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ABSTRACT

In order to ducidate the essential structural features for Epidermal Growth Factor Receptor (EGFR) inhibitors, a
ligand-based phar macophore hypothesis was built on the basis of a set of twelve known EGFR inhibitors belonging
to three different classes using Molecular Operating Environment (MOE) software. In afirst step, three alignments,
one for each group of compounds were generated. All of them were then submitted to MOE phar macophore search
in order to obtain a final pharmacophore model representative of the whole dataset. A pharmacophore model
including three features was developed comprising one hydrogen-donor (F1) and two aromatic/ hydrophobic/
acceptor features (F2 and F3). The developed model was used to predict the activities of test set compounds by
applying linear regression variable selection analysis. The model exhibited excellent linearity with correlation
coefficient (r) value, i.e., 0.943, and squared predictive correlation coefficient (r%) of 0.889 between experimental
and predicted activity values of test set compounds. Our model demonstrated good performance in a separate test
set of 25 compounds: it accurately identified 67.7% of the compounds of medium and high inhibitory activities and
misclassified only 28.5% of the compounds with low inhibitory activities. The results proved our pharmacophore
model to be a filter of great sensitivity and specificity.

Keywords: EGFR antagonists, pharmacophore, docking, MOE.

INTRODUCTION

Cancer is continuing to be a major health problerdéveloping as well as developed counttfeSurpassing heart
diseases, it is taking the position number oneikilue to various worldwide factors. Although madwances have
been made in the chemotherapeutic management @& patients, the continued commitment to the lalbsrimsk
of discovering new anticancer agents remains alfffidmportant. Protein tyrosine kinases (PTKs) newn for
their role in cancer. The epidermal growth faceweptor (EGFR) belongs to the ErbB family, a sulifaof four
closely related receptor tyrosine kinases: EGFREHE), HER2/neu (ErbB2), HER3 (ErbB3), and HER4 @h®
These receptors regulate intracellular signalinthyways mediating cell proliferation, differentiatiomigration,
survival, and adhesichErbB family members, including the EGFR (ErbBlje activated upon dimerization
induced by binding their ligands, which are EGRnsforming growth factos- (TGF-) and Neu differentiation
factor (NDF)® Over expression of EGFR leading to uncontrolleltl m®liferation has been proven to be a definite
cause of a significant number of human tumors (ergast, ovarian, colon, and prostatéand has been shown to
affect proliferation, angiogenesis and cancer nias&s Moreover, patients expressing high levelEGFR usually
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have poor prognosi§.Therefore, inhibitors of EGFR kinase activity mapye useful for therapeutic intervention
in cancer as well as other proliferative diseds8uccess in small molecule drug discovery agaiGEmRE as an
anticancer target has come from selective inhibits its kinase activity using compounds that corapegainst
ATP binding at the catalytic site suchtag anilinoquinazoline derivatives gefitinib, Irasand erlotinib that have
recently been approved for the treatment of patierith advanced non-small cell lung carcinoma arel keeing
clinically evaluated in patients with various typefscancers?® In addition, a great number of different structura
classes of tyrosine kinase inhibitors has beenrtep@nd reviewed including pyrimido[4t8-1,4-benzoxazepines
10 thiazolo[4,5d]pyrimidines™* ,diphenylamine 2,4’-dicarboxamid&sand 1,4-dioxino quinazolings Thus, there
exists a keen interest in understanding the stralctleterminants for substrates and inhibitors GFR. In this era,
ligand-based pharmacophore modeling is playing mapoitant role for the identification dfigand features for
particular targets. The technique rigidly models thteractionbetween a ligand and its binding site in a specific
binding situation. The result is a three-dimensional (3@gt&l arrangement of chemical features, whichdaréved
using algorithms that take rules derived from cleinknowledge into account. A pharmacophore caddréved
either in a structure-based manner by determingrgptementarities between a ligand and its binditgy sr in a
ligand-based manner, by flexibly overlaying a dediaiive molecules and determining those conforomatithat are
able to be overlaid in such a way that a maximumlmer of important chemical features geometricailgrtap **

