TGF-α) and Neu differentiation 
factor (NDF).5 Over expression of EGFR leading to uncontrolled cell proliferation has been proven to be a definite 
cause of a significant number of human tumors (e.g. breast, ovarian, colon, and prostate) 6,7 and has been shown to 
affect proliferation, angiogenesis and cancer metastasis. Moreover, patients expressing high levels of EGFR usually 
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have poor prognosis. 8 Therefore, inhibitors of EGFR kinase activity may prove useful for therapeutic intervention 
in cancer as well as other proliferative disease. 9 Success in small molecule drug discovery against EGFR as an 
anticancer target has come from selective inhibition of its kinase activity using compounds that compete against 
ATP binding at the catalytic site such as the anilinoquinazoline derivatives gefitinib, Iressa and erlotinib that have 
recently been approved for the treatment of patients with advanced non-small cell lung carcinoma and are being 
clinically evaluated in patients with various types of cancers. 9 In addition, a great number of different structural 
classes of tyrosine kinase inhibitors has been reported and reviewed including pyrimido[4,5-b]-1,4-benzoxazepines 
10, thiazolo[4,5-d]pyrimidines 11 ,diphenylamine 2,4’-dicarboxamides 12 and 1,4-dioxino quinazolines13. Thus, there 
exists a keen interest in understanding the structural determinants for substrates and inhibitors of EGFR. In this era, 
ligand-based pharmacophore modeling is playing an important role for the identification of ligand features for 
particular targets. The technique rigidly models the interaction between a ligand and its binding site in a specific 
binding situation. The result is a three-dimensional (3D) spatial arrangement of chemical features, which are derived 
using algorithms that take rules derived from chemical knowledge into account. A pharmacophore can be derived 
either in a structure-based manner by determining complementarities between a ligand and its binding site, or in a 
ligand-based manner, by flexibly overlaying a set of active molecules and determining those conformations that are 
able to be overlaid in such a way that a maximum number of important chemical features geometrically overlap .14 
A 3D pharmacophore model on compounds with observable structure diversity, if possible, will definitely lead to 
more universal and robust pharmacophore models for designing novel EGFR inhibitors. Numerous pharmacophore 
models for protein kinase inhibitors have been reported. 15, 16 Traxler et al. emphasized the importance of the 
presence of an acceptor–donor system in the ligand to mimick the anchoring of ATP to the active site of the enzyme 
and the presence of an aromatic feature to replace the ribose moiety of ATP conferring potency as well as selectivity 
for the EGFR- PTK (“sugar pocket”) . 16 On the other hand, the pharmacophore model proposed by McGregor et al. 
indicated that the ligand-hydrogen bond acceptor interaction with the hinge region in the receptor is the most 
common interaction among kinase inhibitors and is made by N1 atom in ATP while a ligand hydrogen bond donor 
interaction on either side of the hinge region is present and is equivalent to the N6 atom of ATP. On the other hand, 
aromatic groups correspond to the 6- membered aromatic groups in ATP. In addition, hydrophobic features are 
found throughout the binding site but are most common in the hydrophobic inner region of the cleft and also in the 
parts occupied by the adenine and sugar moieties of ATP .15 

 
 However a limited number of models for EGFR inhibitors have been reported using a structurally diverse data set 
and to our knowledge, the correlation between pharmacophoric distances and predicted activities of possible EGFR 
inhibitors have never been attempted. Thus, in this study, pharmacophore modeling was brought into use by 
applying linear regression variable selection analysis to develop a novel 3D pharmacophore model that has not been 
reported earlier, with the sole purpose to assist the discovery of most potent EGFR inhibitors. The resulting 
validated pharmacophore model was then used to screen Maybridge database to identify structurally diverse EGFR 
inhibitors.  
 

