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ABSTRACT 

 
A study on solving Duffing – Van der Pol (DVP) differential equation by a second order 

nonlinear ordinary differential equation of Adomain's decomposition into the first order 

differential equations & solving them uses the same method. First the equation is converted into 

the first order differential equations and solving them using the same method. The Lindsted's 

method (LM) is used to compare the solutions of ADM and showing that converting the 

differential equation to the equations in Adomian's method, gives more accurate answers in a 

shorter of computations.  

 
Keywords: Non- linear ordinary differential equation, Adomian's decomposition method, 

Lindsted's method. 

______________________________________________________________________________ 
 

INTRODUCTION 

 
The decomposition method for solving linear and nonlinear problems of ordinary differential 
equations have been developed by Adomian [1,2]. The given equation splitting into linear & non 
linear parts, inverting the highest – order derivative operator contained in the linear operator on 
both sides, identifying the initial and/or boundary conditions and the terms involving the 
independent variable alone as initial approximation, decomposing the nonlinear function in terms 
of special polynomials called Adomian's polynomials, and finding the successive terms of the 
series solution by recurrent relation using Adomian's polynomials. Several authors have 
proposed a variety of modifications to ADM. Wazwaz proposed a powerful modification of 
ADM that accelerates the rapid convergence of the series solution [3,4]. E. Babolian et al. 
introduced the restart metod to solve the equation f(x)=0 [5], and the integral equations [6]. H. 
Jafari et al. used a correction of decomposition method for ordinary and nonlinear systems of 
equations and show that the correction accelerates the convergence [7,8]. 
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The classical DVP oscillator appears in many physical problems and is governed by the 
nonlinear differential equation  
 

,0,0
32 )0()(;0)1( xxxoxaxxxxx &&&&& ===++−− µ     (1) 

 

Where the over dot represents the derivative with respect to time, µ and α are two positive 
coefficients. It describes electrical circuits and has many applications in science, engineering and 
also displays a rich variety of nonlinear dynamical behaviors.  
 
In this paper, equation (1) is solved directly, using ADM. Then we converted (1) into a system of 
first order differential equations and solved the system using ADM. As a criterion, to compare 
the solutions, we used the solution obtained by LM. 
 
In order to compare two applied Adomian's scheme, we calculated the running time of the 
programs need to obtain equal order polynomial solutions in the approaches.  

 
MATHEMATICAL METHOD 

 
Consider the functional equation  
 
Fu = g          (2) 
 
We need to find u such that fulfills the equation (2). Suppose F= L+R+N that L and R are 
invertible and noninvertible linear parts of F and N is the nonlinear part.  
So, equation (2) takes the form 
 
(L+R+N)u=g         (3) 
 
Defining L-1 as the inverse of the operator L and applying it on both sides of (3), we obtain 
 
u=L-1g-L-1Ru-L-1Nu        (4) 
 
The basis of ADM is considering u as the series 
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And defining the nonlinear term as the sum of Adomian's polynomials  

),....( 0
0

n
n

n uuANu ∑
∞

=

=         (6) 

Suppose ∑
∞

=0n
nu  is a convergent series and Nu=f(u) that f is a analytic function, then we have  
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Derivation n times with respect to λ, yields 
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From which we obtain the Adomian's polynomial An as follow  
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Using (4) and (5) in (3), one obtain 
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Derivation n times with respect to λ, yields 
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From which we obtain the Adomian's polynomial An as follow  
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Using (4) and (5) in (3), one obtain 
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Choosing ,1
0 gLu −=  from(7) we obtain 
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nuuAs  is a convergent series, we have an approximate series solution of equation (2) as ϕn  

in below equation, 9, 
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Most applied problems are described by second – order or higher – order differential equations. 
A differential equation of order n, can be written as  

2,)0(),,....,,( ,0
)()1()( ≥=′= − nuuuuutfu n

nnn               (10) 

 
Using u(1)= yi+1 this equation converts to a system of ordinary first – order differential equations 
as follow 
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Where each equation represents the first derivative of a function as a map depending os the 

independent variable x, and n unknown function  nff ,.....,1 . Defining the operator L as the first 

order derivative with respect to t, then i-th equation of the system (11) can be represented as the 
common form 
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Applying the inverse of ∫
−

َ

dtdtLL
.

1 (.),(.), , the equation (10) can be written as  
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That called canonical form in Adomain schema. In order to apply ADM, we let  
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Where ak, k=02,…,n are scalars. 
 