A 3D pharmacophore model on compounds with obségvsiibucture diversity, if possible, will definitelead to
more universal and robust pharmacophore modelddsigning novel EGFR inhibitors. Numerous pharmaoop
models for protein kinase inhibitors have been regb ™ *° Traxler et al. emphasized the importance of the
presence of an acceptor—donor system in the liggn@mick the anchoring of ATP to the active sifatee enzyme
and the presence of an aromatic feature to repiecebose moiety of ATP conferring potency as vasliselectivity
for the EGFR- PTK (“sugar pocket”)® On the other hand, the pharmacophore model propmg&icGregor et al.
indicated that the ligand-hydrogen bond acceptteraction with the hinge region in the receptorthe most
common interaction among kinase inhibitors and &lenby N1 atom in ATP while a ligand hydrogen bdodor
interaction on either side of the hinge regionrisspnt and is equivalent to the N6 atom of ATP ti@nother hand,
aromatic groups correspond to the 6- membered dimeoups in ATP. In addition, hydrophobic featurare
found throughout the binding site but are most camrm the hydrophobic inner region of the cleft atsb in the
parts occupied by the adenine and sugar moietiéd Bf

However a limited number of models for EGFR intots have been reported using a structurally develsta set
and to our knowledge, the correlation between phaophoric distances and predicted activities objnbs EGFR
inhibitors have never been attemptéhus, in this study, pharmacophore modeling wesidght into use by
applying linear regression variable selection asialjo develop a novel 3D pharmacophore modelithsinot been
reported earlier, with the sole purpose to assist discovery of most potent EGFR inhibitors. Theuléng

validated pharmacophore model was then used tersdvaybridge database to identify structurally déeeEGFR
inhibitors.

MATERIALS AND METHODS

Training Set

All the compounds under consideration were diviofed training set and test set. The selection gifitable training
set is critical for the quality of automaticallyrgrated pharmacophore models. Our training setceaposed of 12
compounds belonging to three different classesnpgio[4,5-b]-1,4-benzoxazepiné$ thiazolo [4,5d]pyrimidines
1 and 1,4-dioxino quinazolinéd which were demonstrated to be ATP competitiveliitbis of EGFR (Fig 1, Table
1) and were used to construct the pharmacophorelnddhirteen compounds (compouri25) were used as test
set to evaluate the prediction capabilities of gfemerated model (Table 1} '8 Furthermore, to facilitate the
modeling, the compounds were divided into threaigsoaccording to their activity data (expressetCggvalues):
highly active (0.09-3.40uM, +++), moderately actii@43-11.29uM, ++), and least active (>11.29uMThis
classification is highly beneficial when trainingetpharmacophore model with a broad range of &etsyiand also
to access the estimation accuracy of pharmacohoc&ly.

Energy Minimization and conformation generation

Prior to screening, all structures were built us2my3D editor sketcher in ChemDraw Ultra 8:0This allowed us
to take into consideration molecular flexibilithereby ensuring that fast-fitting would not be tieci to rigid
molecules with conformations already aligned togharmacophorelhe molecular structures &25 were energy
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minimized within MOE Molecular Operating Environment software, MOE 2008.Chemical Computing Group)
using MMFF94 force fieldThis energy minimization methodology is capablealtulating constrained geometries
through the use of chiral, distance, angle anddiéieestraints?’ Hydrogen atoms and lone pairs were added to
each molecule. Energy minimization was terminatbémthe root mean square gradient fell below (Fo5ce field
partial charges were calculated prior to energyimmization. Conformational models were calculateshgs 15

kcal energy cut off .The number of conformers gatesf for each substrate was limited to a maximu@b6t
Pharmacophore Model Generation

All molecules with their associated conformatiorexevregrouped including their biological data.

