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ABSTRACT 
 
Tuberculosis caused by Mycobacterium tuberculosis, is one of the most infectious diseases at present world. The 
WHO has reported that 14 million people worldwide are infected with active tuberculosis and over 1.7 million 
deaths occur every year. There are many drugs available in the market for treating tuberculosis, but the emergence 
of tuberculosis is due to the appearance of Multi Drug Resistance (MDR) against one or more of the 1st line 
antimycobacterial drug. Therefore, there is a need to explore and develop newer structural moiety as antitubercular 
drug. In the present study, 2D and 3D QSAR analysis of a series of 2, 3- substituted quinazolin-4(3H)-one was 
performed using vLife MDS software package, version 3.5. Various statistically significant models were obtained, 
from which the most robust model for 2D QSAR with r2 = 0.82, q2 = 0.67, F test = 41, pred_r2 =0.65 values and for 
3D QSAR with r2 = 0.93, q2 = 0.90, F test = 45, pred_r2 =0.52 values were obtained. In 2D QSAR, distance based 
topological like SssOcount and alignment independent topological descriptors such as T_C_N_2, T_O_O_2, 
T_O_Cl_7 showed significant correlation for antitubercular activity. In 3D QSAR study the positive steric 
contribution indicates that the bulker group is essential for enhanced biological activity while the negative 
electronic parameter highlights that an electronegative substitution is essential at 2 and 3-position of quinazolinone 
ring. The positive contribution of electronic parameter at 6th position reveals that the bromine atom shall be 
replaced with hydrogen and iodine to obtain molecules with better activity. The results obtained from 2D and 3D 
QSAR studies provide useful substitution patterns on the quinazolinone skeleton which may be helpful for the 
designing of more potent antitubercular agents.  
 
Key words: Quinazolinones, QSAR, Multi drug resistance, anti tubercular drugs. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Tuberculosis remains the leading cause of mortality due to a bacterial pathogen. WHO has estimates about 8.8 
million new cases of tuberculosis in the year 2020. No new drug against tuberculosis has been developed in the last 
30 years. The clinical management of TB has relied heavily on a limited number of drugs such as Isonicotinic acid 
hydrazide, Rifampicin, Ethambutol, Streptomycin, Ethionamide, Pyrazinamide and Fluoroquinolones. However, 
with the advent of these chemotherapeutic agents TB has not been eradicated completely because of prolonged 
treatment schedules, development of multidrug resistance (MDR) and extremely drug resistance (XDR) strains of 
the mycobacterium. 
 
Quinazolinones are an interesting class of organic compounds, being studied over the years and reported to possess a 
wide spectrum of biological activities such as antibacterial [1,2], antitubercular[3], anticancer[4], antiviral[5], 
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anticonvulsant[6], anti-HIV[7],  antifungal and anti-inflammatory[8]  properties. A number of quinazolinone analogs 
have been synthesized and evaluated for antitubercular activity [9-11]. Fluoroquinolones are an important class of 
second-line antitubercular drugs. Besides being increasingly popular in the treatment of tuberculosis complicated by 
intolerance of relative contraindication for first-line drugs, fluoroquinolones are important for improving treatment 
outcomes of MDR-TB. Quinazolinones are reported to be structural isosteres of quinolones [12]. Structure activity 
relationship studies of quinazolinone moiety revealed in various literatures suggest that positions 2, 3, 6 and 8 are 
crucial for biological activity [13]. 
 
The development of a quantitative structural activity relationship with the aid of various physicochemical 
parameters has been an important task in lead optimization. In the current study, two-dimensional (2D) and three-
dimensional (3D) QSAR tools have been used. A set of 52 compounds possessing 2, 3- substituted quinazolin-
4(3H)-ones moiety has been used for 2D and 3D QSAR evaluations. 
 

MATERIALS AND METHODS 
 

The molecular modeling studies were performed using vLife MDS software package, version 3.5, supplied by vLife 
Sciences Technologies Pvt. Ltd., Pune, India (www.vlifesciences.com) and installed on Intel i5 computer with the 
windows XP operating system. 
 
