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ABSTRACT

A study on solving Duffing — Van der Pol (DVP) eléntial equation by a second order
nonlinear ordinary differential equation of Adomaindecomposition into the first order
differential equations & solving them uses the same¢hod. First the equation is converted into
the first order differential equations and solvitttem using the same method. The Lindsted's
method (LM) is used to compare the solutions of ABxMi showing that converting the
differential equation to the equations in Adomiamsthod, gives more accurate answers in a
shorter of computations.

Keywords. Non- linear ordinary differential equation, Adomis decomposition method,
Lindsted's method.

INTRODUCTION

The decomposition method for solving linear andlim@ar problems of ordinary differential
equations have been developed by Adomian [1,2].giVen equation splitting into linear & non
linear parts, inverting the highest — order demxeabperator contained in the linear operator on
both sides, identifying the initial and/or boundasgnditions and the terms involving the
independent variable alone as initial approximata@composing the nonlinear function in terms
of special polynomials called Adomian's polynomiaad finding the successive terms of the
series solution by recurrent relation using Adonsiapolynomials. Several authors have
proposed a variety of modifications to ADM. Wazwaoposed a powerful modification of
ADM that accelerates the rapid convergence of #r@es solution [3,4]. E. Babolian et al.
introduced the restart metod to solve the equd(o0 [5], and the integral equations [6]. H.
Jafari et al. used a correction of decompositionhoa for ordinary and nonlinear systems of
eguations and show that the correction acceletagesonvergence [7,8].
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The classical DVP oscillator appears in many plafsigroblems and is governed by the
nonlinear differential equation

X—pu@-x*)x+x+ax =0, X(0) =X, X(0) =X, (1)

Where the over dot represents the derivative wégpect to timey anda are two positive
coefficients. It describes electrical circuits dras many applications in science, engineering and
also displays a rich variety of nonlinear dynamisahaviors.

In this paper, equation (1) is solved directlyngsADM. Then we converted (1) into a system of
first order differential equations and solved tlgstem using ADM. As a criterion, to compare
the solutions, we used the solution obtained by LM.

In order to compare two applied Adomian's scheme, calculated the running time of the
programs need to obtain equal order polynomialtswia in the approaches.

MATHEMATICAL METHOD
Consider the functional equation
Fu=g 2
We need to find u such that fulfills the equati@). (Supposé== L+R+N that L andR are
invertible and noninvertible linear parts of F @ds the nonlinear part.
So, equation (2) takes the form
(L+R+N)u=g 3)
Defining L™ as the inverse of the operatoand applying it on both sides of (3), we obtain
u=L"g-L"Ru-L*Nu (4)

The basis of ADM is considering u as the series

u=>u, (5)
n=0
And defining the nonlinear term as the sum of Adams polynomials
Nu=>" A (U,...u,) (6)
n=0

SupposeZun is a convergent series aNdi=f(u) that f is a analytic function, then we have
n=0
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f(iun/\”):imn,

Derivationn times with respect t4, yields

d" > n
o T o =,

From which we obtain the Adomian's polynoméglas follow

_1dn =]

A" f (nzzc; U A 1eo 0

Using (4) and (5) in (3), one obtain

3 u, =Lig- LR u,) - LN A) ®

Derivation, times with respect td, yields

d" . >
o f QA=A

From which we obtain the Adomian's polynomiglas follow

_1dn [

_HdAn f(gunjn)bzo

Using (4) and (5) in (3), one obtain
3 u, =Lg- LR 0,) - LN A)

Choosingu, = L™g, from(7) we obtain
u, =-L"'Ruy, - LA,

u, =-L*Ry - LA

u, = _L_lRL\H - L_lph—l

Asu= ZUn is a convergent series, we have an approximaiessalution of equation (2) @&
n=0

in below equation, 9,

$,=3u . lim ¢, =u
i=0

n-oo
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Most applied problems are described by second eradhigher — order differential equations.
A differential equation of order n, can be writ@En

U = (LU, ™), U Q) =, 22 (10)

Using U= y..; this equation converts to a system of ordinarst fir order differential equations
as follow

Y, = (YY)
Y, = (L YenYs)

(11)
y, = f.(ty,..y,)

Where each equation represents the first derivaiiva function as a map depending os the
independent variable, and n unknown functionf,,..... f_. Defining the operatot as the first

''n
order derivative with respect tptheni-th equation of the system (11) can be representdgeas
common form

Ly, = f,(t, Y1, ¥n)

Applying the inverse ot., L‘l(.)dt,j(.)dt, the equation (10) can be written as
|

¥ = Y20) + [ (Lt Yoy Yo) + No(t Yoo )t (12)
0

That called canonical form in Adomain schema. kieorto apply ADM, we let

ylziyij (13)
Ll(t!yl""'lyn):iiakykj (14)
Nl(t!yl""'yn):ip\j(fio""'lfij) (15)

Where @ k=02,...,n are scalars.