MATERIALS AND METHODS  
 
Training Set 
All the compounds under consideration were divided into training set and test set. The selection of a suitable training 
set is critical for the quality of automatically generated pharmacophore models. Our training set was composed of 12 
compounds belonging to three different classes: pyrimido[4,5-b]-1,4-benzoxazepines10, thiazolo [4,5-d]pyrimidines 
11 and 1,4-dioxino quinazolines 13 which were demonstrated to be ATP competitive inhibitors of EGFR (Fig 1, Table 
1) and were used to construct the pharmacophore model.  Thirteen compounds (compounds 13-25) were used as test 
set to evaluate the prediction capabilities of the generated model (Table 1) 17, 18. Furthermore, to facilitate the 
modeling, the compounds were divided into three groups according to their activity data (expressed as IC50 values): 
highly active (0.09-3.40µM, +++), moderately active (3.43–11.29µM, ++), and least active (>11.29µM, +).This 
classification is highly beneficial when training the pharmacophore model with a broad range of activities, and also 
to access the estimation accuracy of pharmacophore quickly.  
 
Energy Minimization and conformation generation 
Prior to screening, all structures were built using 2D/3D editor sketcher in ChemDraw Ultra 8.0. 19 This allowed us 
to take into consideration molecular flexibility, thereby ensuring that fast-fitting would not be limited to rigid 
molecules with conformations already aligned to the pharmacophore. The molecular structures of 1–25 were energy 
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minimized within MOE (Molecular Operating Environment software, MOE 2008.10, Chemical Computing Group) 
using MMFF94 force field. This energy minimization methodology is capable of calculating constrained geometries 
through the use of chiral, distance, angle and dihedral restraints. 20 Hydrogen atoms and lone pairs were added to 
each molecule. Energy minimization was terminated when the root mean square gradient fell below 0.05. Force field 
partial charges were calculated prior to energy minimization. Conformational models were calculated using a 15 
kcal energy cut off .The number of conformers generated for each substrate was limited to a maximum of 250. 
Pharmacophore Model Generation 
  
All molecules with their associated conformations were regrouped including their biological data.  
The developed model can be based on one conformation of the most active molecule. Alternatively, it can be based 
on an alignment of several active molecules, a method that is used here. Such an alignment can be obtained by using 
MOE’s flexible alignment, and all conformations of the molecules were considered for the alignment. After 
assigning MMFF94 charges to all molecules, flexible alignment was employed to scan and rank overlays of each 
class of compounds based on steric, electrostatic field, hydrophobic areas overlap, hydrogen bond donors and 
acceptors overlap. Each alignment is given a score that quantifies the quality of the alignment in terms of both 
internal strain and overlap of molecular features. Methodologies based upon 3D alignment for finding biologically 
active ligands generally make use of the qualitative assumption that if two ligands align well, they will possess 
similar biological activity. 21 Using the MOE pharmacophore consensus search module, setting tolerance to 1.40 and 
threshold to 100% a pharmacophoric model was generated using a scheme which was comprised of four different 
annotation points (H-bond donor, H-bond acceptor, hydrophobic and aromatic features). Starting from the best 
geometries obtained by conformational analysis, three alignments were derived, one for each class of compounds 
characterized by the highest accuracy and overlap of the most active compounds in each set. Using pharmacophore 
consensus as implemented in MOE, three different pharmacophore ligand-based models were developed in order to 
highlight the most important key features shown by each group of compounds belonging to the dataset (Fig 2-4). In 
addition, the availability of an x-ray structure of Erlotinib bound to the EGFR binding site (PDB ID: 1M17) was 
used as a template to create a fourth pharmacophore (Fig 5).  Results indicated that all of them share the following 
requirements: two hydrophobic/aromatic features, one hydrogen bond donor function and two hydrogen acceptor 
functions (Table 2). To further validate this hypothesis, all the compounds in the training set were subjected to 
flexible alignment (Fig 6). Pharmacophore consensus was used again and indicated that three features contribute to 
the pharmacophore of EGFR which are spatially oriented so as to form a triangle: two 
hydrophobic/aromatic/acceptor moieties (F2 and F3) which are 5.48 A° apart from each other, in addition to a donor 
(F1) feature situated at 2.94 A° and 3.14 A° from both F2 and F3 features respectively (Fig 6). The default radii for 
F1, F2 and F3 features were set to 0.5A°, 0.9A° and 0.8A° respectively. Due to the wide structural diversity of our 
data set, the acceptor features failed to align together so they were omitted from the pharmacophore.  
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Fig. 1 General structures of data set compounds 1-25 
 