The developed model can be based on one conformattithe most active molecule. Alternatively, indae based
on an alignment of several active molecules, a otkthat is used here. Such an alignment can béneldtay using
MOE'’s flexible alignment, and all conformations tife molecules were considered for the alignmenterAf
assigning MMFF94 charges to all molecules, flexidlignment was employed to scan and rank overldysach
class of compounds based on steric, electrostatid, fhydrophobic areas overlap, hydrogen bond dormd
acceptors overlap. Each alignment is given a stimae quantifies the quality of the alignment innter of both
internal strain and overlap of molecular featuisthodologies based upon 3D alignment for finding/dgically
active ligands generally make use of the qualieagsumption that if two ligands align well, theyl wossess
similar biological activity?! Using the MOE pharmacophore consensus search mashiting tolerance tb40 and
threshold to 100% a pharmacophoric model was getusing a scheme which was comprised of four differe
annotation points (H-bond donor, H-bond acceptgdrépphobic and aromatic feature§tarting from the best
geometries obtained by conformational analysigehalignments were derived, one &ach class of compounds
characterized by the highest accuracy and oveffldéipeomost active compounds in each &kting pharmacophore
consensus as implemented in MOE, three differeatrphcophore ligand-based models were developediar to
highlight the mostmportant key features shown by each group of comg®telonging to the dataset (Rg}). In
addition, the availability of an x-ray structure Bflotinib bound to the EGFR binding site (PDB IDM17) was
used as a template to create a fourth pharmacohiy®). Results indicated thatl of them share the following
requirements: two hydrophobic/aromatic feature® bypdrogen bond donor function and two hydrogereaics
functions (Table 2)To further validate this hypothesis, all the compdsi in the training set were subjected to
flexible alignment (Fig 6). Pharmacophore consengas used again and indicated that three featunasiloute to
the pharmacophore of EGFRwhich are spatially oriented so as to form a trangtwo
hydrophobic/aromatic/acceptor moieties (F2 andvi#8th are 5.48 A° apart from each other, in additio a donor
(F1) feature situated at 2.94 A° and 3.14 A° fromthbF2 and F3 features respectively (Fig)e default radii for
F1, F2 and F3 features were set to G,589A° and 0.8A° respectively. Due to the wide strudtdigersity of our
data set, the acceptor features failed to aligettay so they were omitted from the pharmacophore.

Ry
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NH

N/ HN R3 R, HN
o \
R s N R/N\/\[O e
Y HN—<\N | N) . \NJ
1-4 5-8 19-
Pyrimido[4,5b]- Thiazolo[4dfpyrimidines [1,4]-dioxino quinazolines
1,4-benzoxazepines
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Fig. 1 General structures of data set compounds 152
Table 1 Structures of compounds in data set
No. R1 R Rs R4 IC 5o(UM)
Pyrimido[4,5b]-1,4- 1 Br H OCH; OCH; 0.34
benzoxazepines
2 Cl F OCH, H 0.9
3 Cl F H OCH; 1.0
4 Cl F F H 1.C
Thiazolo[4,5-d] 5 K\ F Cl 0.006
pyrimidines N—
Nj
6 F Cl 0.004
-
7 Q F Cl 0.010
N—
8 F Cl 0.011
-
/
HO
[1,4]-dioxino quinazolines | 9 Br N-methyl 0.036
piperazine
10 Cl Morpholine 0.022
11 Br morpholine 0.042
12 Br piperidine 0.052
N-phenylsulfonyl 13 H Br H Cl 0.09
nicotinamides
14 H Br H Me 12.11
15 H H Cl Br 29.07
16 H H H Me 24.83
17 Cl H H Me 27.05
18 H H Cl Cl 18.15
Metronidazole— 19 H - - - 2.94
sulfonamides
20 Me - - - 3.43
21 Br - - - 2.1%
Phenylacetyl 22 H F H - 6.74
bezenesulfonamides
23 Me Cl H - 13.73
24 Br Cl H - 11.29
25 F OMe H - 21.84
Erlotinib 26 - - - - 0.03
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F9:Ar0|Hyd

Flsfro|Hyd
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Fig. 2 Flexible alignment of azepines 1-4 mapped tbe pharmacophoric model for EGFR activity.
Pharmacophore features shared by compounds 1&ke color coded: F1 and F2: purple for a hydrogemond
donor, F3 and F6: cyan for a hydrogen bond acceptoiF4, F8 and F9: orange for hydrophobic/ aromaticsi-5

and F7: green for hydrophobics
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2:Acc
#F5:Aro|Hyd|Acc

Fig. 3 Flexible alignment of thiazolo [4,5d] pyrimidines 5-8 mapped to the pharmacophoric modl for EGFR
activity. Pharmacophore features shared by compounds 5&e color coded: F1 and F3: purple for a
hydrogen bond donor, F2 and F5: cyan for a hydrogeihond acceptor or aromatic/ hydrophobic/acceptor
feature, F4: orange for hydrophobic aromatics

Fig. 4 Flexible alignment of [1,4]-dioxino quinazdhes 9-12 mapped to the pharmacophoric model for