Substituting (13), (14) and (15) into (12), we have

00 | n (%) | (%)

DV =0+ [ XY aydt+ [ XA (... Byt
=1 0 k=l j=0 0 j=0
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From which, we define
yio = yi (0)

I n |
Yosa = [ 2 aYgdt+[ A (fnfdt, j= 0L
0 0

k=l

(16)

(17)

In practice, all terms of series (13), cannot beereined. So we consider approximate solution,
calculating following truncated series

= nO=2 Y0 [imé.=%0. (18)

k - co

Our procedure leads to a system of second kinde¥faltintegral equations, so referring to [9]
convergence of the method is proved.

RESULTSAND DISCUSSION

DVP equation has the common form given in (1). Wesider a special version of this problem
as follow

%— 01(1-x*)X+x+ 001x* =0 ; x(0) =2, X(0) =0, (19)

Defining 1= x and y = X, the problem (19) converts to the problem eaystof differential
equations

Yi=Y,
' :0)=2, y,000=0 (20)
{yz =010~ yf)Yz /i 0-013/13 ' ’

In this section equation (19) and system of equat({@0) are solved using ADM as described in

sections 2 and 3. As there isn't any exavt solutbiocompare these approaches of ADM, we use
Lindsted's perturbation method, as an approximatdyaical method to obtain an acceptable

solution as a criterion of comparison.

In LM, a solution by the formx, (7) + ux, (7) + 1°x,(7) +... uses to convert the problem to a set

of solvable differential equations. Problem9103adsed suing this method to obtain the solution
as follow

X(t) = Acosat + 2 cosBawt + /,1(§sinwt —lsin3a)t) +O(u?)
1 ’ 3 274 1 ’ (1)
with A=2=q,w=1+>a - —a?-—u* +O(u?).
2 2 16 16’u W)

A detailed description of LM is presented in [10].
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Following the procedure explains in section 2 andstlering 5 terms of (9) we obtain the
polynomial
X om () =@, (t) =2-1104% + 008a* +....+ 0.00053° (22)

As approximated solution of (1). Note that thisymamial is of order 8, running time of the
program that used to obtain (22) on a laptop wi@Blof ram with a 2.00 GHz CPU, is 0.313
seconds. Numerical results of x(t) angw(t) for O<t<2 and absolute errors of AFM are listed in

table 1.
Table 1. Numerical resultsand errors of AFM

t LM ADM Abs. Error
0.0 2.00000 1.99750 0.00250
0.1 1.98971 1.98724 0.00247
0.2 1.95936 1.95697 0.00239
0.3 1.90980 1.90758 0.00222
0.4 1.84202 1.84008 0.00193
0.5 1.75705 1.7552 0.00153
0.6 1.65598 1.65493 0.00105
0.7 1.53999 1.53939 0.00062
0.8 1.41039 1.40982 0.00056
0.9 1.26872 1.26726 0.00142
1.0 1.11696 1.11267 0.00429
1.1 0.95770 0.94704 0.01065
1.2 0.79445 0.77147 0.02298
1.3 0.63206 0.58715 0.4491
1.4 0.47712 0.39545 0.08166
15 0.33856 0.19795 0.14061

Table 2. Numerical resultsand errors of ADM

t LM ADM Abs. Error
0.0 2.00000 1.99750 0.00250
0.1 1.98971 1.98724 0.00247
0.2 1.95936 1.95697 0.00239
0.3 1.90980 1.90758 0.00222
0.4 1.84202 1.84008 0.00193
0.5 1.75702 1.75552 0.00150
0.6 1.65586 1.65493 0.00092
0.7 1.53958 1.53937 0.00021
0.8 1.40922 1.40982 0.00059
0.9 1.26581 1.26726 0.00145
1.0 1.11033 1.11267 0.00233
1.1 0.94373 0.94704 0.00330
1.2 0.76686 0.77147 0.00460
1.3 0.58037 0.58715 0.00677
1.4 0.38462 0.39454 0.01083
15 0.17946 0.19795 1.01848
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Following the procedure of section 2, and considgfl terms of (18) we obtain the following 8-
th order polynomial as approximate solution of (20)

Xspom (1) = @, (1) =2-114t% + 0104° + 008%* +...-00.0048"° (23)

By this approach the running time was 0.109 seconds

Numerical results of x(t) andgXpm(t) for O<t<2 and absolute errors of ADM are listed in table 2.
Comparing the errors of two Adomian approachesabies 1 and 2, we see that ADM for a

nonlinear differential equation and its relatedteys of equations gives the results with equal
errors in the beginning of the solution intervahile in the end of the interval, converting the

eqguation to a system of differential equationsg$eto more accurate solutions.

CONCLUSION

This study shows that ADM can be used to solve OWwéblem and obtain the solutions by
acceptable errors. Converting the equation to tesy®f first order differential equations and
solving the system by ADM, gives more accurate Itesn a lower time of computations in

comparison with direct application of ADM. This cha related to lowering the calculations by
reducing the order of differential equations.
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