Table 1 Structures of compounds in data set 
 

 

 
 

No. R1 R2 R3 R4 IC 50(µM) 

Pyrimido[4,5-b]-1,4-
benzoxazepines 

1 Br H OCH3 OCH3 0.34 

 2 Cl F OCH3 H 0.9 
 3 Cl F H OCH3 1.0 
 4 Cl F F H 1.0 
Thiazolo[4,5-d] 
pyrimidines 

5 
N

N

 

F Cl  0.006 

 6 
N

 

F Cl  0.004 

 7 
N

 

F Cl  0.010 

 8 
N

HO  

F Cl  0.011 

[1,4]-dioxino quinazolines 9 Br N-methyl 
piperazine 

  0.036 

 10 Cl Morpholine   0.022 
 11 Br morpholine   0.042 
 12 Br piperidine   0.052 
N-phenylsulfonyl 
nicotinamides       

13 H Br H Cl 0.09 

 14 H Br H Me 12.11 
 15 H H Cl Br 29.07 
 16 H H H Me 24.83 
 17 Cl H H Me 27.05 
 18 H H Cl Cl 18.15 
Metronidazole–
sulfonamides                 

19 H - - - 2.94 

 20 Me - - - 3.43 
 21 Br - - - 2.17 
Phenylacetyl 
bezenesulfonamides 

22 H F H - 6.74 

 23 Me Cl H - 13.73 
 24 Br Cl H - 11.29 
 25 F OMe H - 21.84 
Erlotinib 26 - - - - 0.03 
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Fig. 2 Flexible alignment of azepines 1-4 mapped to the pharmacophoric model for EGFR activity. 
Pharmacophore features shared by compounds 1-4 are color coded: F1 and F2:  purple for a hydrogen bond 
donor, F3 and F6: cyan for a hydrogen bond acceptor, F4, F8 and F9: orange for hydrophobic/ aromatics, F5 

and F7: green for hydrophobics 
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Fig. 3 Flexible alignment of thiazolo [4,5-d] pyrimidines 5-8 mapped to the  pharmacophoric model for EGFR 

activity. Pharmacophore features shared by compounds 5-8 are color coded: F1 and F3:  purple for a 
hydrogen bond donor, F2 and F5: cyan for a hydrogen bond acceptor or aromatic/ hydrophobic/acceptor 

feature, F4: orange for hydrophobic aromatics 
 

 
 

Fig. 4 Flexible alignment of [1,4]-dioxino quinazolines 9-12 mapped to the pharmacophoric  model for 
EGFR activity. Pharmacophore features shared by compounds 9-12 are color coded: F1:  purple for a 
hydrogen bond donor, F2, F4, F6 and F8: cyan for a hydrogen bond acceptor, F3, F5 and F9: orange 

for hydrophobic/ aromatics, F7: green for hydrophobics 
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Fig. 5 Pharmacophore model for Erlotinib 
 

Table 2 All Pharmacophoric features of each class 
 

Compounds Don Acc Aro/hyd Hyd 
Azepines two two three two 
Thiazolo[4,5-d]pyrimidines two two two - 
1,4-dioxino quinazolines one four three one 
Erlotinib one six three five 

 

         
 

Fig. 6 Flexible alignment of training set compounds 1-12 and Erlotinib (left panel) and the best predicted 
pharmacophore features and geometries which are required for EGFR activity(right panel).  Pharmacophore 