EGFR activity. Pharmacophore features shared by compounds 9-E2e color coded: F1: purple for a

hydrogen bond donor, F2, F4, F6 and F8: cyan for hydrogen bond acceptor, F3, F5 and F9: orange
for hydrophobic/ aromatics, F7: green for hydrophohcs
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F10:Hyd
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Fig. 5 Pharmacophore model for Erlotinib

Table 2 All Pharmacophoric features of each class

pounds Don | Acc | Aro/hyd | Hyd
Azepines two | two| three two
Thiazolo[4,5d]pyrimidines | two | two | two -
1,4-dioxino quinazolines ong foyr three orle
Erlotinib one | six three five

Fig. 6 Flexible alignment of training set compound4-12 and Erlotinib (left panel) and the best predited
pharmacophore features and geometries which are redred for EGFR activity(right panel). Pharmacophore
features are color coded: F1: purple for a hydrogetrond donor, F2 and F3: red for aromatic/hydrophobt

/acceptor feature
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Validation of pharmacophoric hypothesis

Test Set Prediction

The validity and predictive character of our modaire further assessed by predicting the activitytest set
molecules .This was performed by studying the §igamice of distances between different structueatdres and
EGFR inhibitory activity of the test set. Accordipglinear regression variable selection analysis applied using
SPSS software, version 20.0, SPSS Inc., USA. Reigresnalysis was performed using EGFR inhibitartjvity
(ICsp) as dependent variable and the calculated distaftdeF2, F2-F3 and F1-F3) as independent variablese
equations were exported using regression analybis.quality of each equation was assessed usingtdtistical
parameters viz., correlation coefficient (r), sauhmpredictive correlation coefficient’(rand standard error of
estimate (s). Significant distances were obtaireegh@wn in Table 3Among the three equations reported, equation
3 had the highest correlation coefficient {He highest squared predictive correlation coigfic(”) and the lowest
standard error of estimate (s) (Table 4). The madlibited excellent linearity with R value, i.€,943, and
squared predictive correlation coefficienf) (of 0.889 was also observed between experimemal medicted
activity values of test set molecules. Thus thigrpfacophore can predict over 94.3% of the trueiggtiAccording
to equation 3, all three distances were found tedsential for EGFR inhibition in the pharmacophmiedel, F1—
F2, F2-F3 and F2-F4.

Table 3 Measured distances between the test set qoounds structural features

F1-F§ F2-F{ F1-FZ
2.7¢ | 5.6€ | 3.3t
3.82| 6.36] 3.53
3.77| 7.03] 3.84
3.82| 6.79] 3.59
3.78 | 6.83] 3.77
3.72 | 6.58 | 3.14

2.84 | 5.48 | 3.7¢

3.86| 6.01] 3.35
3.86| 6.01] 3.35
3.05| 5.79| 341
3.69| 6.21] 3.30
3.00| 6.58| 3.34
3.14| 6.58| 3.36

N[NNI R RR ke ele o

Table 4 Significance of the distances between thégrmacophoric features

Equation | % Inhibition r r? s

1 -133.477+18.295(F-F3)+9.107(F-F2) 0.941 | 0.88f | 3.881

2 -106.817+20.308(F2-F3)-2.232(F1-F3) 0.9P5 0.455 0&.p
3 -132.353+19.240(F2-F3)+8.866(F1-F2)-1.804(F1-F3) 948.| 0.889| 3.874

Applying equation 3 to the tested compounds, tl&BFR inhibitory activity was predicted (Table 5)The
correlation plot generated from the regressionyaimkhowed a linear relationship between the et predicted
activities among the training set of 25 compourfeigure 7). In this study, test set compounds wéaesdied by
their activity as highly active (0.09-3.40uM, +++#poderately active (3.43-11.29uM, ++), and leadtvac
(>11.29uM+).The model successfully predicted thividies of most compounds. The error value (realluvas
calculated as the difference between the prediatetiexperimental activities. A positive error valodicates that
the predicted activity is higher than that obtaimegberimentally, while a negative error value iadés that the
predicted activity is lower than that obtained ekpentally. The activities ofonly two compounds were either
overestimated or underestimate@ompound21 was actually highly active (+++) but was underastied as
moderately active (++), compoun24 was moderately active (++) but was estimated ast lactive (+However,
the differences between the actual and estimatgditeas showed an error value of less than ten, hencesthes
values shows that the generated model is statigtgignificant.

