

Scholars Research Library

Archives of Applied Science Research, 2013, 5 (1):238-240 (http://scholarsresearchlibrary.com/archive.html)



# Estimation of fluoride in the drinking water of Tengakhat circle of the Dibrugarh district, Assam

# Jitumoni Borah

Research Scholar, Singhania University, Jhunjhunu, Rajasthan \*Department of Chemistry, Duliajan College, Dibrugarh, Assam

# ABSTRACT

It is very essential to know the concentration of fluoride in drinking water. In this study, fluoride concentration and some other parameters of the ground water of Tengakhat circle of Dibrugarh district, Assam was measured. 35 water samples were collected from different villages of the circle. The sources of all the water samples were hand tube wells, motor pumps and deep tube wells. Ground water of the region was found slightly acidic in nature. Fluoride level varies from .0785 mg/L to .8152 mg/L. Calcium and magnesium concentration were found quite low.

Key Words: Fluoride, Fluorosis, Ground-water, Drinking water

# INTRODUCTION

Natural water contains different types of compounds in dissolved and in suspended form. Some of them have detrimental effect on human. Fluoride is such type of species, which has different effect on human at different concentrations. The maximum permissible level[1] of fluoride in drinking water is 1.5 mg/L. Lower concentration of it (<0.6 mg/L) causes dental caries whereas higher concentration (>1.2 mg/L) causes Fluorosis[2]. Fluoride concentration between the limits 0.6 mg/L to 1.2 mg/L is associated with a substantial resistance to tooth decay.

Fluorine is a reactive element. It is the most electronegative of all the elements and therefore, in the environment its more common form is  $F^{-1}$ . Fluoride is found in wide varieties of minerals including fluorospar, rock phosphate, cryolite, apatite, mica, hornblende, and others [3]. Leaching of these minerals released fluoride into the ground water. Some of these minerals are widely used in industries. For example, rock phosphate is used for the production of fertilizers; cryolite is used for the production of aluminium and pesticides. Some manufacturing processes such as steel, copper, glass, brick, are also released fluoride in the environment [4]. Compounds like fluorosilicic acid, sodium hexafluorosilicate and sodium fluoride are used in municipal water for fluoridation schemes. Fluoride may be released in air in the burning of coal containing fluoride impurities.

Several countries of the world like India, China, Pakistan, Sri Lanka, Ethiopia, South Africa, Spain, etc., are facing the problem of Fluorosis. Fluorosis is endemic in several states of India. 65 million people including 6 million children are suffering from Fluorosis in India [5]. The severely affected states are Assam, West Bangle, Rajasthan, Gujarat, Kerala, Karnataka, Andhra Pradesh, Delhi, Madhya Pradesh, Haryana, Jammu and Kashmir, Orissa, Punjab, Tamilnadu, Maharastra, and Uttar Pradesh.

Ground water of several districts of Assam is found quite high level of fluoride. D. Chakraborti et al. [6] reported that the ground water of two districts - Karbi Anglong and Nagaon has high level of fluoride. Fluoride concentration in one water sample collected from Ramsapather (Karbi Anglong) showed 20.6 mg/L. Dental Fluorosis and skeletal Fluorosis are common among the people of Karbi Anglong who lived in the villages having higher concentration of

fluoride in ground water. Fluoride level in the ground water of several districts of Assam viz. Sunitpur [7], Guwahati [8], Morigaon and Golaghat [9] are also studied extensively.

# MATERIALS AND METHODS

#### Sample collection

For sample collection, good quality polythene bottles (half litre) were used. The samples were collected directly in the rinsed bottles without adding any preservatives. Total 35 water samples were collected from different locations of the circle. Since all the people of the study area have been used ground water as drinking water, therefore, only ground water was collected for analysis. This analysis was done during May, 2010 to July, 2010.