features are color coded: F1: purple for a hydrogen bond donor, F2 and F3: red for aromatic/hydrophobic 
/acceptor feature 
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Validation of pharmacophoric hypothesis 
Test Set Prediction 
The validity and predictive character of our model were further assessed by predicting the activity of test set 
molecules .This was performed by studying the significance of distances between different structural features and 
EGFR inhibitory activity of the test set. Accordingly, linear regression variable selection analysis was applied using 
SPSS software, version 20.0, SPSS Inc., USA. Regression analysis was performed using EGFR inhibitory activity 
(IC50) as dependent variable and the calculated distances (F1-F2, F2-F3 and F1-F3) as independent variables. Three 
equations were exported using regression analysis. The quality of each equation was assessed using the statistical 
parameters viz., correlation coefficient (r), squared predictive correlation coefficient (r2) and standard error of 
estimate (s). Significant distances were obtained as shown in Table 3. Among the three equations reported, equation 
3 had the highest correlation coefficient (r), the highest squared predictive correlation coefficient (r2) and the lowest 
standard error of estimate (s) (Table 4). The model exhibited excellent linearity with R value, i.e., 0.943, and 
squared predictive correlation coefficient (r2) of 0.889 was also observed between experimental and predicted 
activity values of test set molecules. Thus this pharmacophore can predict over 94.3% of the true activity. According 
to equation 3, all three distances were found to be essential for EGFR inhibition in the pharmacophore model, F1–
F2, F2–F3 and F2–F4. 
 

Table 3 Measured distances between the test set compounds structural features 
 

Compound no.F1-F3(A°)F2-F3(A°)F1-F2(A°)
13 2.78 5.66 3.35 
14 3.82 6.36 3.53 
15 3.77 7.03 3.84 
16 3.82 6.79 3.59 
17 3.78 6.83 3.77 
18 3.73 6.55 3.14 
19 2.84 5.48 3.79 
20 3.86 6.01 3.35 
21 3.86 6.01 3.35 
22 3.05 5.79 3.41 
23 3.69 6.21 3.30 
24 3.00 6.58 3.34 
25 3.14 6.58 3.36 

 
Table 4 Significance of the distances between the pharmacophoric features 

 
Equation % Inhibition  r  r2 s 
1 -133.477+18.295(F2-F3)+9.107(F1-F2) 0.941 0.885 3.881 
2 -106.817+20.308(F2-F3)-2.232(F1-F3) 0.925 0.855 4.205 
3 -132.353+19.240(F2-F3)+8.866(F1-F2)-1.804(F1-F3) 0.943 0.889 3.874 

 
Applying equation 3 to the tested compounds, their EGFR inhibitory activity was predicted (Table 5).  The 
correlation plot generated from the regression analysis showed a linear relationship between the actual and predicted 
activities among the training set of 25 compounds (Figure 7). In this study, test set compounds were classified by 
their activity as highly active (0.09-3.40µM, +++), moderately active (3.43–11.29µM, ++), and least active 
(>11.29µM+).The model successfully predicted the activities of most compounds. The error value (residual) was 
calculated as the difference between the predicted and experimental activities. A positive error value indicates that 
the predicted activity is higher than that obtained experimentally, while a negative error value indicates that the 
predicted activity is lower than that obtained experimentally. The activities of only two compounds were either 
overestimated or underestimated. Compound 21 was actually highly active (+++) but was underestimated as 
moderately active (++), compound  24 was  moderately active (++) but was estimated as least active (+).However, 
the differences between the actual and estimated activities  showed an error value of less than ten, hence these 
values shows that the generated model is statistically significant.  
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Table 5 Evaluated and predicted inhibitory activity (IC50) of the test set compounds using equation (3). 
 

Compound no. Actual Activity(µM) Estimated Activity (µM ) Residuala Actual Activity Scale Estimated Activity Scale 
13 .09 1.23523 -1.14523 +++ +++ 
14 12.11 14.42364 -2.31364 + + 
15 29.07 30.15332 -1.08332 + + 
16 24.83 23.22890 1.60110 + + 
17 27.05 25.66660 1.38340 + + 
18 18.15 14.78371 3.36629 + + 
19 2.94 1.56499 1.37501 +++ +++ 
20 3.43 6.02149 -2.59149 ++ ++ 
21 2.17 6.02149 -3.85149 +++ ++ 
22 6.74 3.78148 2.95852 ++ ++ 
23 13.73 9.73281 3.99719 + + 
24 11.29 18.45076 -7.16076 ++ + 
25 21.84 18.37559 3.46441 + + 

a
 Residual= Actual Activity-Estimated Activity 

 