17

Available online at www.scholarsresearchlibrary.com



Ola K. Sakkaet al J. Comput. Methods Mol. Des,, 2013, 3 (2):10-25

Table 5 Evaluated and predicted inhibitory activity (ICsg) of the test set compounds using equation (3).

Compound no. | Actual Activity(uM) | Estimated Activity (UM, | Residuaf | Actual Activity Scale | Estimated Activity Scale
13 .09 1.23523 -1.14523 +++ +++
14 12.11 14.42364 -2.31364 + +
15 29.07 30.15332 -1.08332 + +
16 24.83 23.22890 1.60110 + +
17 27.05 25.66660 1.38340 + +
18 18.15 14.78371 3.36629 + +
19 2.94 1.56499 1.37501 +++ +++
20 3.43 6.02149 -2.59149 ++ ++
21 2.17 6.02149 -3.85149 +++ ++
22 6.74 3.78148 2.95852 ++ ++
23 13.73 9.73281 3.99719 + +
24 11.29 18.45076 -7.16076 ++ +
25 21.84 18.37559 3.46441 + +

a
Residual= Actual Activity-Estimated Activity

20 R /’
15 - o o

10+ / 2

s ey

0 T T T T T T ]
0 B 10 15 20 25 30 35

Predicted 1Cg,

Experimental IC;,

Fig. 7 Relation between experimental and predicteBGFR inhibitory
activity values of test set molecules using our pdécted pharmacophore model

Pharmacophore mapping of test set compounds

The pharmacophore model was also validated fopriéslictive power by mapping test set compounds tim¢o
model and comparing the resultant root mean sqileriation (RMSD) values. RMSD value refers to thetrof the
mean square distance between the query featuregdeindnatching ligand target points. To be congdeas hit, the
compound has to fit all the features of the phaophore. The program expresses the degree of mappmgiven
compound to a generated hypothetical model in teffi®MSD value, which in turn is correlated witk #ctivity.
The higher the RMSD value, the higher the expeeigiity against EGFR. To obtain an accurate ptegficfor
RMSD values of test set compounds, known EGFR itgrilirlotinib (PDB ID: 1M17, 1Gy 0.03) was docked into
the ATP binding site of EGFR using our proposedrpi@ophore model and an RMSD value of 0.1360 was
obtained. Next, all compounds in the test set weirgked into the active site using our pharmacophsréhe query.
Results indicated that the RMSD values for the raositte compounds in the test set were close toofharlotinib.
Our model was able to identify 4 (4/6 or 67.7%)tled compounds of medium and high inhibitory adggtand
misclassify only 2(2/7 or 28.5%) of the compoundthvow inhibitory activities. Results listed in Bk 6revealed
that the lower RMSD values were obtained for thghlyi active compoundsFigure 8shows how our model maps
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to representative highly active compoub8 and least active compourid from the test setCompoundl3 has
RMSD value of 0.1656 and igvalue of 0.09.The NH group fitted the region o thl donor feature, while the
pyridine ring fitted the F2 aromatic/hydrophobiaaptor feature. In addition, the oxygen atom belogd¢o the S@
moiety, aligned well with the F3 feature. On theesthand, compounts (RMSD 0.3266, 16, 29.07) was selected

as a representative example of the compounds énaalfy matched our pharmacophore and showeadjtto only
F1 and F2 features of the pharmacophoric model.

Table 6 RMSD values for test set compounds

Compound no. | 1G5 RMSD | Compound no. | G RMSD
13 .09 0.1656 | 20 3.43 | 0.1656
14 12.11| 0.2493| 21 2.17 | 0.1656
15 29.07 | 0.3266| 22 6.74 | 0.3469
16 24.83 | 0.3127| 23 13.73 | 0.3465
17 27.08 | 0.214¢ | 24 11.2¢ | 0.346¢
18 18.15| 0.2575| 25 21.84 | 0.3469
19 2.94 | 0.1656| Erlotinib 0.03 | 0.1360
o
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Fig.8 Mapping of highly active compound 13(IG, 0.09uM, RMSD 0.1656) (left) and least active compod 15
(IC5029.07uM, RMSD 0.3266) (right) onto the pharmacoptre model
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To understand the relative importance of eachviddal pharmacophore feature on the sensitivity sppetificity

of the model, the following test was performed. iEpbarmacophore feature was removed individualtytae test
set was scanned using the reduced pharmacophorel mankisting of only the remaining two pharmacogho
features. The test result is shown in Table 7. fdraoval of any one pharmacophore feature causedarm
decrease in the number of true positives but a dtianincrease in the number of false positives.cBigally,
removal of either F1 or F2 resulted in a false fpasirate of 71.4% and 57.1% respectively. Thefohe F1
aromatic/Hydrophobic/Acceptor feature and F2 dofeature residue were the most critical pharmacaphor
features in ensuring the specificity of the model.