Chemical data 
A series of 52 molecules belonging to 2,3-disubstituted quinazolin-4(3H)-ones derivatives with antitubercular 
activity was taken from reported articles[13-16 ](Table 1) for the study. 
 
 
 

 
 
 
 
 

Table 1: Antitubercular activity of the compounds (MIC µg/ml and pMIC) 
 

Sl. 
No. Molecule R1 R2 R3 R4 

MIC 
(µg/ml) pMIC 

1. QTB12 4-(4-chloro-phenyl)-thiazole H H 4- chloro phenyl amino methyl 100 3.6806 
2. QTB13 4-(4-chloro-phenyl)-thiazole H H 4- fluoro phenyl amino methyl 100 3.6655 
3. QTB14 4-(4-chloro-phenyl)-thiazole H H 4-nitrophenyl amino methyl 50 3.9911 
4. QTB15 4-(4-chloro-phenyl)-thiazole H H 4-tolyl amino methyl 50 3.9876 
5. QTB16 4-(4-chloro-phenyl)-thiazole H H 4-methoxy phenyl amino methyl 100 3.6766 
6. QTB17 4-(4-chloro-phenyl)-thiazole H H N-methyl hydrazide isonicotinic acid 10 4.6892 
7. QTB18 4-(4-chloro-phenyl)-thiazole H H 2-(methyl amine) pyrazine  50 3.9512 
8. QTB19 4-(4-chloro-phenyl)-thiazole H H 2-(methyl amide) pyrazine 10 4.6766 
9. QTB20 4-(4-chloro-phenyl)-thiazole H H 2-hydroxy-4-amino methyl-benzoic acid 50 4.0042 
10. QTB36 Imidazol-1-yl-N-acetamide H H phenyl 12.5 4.4413 
11. QTB37 2-methylimidazol-1-yl-N-acetamide H H phenyl 1.56 5.3624 
12. QTB38 2-methylbenzimidazol-1-yl–N-acetamide H H phenyl 6.25 4.8163 
13. QTB39 Benzoimidazol-1-yl-N -acetamide H H phenyl 12.5 4.5001 
14. QTB40 Imidazol-1-yl-N -acetamide Br Br phenyl 12.5 4.6047 
15. QTB41 2-methylimidazol-1-yl-N -acetamide Br Br phenyl 0.4 6.1115 
16. QTB42 2-Methylbenzimidazol-1-yl-N -acetamide Br Br phenyl 12.5 4.6568 
17. QTB43 Benzimidazol-1-yl-N –acetamide Br Br phenyl 12.5 4.6459 
18. QTB44 Imidazol-1-yl--N acetamide Br Br methyl 12.5 4.5476 
19. QTB45 2-Methylimidazol-1-yl-N -acetamide Br Br methyl 6.25 4.8622 
20. QTB46 2-Methylbenzimidazol-1-yl-N -acetamide Br Br methyl 6.25 4.9075 
21. QTB47 Benzimidazol-1-yl-N -acetamide Br Br methyl 12.5 4.5942 
22. QTB48 Imidazol-1-yl-N -acetamide Br Br propyl 12.5 4.5743 
23. QTB49 2-methyl-imidazol-1-yl-N -acetamide Br Br propyl 6.25 4.8882 
24. QTB50 2-methylbenzimidazol-1-yl-N -acetamide Br Br propyl 1.56 5.5337 
25. QTB51 Benzimidazol-1-yl-N -acetamide Br Br propyl 6.25 4.9194 
26. QTB52 1-amino-N-phenylacetamide H H 4-clphenyl 25 4.2093 
27. QTB53 1-amino-N-(3-nitro phenyl) acetamide H H 4-clphenyl 50 3.9564 
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28. QTB54 1-amino-N-(4-nitrophenyl)acetamide H H 4-clphenyl 25 4.2577 
29. QTB55 1-amino-N-(2-methylphenyl)acetamide H H 4- clphenyl 12.5 4.5251 
30. QTB56 1-amino-N-(3-methylphenyl)acetamide H H 4- clphenyl 25 4.2241 
31. QTB57 1-amino-N-(3-chlorophenyl)acetamide H H 4- clphenyl 12.5 4.5458 
32. QTB58 1-amino-N-(4-chlorophenyl)acetamide H H 4- clphenyl 6.25 4.8466 
33. QTB59 1-amino-N-(4-bromophenyl)acetamide H H 4- clphenyl 12.5 4.5877 
34. QTB60 1-amino-N-(3-bromophenyl)acetamide H H 4- clphenyl 25 4.2866 
35. QTB61 1-amino-N-(4-methoxyphenyl)acetamide H H 4- clphenyl 50 3.9394 
36. QTB62 5-(2-hydroxyphenyl)-3-thiol- (1,2,4)triazole H H phenyl 25 4.2184 
37. QTB63 5-phenyl-3-thiol-(1,2,4)triazole H H phenyl 12.5 4.5023 
38. QTB64 5-pyridin -3-thiol-(1,2,4)triazole H H phenyl 6.25 4.8044 