 

 
 

Fig. 7 Relation between experimental and predicted EGFR inhibitory 
activity values of test set molecules using our predicted pharmacophore model 

 
Pharmacophore mapping of test set compounds 
The pharmacophore model was also validated for its predictive power by mapping test set compounds onto the 
model and comparing the resultant root mean square deviation (RMSD) values. RMSD value refers to the root of the 
mean square distance between the query features and their matching ligand target points. To be considered as hit, the 
compound has to fit all the features of the pharmacophore. The program expresses the degree of mapping of a given 
compound to a generated hypothetical model in terms of RMSD value, which in turn is correlated with its activity. 
The higher the RMSD value, the higher the expected activity against EGFR. To obtain an accurate prediction for 
RMSD values of test set compounds, known EGFR inhibitor Erlotinib (PDB ID: 1M17, IC50 0.03) was docked into 
the ATP binding site of EGFR using our proposed pharmacophore model and an RMSD value of 0.1360 was 
obtained. Next, all compounds in the test set were docked into the active site using our pharmacophore as the query. 
Results indicated that the RMSD values for the most active compounds in the test set were close to that of Erlotinib.  
Our model was able to identify 4 (4/6 or 67.7%) of the compounds of medium and high inhibitory activities and 
misclassify only 2(2/7 or 28.5%) of the compounds with low inhibitory activities. Results listed in Table 6 revealed 
that the lower RMSD values were obtained for the highly active compounds.  Figure 8 shows how our model maps 
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to representative highly active compound 13 and least active compound 15 from the test set. Compound 13 has 
RMSD value of 0.1656 and IC50 value of 0.09.The NH group fitted the region of the F1 donor feature, while the 
pyridine ring fitted the F2 aromatic/hydrophobic/acceptor feature. In addition, the oxygen atom belonging to the SO2 
moiety, aligned well with the F3 feature. On the other hand, compound 15 (RMSD 0.3266, IC50 29.07) was selected 
as a representative example of the compounds that partially matched our pharmacophore and showed fitting to only 
F1 and F2 features of the pharmacophoric model. 
 

Table 6 RMSD values for test set compounds 
 

Compound no. IC50 RMSD Compound no. IC50 RMSD 
13 .09 0.1656 20 3.43 0.1656 
14 12.11 0.2493 21 2.17 0.1656 
15 29.07 0.3266 22 6.74 0.3469 
16 24.83 0.3127 23 13.73 0.3465 
17 27.05 0.2149 24 11.29 0.3465 
18 18.15 0.2575 25 21.84 0.3469 
19 2.94 0.1656 Erlotinib 0.03 0.1360 

 
 

 
 
Fig.8 Mapping of highly active compound 13(IC50 0.09µM, RMSD 0.1656) (left) and least active compound 15 

(IC50 29.07µM, RMSD 0.3266) (right) onto the pharmacophore model 
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 To understand the relative importance of each individual pharmacophore feature on the sensitivity and specificity 
of the model, the following test was performed. Each pharmacophore feature was removed individually and the test 
set was scanned using the reduced pharmacophore model consisting of only the remaining two pharmacophore 
features. The test result is shown in Table 7. The removal of any one pharmacophore feature caused a minor 
decrease in the number of true positives but a dramatic increase in the number of false positives. Specifically, 
removal of either F1 or F2 resulted in a false positive rate of 71.4% and 57.1% respectively. Therefore, the F1 
aromatic/Hydrophobic/Acceptor feature and F2 donor feature residue were the most critical pharmacophore 
features in ensuring the specificity of the model. 
 