Table 7 The relative importance of each individuapharmacophore feature on the sensitivity and speddity
of the model, as indicated by the success rate atite false positive rate after the feature was remaead

ID | Feature Success Rate after the feature was exdvFalse positive rate after the feature was renfoyed
F1 | Acceptor/Hydrophobic/Aromati 4/6(66.7) 5/7(7.4
F2 | Donor 3/6(50) 4/7(57.1)
F3 | Acceptor/Hydrophobic/Aromati 4/6(62.5) 2/7(28.5
#Sudy conducted among compounds of high and moderate activities
Study conducted among compounds with low activities
Values expressed in percentage are given in parentheses
Table 8 Result of 3D search of Maybridge database
Compound Structure RMSD | Predicted Activity | Lipinski Violation
BTB00810 i 0.0355 | 0.632 0
H
S, N s,
NH
O
SEW01394 ¢ ? 0.0346 1.271 0
H
ﬁI g
H /|K
Cl Cl [¢] N\\/S
SPB04883 | 0.0367 | 2.707 0
~ -
\ \ \ L cl
N\O
MWP01055 o /© 0.0453 | 2.727 0
N
X
N/ N/CH3
b
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BTB02067 0.0422 2.989 0
A
)

Database screening

Pharmacophore models are useful to formulate ayqoesearch chemical collections in search of meistigally
homogeneous but structurally diverse scaffoldshénpresent study, the validated three featurenpeophore was
used to screen molecules from the Mini Maybridg&@80 compounds) .Out of the 548 hits obtained ftioenMini
Maybridge database, five structurally diverse lea8®B04883 MWP01055 BTB02067 SEWO01394 and
BTB00810were selected on the basis of RMSD values, pasrand druggable properties (see next sub heading).
The structures and estimated activities of seldletads are shown in Table 8. All five compoundsvatba good fit
with our proposed model (Fig 9). The most activenpound, compoun8TB0081Q of Mini Maybridge database,
showed good fit with all the three features. Istbase, the F3 (hyd/acc/aromatic) feature is mapgelilfur atom,
the F1 donor feature is mapped by an NH group had2 (hyd/acc/aro) feature is mapped by the oxyijehe
carbonyl group. The second most active compounahpooindSEW01394 also showed a best fit with all features
of our pharmacophore hypothesis. In this case,dabribe chlorine atoms fits the F3 (hyd/acc/aro)des one the
NH atoms maps well to the F1 donor feature and dkggen atom of the carbonyl group maps to the F2
(acc/hyd/aro) feature. The third most active conmab8PB04883also mapped well with our pharmacophore. In
this case, the F2 (acc/hyd/aro) feature is fittgdhe benzene ring, The F1 donor feature is fittgchn NH group
and the F3 (acc/hyd/aro) feature is fitted by tfiezole ring.
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LTS, AcclydAro
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\

SN F3:Acc\HydlAro
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S

Fig 9A-E Mapping of BTB00810, MWP01055, SEW01394, BTB02067 and SPB04883 onto the

pharmacophoric model respectively
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Drug —Like property calculation

In recent years, one of the tools for predictinggdlikeness, which discriminates between drug-&kel non drug-
like compounds, is the Lipinski's rule of five whitakes into consideratipthe compound'snolecular weight,
hydrophilicity (cLogP), number of hydrogen bond dos) and number of hydrogen bond accepfBraccording to
the results obtained using the Molinspiration saftsy none of the compounds violate any of the Isiiia criteria,
an important characteristic for future drug devetept. Additional SAR parameters were calculatechgighe
Osiris program such as solubility (LogS), drug tikes and drugscore. Osiris progrdmuglikeness values are
calculated from 15000 Fluka compounds and from 3B&@ed drugs. A positive value states that youlegwde
contains predominantly fragments which are fregyeptesent in commercial drug¥he drug score combines
druglikeness and overall potential to qualify fodraig. A high solubility and a low hydrophilicity conttitle to a
compound’s absorption or permeation ability. Commub8TB00810 which displayed highest predicted activity
possessed a reasonable hydrophilicity, a reasohadtysolubility and the highest drug score comgaceall active
compounds (Table 9). Thus there is a good coroelatietween calculated SAR parameters and the peedic
activity of compounds screened from Maybridge dasab