39. QTB65 
2-Benzylidene-N1-ethyl-4-phenyl-1,2-
dihydro-5-imidazolone H H phenyl 25 4.2983 

40. QTB66 
2-(2-chlorobenzylidene)-N1-ethyl-4-phenyl-
1,2-dihydro-5-imidazolone 

H H phenyl 12.5 4.6281 

41. QTB67 
2-(4-chlorobenzylidene)-N1-ethyl-4-(4-
chlorophenyl)-1,2-dihydro-5-imidazolone 

H H phenyl 12.5 4.6281 

42. QTB68 
2-(3-nitrobenzylidene)-N1-ethyl-4-phenyl-
1,2-dihydro-5-imidazolone 

H H phenyl 25 4.3373 

43. QTB69 
2-(4-nitrobenzylidene)-N1-ethyl-4-phenyl-
1,2-dihydro-5-imidazolone 

H H phenyl 12.5 4.6383 

44. QTB70 2-(ethylidene amino)thiophen H H phenyl 50 3.9393 
45. QTB71 2-(ethylidene amino)furan H H 2-cl phenyl 25 4.1629 
46. QTB72 2-(ethylidene amino)furan H H 4-cl phenyl 25 4.1629 
47. QTB73 2-(ethylidene amino)furan H H 4-methyl phenyl 12.5 4.4388 
48. QTB74 2-(methylidene amino)furan H H phenyl 12.5 4.4185 
49. QTB75 2-(ethylidene amino)thiophen H H 2-cl phenyl 25 4.1816 
50. QTB76 2-(ethylidene amino)thiophen H H 4-cl phenyl 25 4.1816 
51. QTB77 2-(ethylidene amino)thiophen H H 3-nitro phenyl 50 3.8948 
52. QTB78 2-(ethylidene amino)thiophen H H 4-methyl phenyl 25 4.1577 

 
Data sets  
The structure of all the compounds were constructed using the 2D draw application provided as a tool of main MDS 
window. Energy minimization and geometry optimization was conducted using MMFF(Merck Molecular Force 
Field) with the setting of distance dependent function in the dielectric properties field (constant as 1.0), convergence 
criteria (i.e. RMS gradient as 0.01), maximum number of cycles (1,00,000) and gradient type (analytical) by batch 
energy minimization method. The energy minimization was performed as the drug binds to receptor in the most 
stable minimum energy state form. Most stable structure for each compound was generated after energy 
minimization which was used for calculating various independent descriptors such as physicochemical, alignment 
independent topological descriptors in 2D QSAR, steric and electrostatic molecular fields’ descriptors in 3D QSAR 
studies. 
 
