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ABSTRACT

In this article the metric tensor exterior to hypothetical spherical distributions of mass whose tensor field varies
with time, radial distance and Polar angle is extended to derive equations of motion for test particles in the
gravitational field. The time equation is used to derive the expression for the variation of the time on a clock moving
in this gravitational field. For pure polar motion, test particles move with velocity that has an inverse dependence
on the radial distance. The results show that the introduction of & in this field does not alter the inverse
dependence of velocity on theradial distance.
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INTRODUCTION

-871G

In the year 1915 Einstein published his gravitalofield equation given b@w =—4TW, where
C

G=gravitational constanGW =Einstein’s tensor',l'w = stress energy tensor, and c is the speed offlight

Since then the search has been on for the develgpgrhtheir solutions in the space-time of all dlaitions of mass
in nature and their applications to the motionest fparticles of non zero rest masses and photon.

The exact solution to this field equation was fashstructed in static and pure radial sphericémpooordinates by
Schwarzchild in 1916 by considering spherical bedigch as the sun and the stars.

In Schwarzchild’s metric, the tensor field varieshwadial distance only. It is the metric tensaterior to an ideal
static spherically symmetric body situated in empgyace [12]; [10]; [5]. Schwarz child’'s metric itiet
mathematically most simple and astrophysically neatisfactory solution of Einstein’'s geometricahgtational
field equation in the space exterior to a statimbgeneous distribution of mass within a spherieglan [13]; [14].

Since the earth is not perfectly spherical [9]fikdd cannot be a function of only the radial diste as assumed by
Schwarzschild.

This paper introduces an astrophysical distribubbmass within the region of spherical geometrizpse tensor
field varies with time, radial distance and polagle only. The equation of motion for particlesmafn zero rest
masses are derived for this gravitational fieldisTlesearch will help in studying astrophysicalesjtal distribution
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of mass whose tensor field varies with time, radiatance and polar angle. An example of suchidigton is the
homogeneous distribution of mass with sphericaiorggwhich is rotating with uniform speed about ired
diameter [8]; [9]; [10].

Theoretical Analysis

Construction of metric tensor and coefficients of Hine connection

Schwarzchilds metric is the solution of Einsteifisdd equations exterior to a static homogenousesphl body
[14]; [3];[4] given by

2
9o =1+ (1) (1)
2 -1
0. = _[1+C_2 f (r )} (2)
O, =¥ 2 3)
O35 = -r?sin’@ (4)
g,, = 0; otherwise (5)

where Cis the speed of light in vacuunf. (r) is an arbitrary function determined by the disttibn; it is a function

of the radial coordinate only since the distribution and hence its extegaavitational field possess spherical
symmetry. From the condition that this metric comgat should reduce to the field of a point masatkxdt at the
origin [14] and contains Newton’s equation of matio the gravitational field of the static homogaaapherical

body, it follows thatf(r)is the Newtonian gravitational scalar potentiathia exterior region of the body, defined
in this field as

GM
f(l’)ZT , r>R0 (6)

where G is the universal gravitational constart] is the mass of the spherical body aRYis the radius of the
spherical body.

Let us consider an astrophysical mass distributvithin spherical geometry in which the tensor fiefaries with
time, radial distance and polar angle. The covariatric tensor for this distribution of mass oegsure is given as
[12];[2].

goo=1+§f(t,r,6’) @)
2 -1

gn:—[h?f(t,r,@)} 8)

9y =17 9)

Oy = —T?sin’ @ (10)

g,, = 0;otherwise (11)

where f(t,r,H)is an arbitrary function, determined by the masgressure and possesses all the symmetries of

the latter. In approximate gravitational fieldsjstequal to Newton’s gravitational scalar potdnéisterior to the
spherical mass distribution.

To obtain the corresponding contra variant metesor for this gravitational field, we impose theofent
Theorem [6] of the tensor analysis to obtain thaponents of the contra variant tensor as

g% =[1+£f(t r 8)}_1 (12)
¢z
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gt =—[1+%f(t,r,0)} (13)
C

g*=-r” (14)

g® = —(r 2 sin? 6?)_1 (15)

g”’ = 0;otherwise (16)

The coefficients of affine connection, defined by tmetric tensor of space-time are determined usiagensor
equation

1 5
F$=595bmy+gmﬂ—mMJ 17)

They are found to be given explicitly in terme(df,r ,0,) as

1
r(?o :Egoo-gooo (18)
I—O — rO — 1 00
10~ 'o1 _Eg -goo.l (19)
1
r101 25900-9110 (20)
ro=ro =140 21
20 — 102~ 2 9 Y002 (21)
1
Moo =5 9" Goun (22)
ri=ry=tgn 23
10— '01™ 2 g 'gllO ( )
1
r111 :Egll-gnl (24)
rt=rr=tgu 25
21712~ 2 9011, (25)
1
M2=59" 9 (26)
1
M32=39" 9 (27)
1
r020 = E 922 ~Joo2 (28)
1
r121 25922-9112 (29)
r2=1q2 30
875 0 Usz (30)
r2=rz=1g 31
12~ 21—29 G201 (31)
|—3 — r3 — 1 33
31 — 113 ™ E g -9331 (32)

