Available online at www.scholarsresearchlibrary.com

Scholars Research Library

Annals of Biological Research, 2013, 4 (1):59-61 (http://scholarsresearchlibrary.com/archive.html)

Effect of Naphthalene Acetic Acid (NAA) on Vase Life, Chlorophyll b Content and Water Relation of Cut *Alestroemeria hybrida*

Hamideh Bagheri¹, Davood Hashemabadi^{*2}, Shahram Sedaghathoor², Mohammad Zarchini¹and Ali Eslami³

¹Young Researchers Club, Rasht Branch, Islamic Azad University, Rasht, Iran ²Department of Horticulture, Rasht Branch, Islamic Azad University, Rasht, Iran ³Master ScienceStudent, Rasht Branch, Islamic Azad University, Rasht, Iran

ABSTRACT

To evaluation of effect of NAA on vase life and postharvest characters of cut Alstroemeria hybrida, a completely randomized design experiment with 3 level of NAA (0,10 and 20 mg L^{-1}) and 3 replications was carried out. Analysis of variance showed that effectof NAA on vase life, chlorophyll b content and loss of °brix was significant ($p \le 0.05$). Results showed that 10mg L^{-1} NAA was the best treatment for vase life (9.85 days) and loss of °brix (0.73%). Also 20 mg l^{-1} NAA showed highest chlorophyll b content with 8.30.

Keywords: NAA, Alestroemeria, vase life, loss of °brix.

INTRODUCTION

Alstroemeria (*Alestroemeria hybrida*) is belong to Alstroemeriaceae (Liliaceae) family is one of the major important cut flower in the world[11, 13]. *Alstroemeria* sensitive to ethylene and bacterial contamination and these 2 problems cause to vascular blockage and finally shorten vase life[4, 13, 14].1-Naphthalene acetic acid commonly abbreviated NAA by formula of $C_{10}H_7CO_2H$ is plant hormone that have more important role such as cell elongation, cell formation, thinning and root formation [5]. Nowdays NAA have key role in increasing vase lifeof cut flowers such as *Eustoma*[17].Saifuddin et al., [16] showed that NAA at 50, 100 and 150 mg L⁻¹ improved SPAD value and longevity in *Bougainvillea spectabilis* compare to control. The aim of this study investigation effect of NAA on vase life, chlorophyll b and loss of °brixof cut *Alstroemeria* flowers.

MATERIALS AND METHODS

Cut alestroemeria (*Alestroemeria hybrida*) were purchased from Mahallat (Iran) and transported topostharvest laboratory, Department of Horticulture,Rasht Branch, Islamic Azad University (Iran) at standard conditions. In this study carried out based on RCD with 3 levels of NAA (0, 10 and 20 mg L¹) with 3 replications and 9 plots. In this study vase life, chlorophyll b content and loss of $^{\circ}$ brixwas measured. End of vase life was when flower wilted or leaf was discolored[3]. In 4th day of experiment leaves of each plot were sampled andchlorophyll content measured by spectrophotometer apparatus [8, 9, 10, 11]. $^{\circ}$ brix was measured by referactometer model n- α andloss of $^{\circ}$ brixmeasured by thisformula [8]:

Scholars Research Library

Loss of °brix: °brixin first day- °brixin final day (end of vase life)

Analysis of variance evaluated by SPSS software and mean comparison wasperformed by LSD test at 1 or 5 percent probability.