Biological activity 
The negative logarithm of MIC (pMIC) was calculated by following formula given below 
 

–log (MIC/MW×1000) 
 

Selection of Training and Test set 
Training set selection plays an important role in the development of a statistically significant QSAR model. QSAR 
model exhibits poor predictivity for test set molecules which are quite dissimilar from the training set ones, while 
good prediction results are obtained for molecules that are very similar to the training set molecule. Thus, the 
selection should be such that the test set molecule lies within the chemical space occupied by the training set 
molecules. In this study, the entire dataset was divided into training and test sets after activity ranking of the 
molecules under study. All the 52 molecules were first ranked in ascending order of activity, and 22% of the 
compounds were then selected as the test set (ntest=11), while the remaining 78% (ntraining=41) were used as the 
training set. The training set molecules were then utilized to develop the various QSAR models by MLR, PLS and 
PCR statistical methods and the predictive abilities of the models were assessed using the test set. After selection, it 
was checked by unicolumn statistics which is pre-requisite analysis for further QSAR study.       
        
Model validation 
Evaluation of the internal stability and predictive ability of the QSAR models were carried out.  
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Internal Validation 
Internal validation was carried out by using Leave-one out method (q2, LOO) method. For calculating q2, each 
molecule in the training set was eliminated once and the activity of the eliminated molecule was predicted by using 
the model developed by the remaining molecules. The q2 was calculated using the equation which describes the 
internal stability of a model.  
 

 
 
Where yi and y î are the actual and predicted activity of the ith molecule in the training set, respectively, and ymean is 
the average activity of all molecules in the training set.  
 
External Validation 
 For external validation, the activity of each molecule in the test set was predicted using the model developed by the 
training set. The pred_r2 value is calculated as follows.      
 

 
 
where yi  and yî are the actual and predicted activity of the ith molecule in the training set, respectively, and ymean is 
the average activity of all molecules in the training set. Both summations are over all the molecules in the test set. 
Thus, the pred_r2 value is indicative of the predictive power of the current model for external test set. Despite its 
wide acceptance, a high value of q2 alone is an insufficient criterion for a QSAR model to be highly predictive. Use 
of greater number of descriptors particularly requires the model to be validated by external predictive power (Pred 
_r2). 
 

RESULTS AND DISCUSSION 
 

The selection of training and test sets was done by checking unicolumn statistics (Table-2) which is pre-requisite 
analysis for further QSAR study. The max-value of the test set should be less than max-value of training set and the 
min-value of the test set should be greater than min-value of training set. The result shows that the test is 
interpolative i.e. derived within the min-max value range of the training set. The mean and standard deviation of the 
training and test sets provides insight to the relative difference of mean and point density distribution of the two sets. 

 
Table 2: Unicolumn statistics of the training and test sets 

 
Types of QSAR Average Max Min Std Dev Sum 
2D QSAR Training set 4.4033 6.1115 3.6655 0.5422 180.5370 

Test set 4.6112 5.5337 3.6806 0.4321 50.7237 
3D QSAR Training set 4.3606 5.5337 3.6655 0.4521 174.4255 

Test set 4.5121 4.9075 3.6806 0.3388 45.7237 
 
In this case the mean in the test set slightly higher than the training set shows the presence of relatively more active 
molecules as compared to the inactive ones. Also a relatively higher standard deviation in training set indicated that 
training set has widely distributed activity of the molecules as compared to the test set. The representative QSAR 
models with pertinent statistical parameters are discussed in the following sections. 
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2D QSAR  
Model 1  
pMIC = +0.1431(T_C_N_2) -0.3612(T_O_O_2) -0.1211(T_N_N_3) -0.6272 (SssOcount) +0.1215(T_C_O_1) 
+0.3322(T_O_Cl_7) -0.3682 FluorinesCount -0.0240(T_2_O_6) + 2.7973 
 
n=41, Degree of freedom=35, r2=0.8256, q2=0.6719, Ftest=41.422, r2se=0.1493, q2se=0.2049, pred_r2=0.6481, 
pred_r2se=0.3574 --------------------------------------Eq (1)  
 
Model 2  
pMIC = -0.3781 (T_Cl_S_7) +0.5538 (T_O_Cl_7) -0.2244 (OxygensCount) -0.0760 (T_2_Cl_3) +0.0038 
(T_2_C_5) +0.0127 (PolarSurfaceAreaIncludingPandS) +0.6863 (SaaOcount) -0.0434 (T_2_O_5) -0.2307 
(T_O_O_7) +0.7263 ( T_N_O_2) + 2.7280 
 
n=41, Degree of freedom=29, r2=0.8189, q2=0.6668, Ftest=13.1109, r2se=0.1672, q2se=0.2268, pred_r2=0.4804, 
pred_r2se=0.4804---------------------------------Eq (2)  
 