Table 9 Physico-chemical and absorption propertiefor the most active compounds

Compound cLogP® Mw?" n-OHNH n-ON Lipinski's Log Drug- Drug
donors’ acceptor$ violations s likeness Score
BTBO081(  4.49t 375.¢ 3 2 0 -381 2.9¢ 067
SEWO01394 2.919 391.666 2 3 0 -4.57  4.27 0.25
SPB04883  5.862 353.8 1 2 0 -6.01 1.66 0.36
MWP01055 3.94¢ 306. 2 2 0 -4.91 -0.1€ 047
BTB02067  1.201 305.3 3 3 0 -1.93 -6.16 0.13

a: cLogP = logarithm of compound partition coefficient between n-octanol and water
b: MW= molecular weight
¢: n-OHNH number of hydrogen bond donors
d: n-ON number of hydrogen bond acceptors
€e: aqueous solubility

Docking Studies

To compare the binding mode of most active compoBm&800810 to the known EGFR inhibitor Erlotinib, a
docking study into the ATP binding site of epidetrgeowth factor receptor (EGFR) was perform&dructure
coordinates for the crystal structure of ErlotifiaFR inhibitor were used to define the binding sited were
obtained from RCSB Protein Data Bank (PDB ID: 1M13dcking study of the designed compound into EGFR
tyrosine kinase was performed using MOE. Priodd¢eking, Erlotinib was energy-minimized with a MM$4~
force-fieldtill the gradient convergence 0.01 kcal/mol washeal.

The ATP binding site of EGFR has the following feats; Adenine region: contains two key hydrogendson
formed by the interaction of the purine base of AdmRl the protein backbone between amino acids Glarg
Met769. Hydrophobic pockets: Though not used by AR plays an important role in inhibitor selediyvi
Phosphate binding region: This is used for imprgvithibitor selectivity2® Erlotinib binds to the adenine region of
EGFR by mimicking the binding of ATP with the pristebackbone via an interaction between the N-1hef t
quinazoline which accepts an H-bond from the bankbiblet-769 amide nitrogen existing in the hingeioegf
EGFR. Another significant interaction comes frora firesence of a water mediated hydrogen bond betiWeof
quinazoline ring and a water molecule near Thr-8&fe chain of EGFR molecufé.Our docking studies on
BTB00810 have revealed the presence of two hydrogen bonilitegactions with Met769 residue. The first
interaction is the donation of a hydrogen from tld group of BTB0O0810to Met769 residue present in the
backbone of EGFR (3.0A°). The second interactiathésdonation of a hydrogen atom from NH group atM69
to the oxygen atom of carbonyl group presenBirB00810(2.9°) (Fig 10). Comparing the docking mode of our
compound with Erlotinib, it could be postulatedtttiee designed compound might bind even better Eréotinib to
EGFR since it forms two Hydrogen bonding interatsiovith Met 769 residue in the ATP binding site.
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Fig. 10 Docking of compound BTB00810 into the bindig site of EGFR
CONCLUSION

In this study, three diverse groups of EGFR inbitsitwere used to propose a good pharmacophore | matiéch
shed light on the important role of the donor, gtoe aromatic and hydrophobic moieties for rectigni and
binding to receptor sites and the significance tef tistances between such features. The generaiddl was
validated by two methods, test set prediction, arapping test set compounds onto the model and aomgptine
resultant RMSD values. The sensitivity and speityfiof the model was tested by determining the sasaate and
false positive rate after each feature was remgegdrately. The validated pharmacophore model easused for
searching new lead compounds. Five structurallgmie compounds from Maybridge database with pMigcti
against EGFR were retrieved. Undoubtedly, the ifledtleads have the potential for their developtres EGFR
inhibitors. To our knowledge, this is the first pased pharmacophore model that attempted to cteretdivities
with distances between pharmacophoric featuress Ttig model can be helpful in future investigasiorgarding
the design of more potent and specific drugs foFE@hibition and can be utilized to predict théivaty of a wide
variety of chemical scaffolds.
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