RESULTS AND DISCUSSION

Analysis of variance showed that effect of NAA on measured traits was significant ($p\leq0.05$). Results showed that 10 mg L⁻¹ NAA was the best treatmentfor vase life(0.85 days) and loss of °brix(0.73). Also 20 mg L⁻¹NAA showed highest chlorophyllb content with 8.30. Positive effect of NAA on vase life, chlorophyllb content and loss of °brixis due to improvement waterrelation and water uptake, inhibition of chlorophyllase enzyme and decreased of respiration process [1, 6, 7, 12, 14, 15]. Saifuddin et al., [16] showed that NAAat 50, 100 and 150 mg L⁻¹ improved SPAD value and longevity of *Bougainvillea spectabilis* compared to control. Hashemabadi[8] showed that antiethylene compounds improved vase life and chlorophyll content, reduced loss of °brixin cut carnation (*Dianthus caryophyllus* cv. Tempo).However treatment with the synthetic auxin (2, 4-D) at 500 mg L⁻¹suppresses ethylene production and delays petal senescence of carnation[15]. Our results also about positive effect of PGR_s on extending vase life and chlorophyl content by Chang and Chen [2].

Table.	Effect of different level of NAA	on vase life, chlorophyll b content	and loss of brix of cut Alestroemeria
I upici	Effect of uniter ent level of full	on vuse me, emorophyn b content	und loss of brin of cut mesh benefit

Treatments	Vaselife (days)	Chlorophyll b content	Loss of °brix (% sucrose)
Control	8.62 b	6.25b	0.76 b
10 mgL ⁻¹ NAA	9.85 a	5.33 b	0.73 b
20 mg L ⁻¹ ANN	8.62 b	8.30 a	0.81 a

CONCLUSION

In conclusion, our results showed that NAA at 10 mg L^{-1} concentration improved vase life of cut *Alestroemeria* and 20 mg L^{1} NAA delayed leaf senescence of this flower.

Acknowledgments

The authors would like to thanks Islamic Azad University Rasht Branch, Specific Dr. Ali Mohammadi Torkashvand (Research Office Manager) for financial supports.

REFERENCES

[1] Blankenship, S., Dole, J.M.2003. Postharvest Biol. Technol, 28: 1-25.

[2]Chang, Y.S, Chen, H.C.2001. Sci. Hortic, 87: 217-224.

[3] Edrisi, B.2009. Payam-e-Digar Publication. 150 pages

[4] Edrisi, B., Sadrpoor, A., Saffari, V.R. 2012. Journal of Ornamental and Horticultural Plants., 2(1): 1-12.

[5] Fathi, G.H., Esmaeilpour, B. 2000. Ferdowsi University Publication. Mashhad, Iran., 288pp

[6] Ferrante, A., Hunter, D.A., Hackett, W.P, Reid, M., 2002. Postharvest Biol. Technol., 25: 333-338.

[7] Halevy, A.H., Kofranek, A.M, **1984.** *HortScience*, 19: 845–847.

[8] Hashemabadi, D. 2011. Final Report of Research Project toIslamic Azad University, RashtBranch, Rasht, Iran. 101 pages.

[9] Hashemabadi, D., Kaviani, B., Sedaghathoor, S., Mohammadi Torkashvand, A.2009. African Journal of Biotechnology., 8(20): 535-5357.

[10] Hoseinzadeh Liavali, M. B, Zarchini, M. 2012. Journal of Ornamental and Horticultural Plants., 2(2):123-130.

[11] Khalighi, A. 2008. Roozbehan Press., 392 pages

[12] Kiamohammadi, M. 2011. Journal of Ornamental and Horticultural Plants., 1(2): 115-122.

[13] Mousavi Bazaz, A., Tehranifar, A. 2011. J. Biol. Environ. Sci., 5(14):41-46.

[14] Oraee, T., Asghar Zadeh, A., Kiani, M., Oraee, A. 2011. J. Ornament. Hortic. Plants., 1(3): 161-166.

^[15] Sacalis J.N., Nichols, R., **1980**. HortScience, 15: 499–500.

^[16] Saifuddin, M., Hossain, A.B.M.S., Normaniza, O., Boyce Nasrulhay, A., Moneruzzaman, K.M., 2009. *Biotechnology*, 8 (3):343-350.

^[17] Shimizu-Yumato, H., Ichimura, K. 2010. Postharvest Biol. Technol, 56: 104-107.