Model 3  
pMIC = +0.0932 (T_C_N_2) +0.1490(T_N_O_3) -0.0836(T_N_O_3) +0.4072 T_O_Cl_7) -0.3585 (SssOcount) 
+3.0799 
 
n=41, Degree of freedom=35, r2=0.6944, q2=0.6226, Ftest=19.8790, r2se=0.1977, q2se=0.2197, pred_r2=0.5484, 
pred_r2se=0.4049-----------------------------------Eq (3) 
 
 It is very simple to interpret a 2D QSAR equation where each descriptor’s contribution is seen by magnitude and 
sign of its regression coefficient. A descriptor’s coefficient shows its relative contribution with respect to other 
descriptors and sign indicates whether it is directly (+) or inversely (-) proportional to biological activity. Various 
models were generated by MLR, PLS and PCR techniques. (Eq 1, 2, 3where model 1 (which is most significant 
among 3) developed by PLS method followed by simulated annealing variable selection method is statistically 
significant, (Table 3) with r2 value 82%, external prediction by evaluating q2 67%, internal prediction of test set 
molecules 64% (Table 3). All the QSAR models fulfilled the selection criteria with low standard error of squared 
correlation coefficient (r2 se) and showed good fitness of the model (Fig.1). The values of original biological i.e. 
pMIC and predicted pMIC values along with residuals is given in (Table 4). The following observation is made from 
the model 1. 
 
(i) T_C_N_2 (D1)descriptor defines the count of number of carbon separated from nitrogen atom by 2 bonds 
distance is directly proportional (Fig.1) and contributes 14% to the biological activity so NH-CO-CH2 chain should 
be maintained as such for better antitubercular activity. 
 
(ii) The descriptor T_C_O_1(D5) contributes 32% is directly proportional to the biological activity, therefore the 

only one distance between Carbon and Oxygen which means introduction of  group will increase the activity. 
 (iii)The descriptor T_O_Cl_7 (D6) is positively conducive with biological activity, so the distance between Oxygen 
and Chlorine atom present on para position of aromatic ring system is seven should be maintained for better 
antitubercular activity. 
 
(iv)The descriptor T_O_O_2 (D2) contributes 36% (Fig.1)) is inversely proportional to the biological activity, it 
means presence of two oxygen atom separated by 2 bonds is not favourable for activity. 
 
(v)The descriptors T_N_N_3 (D3)i.e. the presence of nitrogen atom separated by 3 bonds is 62% and SssOcount 
(D4) i.e. Oxygen atom connected with 2 single bonds 12% is inversely proportional to the biological activity. Both 
these parameters should be either decrease or substituted by nitrogen and oxygen with double bond i.e. acidic group 
for better biological activity. 
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Fig.1 Fitness Plot of 2D QSAR Model 1 (PLS_SA)                  Fig.2 Contribution plot for 2D QSAR(PLS_SA ) Model 
           

Table 3: Statistical parameters and descriptors obtained for 2D QSAR and 3D QSAR models 
 

Parameters  2D QSAR 3D QSAR 
n(training/test) 41/11 41/11 
Df 35 30 
r2 0.8256 0.9375 
q2 0.6719 0.9058 
pred_r2 0.6481 0. 5204 
F-test 41.42 45.0078 
r2se 0.1493 0.1173 
 q2se  0.2049 0. 1441 
Pred_ r2se 0.3574 0. 4496 
Descriptors T_C_N_2,T_O_O_2, T_N_N_3, SssOcount, T_C_O_1, T_O_Cl_7 T_2_O_6 E_993, S_1498, S_1506 

E_566, E_866   
 

Table 4: Quinazolinones derivatives with biological, predicted activities and residuals obtained 