# Study area:

The area of the present study is situated between  $95^{\circ}9'$  latitude and  $27^{\circ}22'$  longitude in the Dibrugarh district of Assam. The study area is about 500 km away from Guwahati, the state capital of Assam, and with a height of 500 m from the sea level. The average annual temperature of the region is  $23.9^{\circ}$  and average annual rainfall is 276 cm. Loose unconsolidated sands with gravels, silts and minor clays characterized the study area [10]. 95% of the people of this area are lived in villages. Majority of them are not aware of the different types of contaminants that may be present in drinking water. Moreover, the level of fluoride in the ground water of this area is not measured earlier and if it was measured by someone or by some agencies, these are not accessible to common people.

#### Analytical

For measuring fluoride concentration, Ion selective method was employed. This method has proved to be simple, efficient and reliable. For this purpose, the electrode ORION 9609BNWP was used in ELICO ion analyzer (Model Li 126). Fluoride Concentration of the water samples were measured according to the instruction given in the manual of the analyzer. A pocket pH meter (HANNA made) was employed for measuring the pH of the samples at the time of collection. Conductivity and TDS of the samples were measured with the help of a soil and water analysis kit (LT 61). Hardness, calcium and magnesium concentrations were measured by EDTA Titrimetric method. Procedures and calculations of all the parameters were followed that described in APHA [11].

# **RESULTS AND DISCUSSION**

Analytical results of the different water samples are given in the table. From the table it is clear that groundwater of this area is slightly acidic in nature. pH varies from 5.5 (Hukuta) to 7.1(1 No. Mahmari). Fluoride level was found in the range from 0.0785 mg/L to 0.8152 mg/L. Because of low level of fluoride concentration in ground water there is a possibility of occurring dental caries among the children. No cases of dental Fluorosis or skeletal Fluorosis are observed in this region.

| S1. | Name of locations | Nature of sources | Depth | pН  | EC     | TDS   | TH     | F      | Ca     | Mg     |
|-----|-------------------|-------------------|-------|-----|--------|-------|--------|--------|--------|--------|
| No. |                   | ruture of sources | (ft)  | pm  | (µS/cm | (ppm) | (mg/L) | (mg/L) | (mg/L) | (mg/L) |
| 1   | 4 No. Sapatali    | TW                | 20    | 6.1 | 245    | 130   | 98     | .5123  | 29     | 10     |
| 2   | 2 No. Karekani    | TW                | 20    | 5.9 | 112    | 61    | 55     | .6752  | 30     | 15     |
| 3   | 2 No. Bokuloni    | TW                | 31    | 6.6 | 310    | 143   | 65     | .2034  | 33     | 19     |
| 4   | Dhekiajan Tinali  | TW                | 32    | 5.8 | 155    | 90    | 79     | .1213  | 24     | 14     |
| 5   | 2 No. Borpother   | TW                | 26    | 6.4 | 376    | 200   | 110    | .0893  | 29     | 31     |
| 6   | 1 No. Karekani    | TW                | 32    | 5.6 | 109    | 88    | 150    | .0965  | 40     | 24     |
| 7   | Modhuting         | TW                | 65    | 6.1 | 340    | 150   | 90     | .0829  | 44     | 27     |
| 8   | Nauhalia          | TW                | 65    | 6.4 | 267    | 144   | 101    | .6789  | 20     | 16     |
| 9   | Hukuta            | TW                | 65    | 5.5 | 189    | 139   | 75     | .5320  | 27     | 17     |
| 10  | Kumud Nagar       | TW                | 65    | 6.5 | 178    | 82    | 76     | .3564  | 54     | 35     |
| 11  | Tipling           | TW                | 110   | 6.6 | 220    | 110   | 98     | .0876  | 35     | 30     |
| 12  | Modhuban          | TW                | 65    | 6.6 | 98     | 52    | 44     | .8152  | 21     | 29     |
| 13  | 1 No. Mahmari     | TW                | 65    | 7.1 | 198    | 95    | 77     | .0983  | 18     | 12     |
| 14  | Kathalguri        | Motor pump        | 100   | 6.3 | 330    | 159   | 115    | .5016  | 34     | 32     |
| 15  | Panchuti          | TW                | 45    | 6.7 | 320    | 200   | 169    | .2873  | 50     | 35     |
| 16  | 1 No. Kheramia    | TW                | 110   | 6.9 | 455    | 280   | 102    | .6826  | 13     | 14     |
| 17  | Tingrai charali   | TW                | 46    | 6.7 | 210    | 120   | 60     | .5856  | 46     | 28     |
| 18  | Tiwarigola        | TW                | 45    | 6.5 | 232    | 102   | 89     | .5242  | 37     | 25     |
| 19  | Kachari pother    | Mark<br>TW        | 120   | 6.5 | 112    | 70    | 120    | .5012  | 22     | 19     |
| 20  | Kopouhua          | TW                | 46    | 6.3 | 200    | 98    | 150    | .3345  | 26     | 21     |
| 20  | Pandhua           | TW                | 36    | 5.9 | 200    | 120   | 95     | .2089  | 38     | 21     |
| 21  | Tengakhat         | TW                | 40    | 6.3 | 423    | 309   | 177    | .6436  | 40     | 31     |
| 23  | Bhasani           | TW                | 60    | 5.9 | 155    | 76    | 94     | .6055  | 29     | 17     |
| 23  | Dhasani           | 1 99              | 00    | 5.9 | 155    | 70    | 24     | .0055  | 29     | 1/     |