Table 7 The relative importance of each individual pharmacophore feature on the sensitivity and specificity 

of the model, as indicated by the success rate and the false positive rate after the feature was removed 
 

ID Feature Success Rate after the feature was removeda False positive rate after the feature was removedb 
F1 Acceptor/Hydrophobic/Aromatic 4/6(66.7) 5/7(71.4) 
F2 Donor 3/6(50) 4/7(57.1) 
F3 Acceptor/Hydrophobic/Aromatic 4/6(62.5) 2/7(28.5) 

a Study conducted among compounds of high and moderate activities 
bStudy conducted among compounds with low activities 
Values expressed in percentage are given in parentheses 

 

Table 8 Result of 3D search of Maybridge database 
 
Compound Structure RMSD Predicted Activity Lipinski  Violation 
BTB00810 

NH

S
H
N

N
H

O

S

Cl

 

0.0355 0.632 0 

SEW01394 

Cl

Cl

H
N

N
H

O

N

SNOCl

 

0.0346 1.271 0 

SPB04883 

N
O

S

N

H
N

Cl

 

0.0367 2.707 0 

MWP01055  

N

HN

N

O

N
H

CH3

CH3  

0.0453 2.727 0 
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BTB02067 

N

O NH

HN

S

H

H

O

O

 

0.0422 2.989 0 

 
Database screening 
Pharmacophore models are useful to formulate a query to search chemical collections in search of mechanistically 
homogeneous but structurally diverse scaffolds. In the present study, the validated three feature pharmacophore was 
used to screen molecules from the Mini Maybridge (56,000 compounds) .Out of the 548 hits obtained from the Mini 
Maybridge database, five structurally diverse leads, SPB04883, MWP01055, BTB02067, SEW01394 and 
BTB00810 were selected on the basis of RMSD values, potencies and druggable properties (see next sub heading). 
The structures and estimated activities of selected leads are shown in Table 8. All five compounds showed a good fit 
with our proposed model (Fig 9). The most active compound, compound BTB00810, of Mini Maybridge database, 
showed good fit with all the three features. In this case, the F3 (hyd/acc/aromatic) feature is mapped by sulfur atom, 
the F1 donor feature is mapped by an NH group and the F2 (hyd/acc/aro) feature is mapped by the oxygen of the 
carbonyl group. The second most active compound, compound SEW01394, also showed a best fit with all features 
of our pharmacophore hypothesis. In this case, one of the chlorine atoms fits the F3 (hyd/acc/aro) feature, one the 
NH atoms maps well to the F1 donor feature and the oxygen atom of the carbonyl group maps to the F2 
(acc/hyd/aro) feature. The third most active compound SPB04883, also mapped well with our pharmacophore. In 
this case, the F2 (acc/hyd/aro) feature is fitted by the benzene ring, The F1 donor feature is fitted by an NH group 
and the F3 (acc/hyd/aro) feature is fitted by the thiazole ring. 
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Drug –Like property calculation 
In recent years, one of the tools for predicting drug likeness, which discriminates between drug-like and non drug-
like compounds, is the Lipinski's rule of five which takes into consideration, the compound's molecular weight, 
hydrophilicity (cLogP), number of hydrogen bond donors, and number of hydrogen bond acceptors. 22 According to 
the results obtained using the Molinspiration software, none of the compounds violate any of the Lipinski's criteria, 
an important characteristic for future drug development. Additional SAR parameters were calculated using the 
Osiris program such as solubility (LogS), drug likeness and drugscore. Osiris program druglikeness values are 
calculated from 15000 Fluka compounds and from 3300 traded drugs. A positive value states that your molecule 
contains predominantly fragments which are frequently present in commercial drugs. The drug score combines 
druglikeness and overall potential to qualify for a drug. A high solubility and a low hydrophilicity contribute to a 
compound’s absorption or permeation ability. Compound BTB00810 which displayed highest predicted activity 
possessed a reasonable hydrophilicity, a reasonably high solubility and the highest drug score compared to all active 
compounds (Table 9). Thus there is a good correlation between calculated SAR parameters and the predicted 
activity of compounds screened from Maybridge database. 
 