Substituting (13), (14) and (15) into (12), we have 
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From which, we define  
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In practice, all terms of series (13), cannot be determined. So we consider approximate solution, 
calculating following truncated series  
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Our procedure leads to a system of second kind Volterra integral equations, so referring to [9] 
convergence of the method is proved. 
 

RESULTS AND DISCUSSION 
 
DVP equation has the common form given in (1). We consider a special version of this problem 
as follow 

,0)0(,2)0(;001.0)1(1.0 32 ===++−− xxxxxxx &&&&              (19) 

 
Defining y1= x and y2 = x, the problem (19) converts to the problem system of differential 
equations  
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In this section equation (19) and system of equations (20) are solved using ADM as described in 
sections 2 and 3. As there isn't any exavt solution to compare these approaches of ADM, we use 
Lindsted's perturbation method, as an approximate analytical method to obtain an acceptable 
solution as a criterion of comparison.  
 

In LM, a solution by the form ...)()()( 2
2

10 +++ τµτµτ xxx  uses to convert the problem to a set 

of solvable differential equations. Problem910) is solved suing this method to obtain the solution 
as follow 
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A detailed description of LM is presented in [10]. 

(16) 

(17) 

(18) 
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Following the procedure explains in section 2 and considering 5 terms of (9) we obtain the 
polynomial 

842
4 00053.0....089.0104.12)()( tttttX ADM +++−=≈ ϕ              (22) 

 
As approximated solution of (1). Note that this polynomial is of order 8, running time of the 
program that used to obtain (22) on a laptop with 1GB of ram with a 2.00 GHz CPU, is 0.313 

seconds. Numerical results of x(t) and xADM(t) for 0≤t≤2 and absolute errors of AFM are listed in 
table 1. 

Table 1. Numerical results and errors of AFM 

t LM ADM Abs. Error 
0.0 2.00000 1.99750 0.00250 

0.1 1.98971 1.98724 0.00247 

0.2 1.95936 1.95697 0.00239 

0.3 1.90980 1.90758 0.00222 

0.4 1.84202 1.84008 0.00193 

0.5 1.75705 1.7552 0.00153 

0.6 1.65598 1.65493 0.00105 

0.7 1.53999 1.53939 0.00062 

0.8 1.41039 1.40982 0.00056 

0.9 1.26872 1.26726 0.00142 

1.0 1.11696 1.11267 0.00429 

1.1 0.95770 0.94704 0.01065 

1.2 0.79445 0.77147 0.02298 

1.3 0.63206 0.58715 0.4491 

1.4 0.47712 0.39545 0.08166 

1.5 0.33856 0.19795 0.14061 

 
Table 2. Numerical results and errors of ADM 

t LM ADM Abs. Error 
0.0 2.00000 1.99750 0.00250 

0.1 1.98971 1.98724 0.00247 

0.2 1.95936 1.95697 0.00239 

0.3 1.90980 1.90758 0.00222 

0.4 1.84202 1.84008 0.00193 

0.5 1.75702 1.75552 0.00150 

0.6 1.65586 1.65493 0.00092 

0.7 1.53958 1.53937 0.00021 

0.8 1.40922 1.40982 0.00059 

0.9 1.26581 1.26726 0.00145 

1.0 1.11033 1.11267 0.00233 

1.1 0.94373 0.94704 0.00330 

1.2 0.76686 0.77147 0.00460 

1.3 0.58037 0.58715 0.00677 

1.4 0.38462 0.39454 0.01083 

1.5 0.17946 0.19795 1.01848 
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Following the procedure of section 2, and considering 9 terms of (18) we obtain the following 8-
th order polynomial as approximate solution of (20). 

8432
4 0048.00...089.0104.04.112)()( ttttttxSADM −+++−=≈ ϕ             (23) 

 
By this approach the running time was 0.109 seconds.  
 

Numerical results of x(t) and XSADM(t) for 0≤t≤2 and absolute errors of ADM are listed in table 2. 
Comparing the errors of two Adomian approaches in tables 1 and 2, we see that ADM for a 
nonlinear differential equation and its related system of equations gives the results with equal 
errors in the beginning of the solution interval, while in the end of the interval, converting the 
equation to a system of differential equations, tends to more accurate solutions. 

 
CONCLUSION 

 
This study shows that ADM can be used to solve DVP problem and obtain the solutions by 
acceptable errors. Converting the equation to a system of first order differential equations and 
solving the system by ADM, gives more accurate results in a lower time of computations in 
comparison with direct application of ADM. This can be related to lowering the calculations by 
reducing the order of differential equations.  
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