where the comma denotes partial differentiation.tw(®,1,2)=(ct, r,0). Equation (18) to (32) can be written
explicitly in terms of (ct, r9,) as
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1 2 of
I'QO:C—Z[HC—Zf(t,r,H)} E(t,r,@) (33)
1 2 ot
2=ro==|1+=I(tr,0)| —It,r,0 34
berh= g 2ne)| o) @)
1 2 = of
r°=—11+=f(t,r,8)| —I(t,r,0 35
S Cz[ > ( )} at( ) (35)
1 2 of
r2()0:rf?2:c_2|:1+c_2f(t1r10)i| ﬁ(’[,l‘,@) (36)
1 2 of
I_éo2?{1+?f(t,r,9)}@(t,r,9) (37)
1 2 of
rfozrglz—c—z[u?f(t,r,e)} ﬁ(t,r,é?) (38)
1 2  of
rt=——|1+=f(tr,0)] —I(t,r,0 39
L=- 1 Zitne) Sk @
1 2  of
rt=ri=——"|1+=f(t,r,0| —I(tr,@0 40
21 12 CZ[ C2 ( )} 66( ) ( )
r,= —r[1+£2 f (t,r,H)} (41)
C
1 1 2
F33:—r[1+?f(t,r,9)}sm 0 (42)
-2
, _r—of
=——(t,r,8)- 43
o= 755 010) (43)
r2 2 2 of
rlzlz?lil+c—2f(t,r,€)i| %(t,r,g) (44)
2 — i
5, =—sindcosd (45)
r=r=r" (46)
|'331:|'l33:r‘1 (47)
Fg =0 otherwise (48)

Thus, this gravitational field has 15 non-zero &o&nts of affine connection; unlike the Schwaiiktls field
which has 9 affine connections. Thus, we expecigtheitational field in this article to have somecpliarities not
found in Schwarzchild’s field.

Motion of test particles exterior to spherical bodés whose tensor field depends on time, radial distee and

polar angle.

A test mass is one which is so small that the ¢mtiwhal field produced by it is so negligible tliatloesn’t have
any effect on the space metric. A test mass iméramus body, which is approximated by its geoiakrcentre; it
has nothing in common with a point mass whose tiessiould obviously be infinite [7]. The generalatévistic

equations of motion for test particles in a graidtal field are given by:

2 MU v A
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where T is the proper time. We used equation (49) to caosttime, radial and polar equations of motion for
particles of non-zero rest mass in the gravitatidietd under consideration. Setting = Ointo equation (49) and

substituting equations (33) to (36) gives the tegeation of motion as

Lo2[, 2 af(t,r,e) 2, 2 ot y
t+02[1+02f(t,r,6)} p» C[1+C f(t,r 9)} ae(t,r,@)t0+

(50)
[, 2 ~of , 1 2 = of -
1+ = f(t,r,0) | —It,r,0)t*+=|1+=f(t,r,0)| —I(t,r,0)r?=0
c[ c? ( )} at( ) c{ c? ( )} at( )
% .\ 26f£t%r,9)r .\ Zafg%r,H)H ~0 -
{1+(t,r,6?)} c{1+(t,r,9)}
c? c?
i(lnt’ + In[1+MD =0 (52)
or c
Integrating equation (52) gives
-1
fzg[“&;ﬂ)} 53)
c Cc

Equation (50) is the expression for the variatiarttee time on a clock with this gravitational field

Similarly, setting 4 =1,2and3 into equation (49) gives the radial, polar andraghal equations of motion as
(54), (55) and (56) respectively.

-1
'r'+[1+0%f(t,r,@)}af(t’r’g) 2—%{1+% t,r,H)} Mff—

ot
-1
%{“C%f(t,r,@)} af(t,r,e C%“% . )} af(t,r,e)r,g_r

C ot

{1+C32 f (t,r,B)}éz—r{1+— f (t,r,B)}sm 8p=0

(54)

p 1 of(t,r,@ 1 2 of(t,r,8
0+ (0 )iz C2r2[1+?f(t,r,8)} %r —S|nﬁcosﬁga2+—r9 0 (55)

2rpm0
' (56)

For pure radial motiord = ¢E Oand hence the radial equation (55) becomes

Equation (57) is the pure radial equation of mofmnparticles of nonzero rest masses in this field

Consider the polar motion of test particles that talial dependence, in this case, equation (shices to
(58)

or
(59)
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Integrating equation (58) gives the instantanealarprelocity as

A
0= (60)

where is the constant of integration.
This motion has an inverse square dependence oadra distance.

Result in this field is similar to the result olsted in our earlier publication when [11]. We caar#fore conclude
that the introduction o8 to this field does not change the inverse squaperdence on the radial distance.

CONCLUSION

The time, radial, polar and Azimuthal equationsraftion for test particles exterior to astrophysiczd! spherical
distribution of mass were found to be equations,(&b), (56) and (57) respectively.

The solution of the time equation of motion givhe variation of the time on a clock with the gratiitnal field.
Thus, the expression for gravitational time dilatio this gravitational field has been obtaineegasation (51).

The radial equation of motion given by equation)(&&n be used to obtain the instantaneous speadafticle of
nonzero rest mass in this field.

The coefficients of affine connection obtained dam used to construct the Riemann-Christoffel, Riand
Einstein’s tensor for this field and hence the Eimss field equations for this gravitational fietdn be obtained, the

Einstein’s equation contain only a single unknoﬁnﬁt,r,@) and thus can be solved completely to obtain explici

values forf (t,r,H) . This is opened up for further research.
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