Table 9 Physico-chemical and absorption properties for the most active compounds 
 
Compound cLogPa MW b n-OHNH 

donorsc 
n-ON 
acceptorsd 

Lipinski's 
violations 

Log 
Se 

Drug-
likeness 

Drug 
Score 

BTB00810 4.495 375.9 3 2 0 -3.81 2.93 0.67 
SEW01394 2.919 391.666 2 3 0 -4.57 4.27 0.25 
SPB04883 5.862 353.8 1 2 0 -6.01 1.66 0.36 
MWP01055 3.945 306.4 2 2 0 -4.91 -0.16 0.47 
BTB02067 1.201 305.3 3 3 0 -1.93 -6.16 0.13 

a: cLogP = logarithm of compound partition coefficient between n-octanol and water 
b: MW= molecular weight 

c: n-OHNH number of hydrogen bond donors 
d: n-ON number of hydrogen bond acceptors 

e: aqueous solubility 
 
Docking Studies 
To compare the binding mode of most active compound BTB00810 to the known EGFR inhibitor Erlotinib, a 
docking study into the ATP binding site of epidermal growth factor receptor (EGFR) was performed. Structure 
coordinates for the crystal structure of Erlotinib-EGFR inhibitor were used to define the binding site and were 
obtained from RCSB Protein Data Bank (PDB ID: 1M17). Docking study of the designed compound into EGFR 
tyrosine kinase was performed using MOE.  Prior to docking, Erlotinib was energy-minimized with a MMFF94 
force-field till the gradient convergence 0.01 kcal/mol was reached. 
 
The ATP binding site of EGFR has the following features; Adenine region: contains two key hydrogen bonds 
formed by the interaction of the purine base of ATP and the protein backbone between amino acids Gln767 and 
Met769. Hydrophobic pockets: Though not used by ATP but plays an important role in inhibitor selectivity. 
Phosphate binding region: This is used for improving inhibitor selectivity .23 Erlotinib binds to the adenine region of 
EGFR by mimicking the binding of ATP with the protein backbone via an interaction between the N-1 of the 
quinazoline which accepts an H-bond from the backbone Met-769 amide nitrogen existing in the hinge region of 
EGFR. Another significant interaction comes from the presence of a water mediated hydrogen bond between N-3 of 
quinazoline ring and a water molecule near Thr-766 side chain of EGFR molecule.24 Our docking studies on 
BTB00810 have revealed the presence of two hydrogen bonding interactions with Met769 residue. The first 
interaction is the donation of a hydrogen from the NH group of BTB00810 to Met769 residue present in the 
backbone of EGFR (3.0A°). The second interaction is the donation of a hydrogen atom from NH group of Met 769 
to the oxygen atom of carbonyl group present in BTB00810 (2.9°) (Fig 10). Comparing the docking mode of our 
compound with Erlotinib, it could be postulated that the designed compound might bind even better than Erlotinib to 
EGFR since it forms two Hydrogen bonding interactions with Met 769 residue in the ATP binding site. 
 
 
 
 
 



Ola K. Sakka et al  J. Comput. Methods Mol. Des., 2013, 3 (2):10-25  
______________________________________________________________________________ 

24 

Available online at www.scholarsresearchlibrary.com 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 10 Docking of compound BTB00810 into the binding site of EGFR 
 

CONCLUSION 
 

In this study, three diverse groups of EGFR inhibitors were used to propose a good pharmacophore  model , which 
shed light on the important role of the donor, acceptor, aromatic and hydrophobic moieties for recognition and 
binding to receptor sites and the significance of the distances between such features. The generated model was 
validated by two methods, test set prediction, and mapping test set compounds onto the model and comparing the 
resultant RMSD values. The sensitivity and specificity of the model was tested by determining the success rate and 
false positive rate after each feature was removed separately. The validated pharmacophore model was then used for 
searching new lead compounds. Five structurally diverse compounds from Maybridge database with µM activity 
against EGFR were retrieved. Undoubtedly, the identified leads have the potential for their development as EGFR 
inhibitors. To our knowledge, this is the first proposed pharmacophore model that attempted to correlate activities 
with distances between pharmacophoric features. Thus this model can be helpful in future investigations regarding 
the design of more potent and specific drugs for EGFR inhibition and can be utilized to predict the activity of a wide 
variety of chemical scaffolds.  
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