Table: Concentration of fluoride some other parameters of the water samples of Tengakhat circle

| 24 | Tamulikhat           | TW | 46  | 6.2 | 370 | 208 | 112 | .0986 | 20 | 19 |
|----|----------------------|----|-----|-----|-----|-----|-----|-------|----|----|
| 25 | Abhaipuria           | TW | 46  | 6.3 | 150 | 95  | 165 | .7829 | 30 | 20 |
| 26 | Chirapotti           | TW | 40  | 6.2 | 234 | 132 | 145 | .7761 | 17 | 17 |
| 27 | Joyanagar            | TW | 100 | 5.7 | 176 | 90  | 189 | .5567 | 33 | 29 |
| 28 | Pavajan              | TW | 65  | 6.1 | 198 | 112 | 164 | .2367 | 20 | 25 |
| 29 | Tipling              | TW | 65  | 6.1 | 321 | 167 | 200 | .2905 | 43 | 34 |
| 30 | Majgaon              | TW | 65  | 6.2 | 410 | 250 | 178 | .5956 | 26 | 27 |
| 31 | Udaipur              | TW | 86  | 5.9 | 178 | 100 | 96  | .0785 | 45 | 17 |
| 32 | Ukhapur              | TW | 46  | 6.8 | 250 | 133 | 87  | .3453 | 27 | 19 |
| 33 | Hatibandha           | TW | 46  | 6.7 | 123 | 66  | 66  | .4125 | 27 | 32 |
| 34 | Kamalabari           | TW | 46  | 5.8 | 143 | 87  | 175 | .8012 | 39 | 27 |
| 35 | Duliajan Rl. station | TW | 65  | 6.5 | 517 | 300 | 120 | .7010 | 10 | 25 |

# REFERENCES

[1] WHO, Guidelines for Drinking Water Quality, World Health Organization, 1, 2004

[2] ISI, Indian Standard Specification for drinking water, IS: 10500. Indian Standard Institution, New Delhi, 1983
[3] WHO, Fluoride in Drinking water, 2006

[4] http://www.greenfacts.org/en/fluoride

[5] A.K. Susheela, Curr. Sci. 1999, 7, 1250 – 1256

[6] D. Chakraaborti, Curr. Sci. 2000, 78, 12, 1421 – 1423

[7] J. Dutta, M.Nath, M.Chetia, A.K.Mishra, Int. J. ChemTech Res. 2010, 2, 2, 1200

[8] B.Das, J.Talukdar, S. Sarma, B.Gohain, R.K.Dutta, H.B.Das, and S.C.Das, Curr. Sci. 2003, 85, 5, 658 - 660

[9] RK Dutta; G Saikia; B Das; C Bezboruah; HB Das; SN Dube, Asian J. of water, environment and pollution, 2010, 2(2), 1199–1208

[10] <u>www.Geography</u> of Dibrugarh district

[11] APHA. Standard method for the examination of the water and wastewater. 17th edition, American Public Health Association, New York, U.S.A, **1989**