Molecule 

2D QSAR 3D QSAR 
pMIC 
Actual 
activity 

Predicted 
activity Residual 

Predicted 
activity Residual 

QTB12 3.6806* 4.0593 0.3787 3.7825 0.1019 
QTB13 3.6655 3.6911 0.0256 3.9737* 0.3082 
QTB14 3.9911 3.9842 -0.0069 4.0469 0.0558 
QTB15 3.9876 4.0593 0.0717 3.9326 -0.055 
QTB16 3.6766 3.6752 -0.0014 3.7111 0.0345 
QTB17 4.6892 4.6101 -0.0791 4.6698 -0.0194 
QTB18 3.9512 4.2463 0.2951 3.9954 0.0442 
QTB19 4.6766 4.4388 -0.2378 4.6929 0.0163 
QTB20 4.0042 4.0386 0.0344 3.9526* -0.0516 
QTB36 4.4413 4.4680 0.0267 4.3959 -0.0454 
QTB37 5.3624* 4.6570 -0.7054 5.3839 0.0215 
QTB38 4.8163 4.8951 0.0788 4.8229 0.0066 
QTB39 4.5001 4.6089 0.1088 4.4946 -0.0055 
QTB40 4.6047 4.4680 -0.1367 4.6406 0.0359 
QTB41 6.1115 5.4724 -0.6388 4.9206* -1.1909 
QTB42 4.6568 4.8491 0.1923 4.5189 -0.1379 
QTB43 4.6459* 4.5630 -0.0829 4.6265 -0.0194 
QTB44 4.5476 4.5641 0.0165 4.8775 0.3299 
QTB45 4.8622 4.8503 -0.0119 4.8034 -0.0588 
QTB46 4.9075 4.9453 0.0378 4.7788 -0.1287 
QTB47 4.5942* 4.6591 0.0649 4.6396 0.0454 
QTB48 4.5743 4.5641 -0.0102 4.8198 0.2455 
QTB49 4.8882 4.8503 -0.0379 4.8809* -0.0073 
QTB50 5.5337* 4.9453 -0.5884 5.3604 -0.1733 
QTB51 4.9194* 4.6592 -0.2602 4.4108* -0.5086 
QTB52 4.2093 4.3228 0.1135 4.4148* 0.2055 
QTB53 3.9564 4.1757 0.2193 3.9272 -0.0292 

%
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*test set molecules in 2D and 3D QSAR 
 
3D QSAR  
3D-QSAR refers to the application of force field calculations requiring three-dimensional structure of molecule 
superimposition. It examines the steric fields (shape of the molecule) and the electrostatic fields (electronic 
environment). 3D electrostatic descriptors reflect particular aspects of charge distribution of a molecule and can 
provide clues for designing new molecules by specifying areas along with its steric and electrostatic requirements of 
the molecules. In the present study, conformers were generated by Monte Carlo method and the least energy 
conformer of each molecule was selected for alignment. All the selected conformers were aligned on a template 
(TEMP-52, Fig.3), having common lead structure by following the template based alignment process rules. TEMP-
52 and the lowest energy conformer of the most active compound (QTB41, Fig.3) were used as reference molecule 
for alignment. All the compounds were aligned against minimum energy conformation of most active compound 
(QTB41) using quinazolinone ring as template. 
 
 
 
 
 
 
 
 
                               
 
 

 
 

 
Fig. 3 Reference molecule (QTB41) used for alignment by template based alignment and template (TEMP-52) for alignment. 

 
 
 
 
 
 
 
 
 

QTB54 4.2577 4.2478 -0.0099 4.2484 -0.0093 
QTB55 4.5251 4.3228 -0.2023 4.4566 -0.0685 
QTB56 4.2241 4.3228 0.0987 4.1709 -0.0532 
QTB57 4.5458* 4.3228 -0.223 4.6207 0.0749 
QTB58 4.8466 4.6550 -0.1916 4.8165 -0.0301 
QTB59 4.5877* 4.3228 -0.2649 4.4334* -0.1543 
QTB60 4.2866* 4.3228 0.0362 4.2297* -0.0569 
QTB61 3.9394 3.9147 -0.0247 3.9395 0.0001 
QTB62 4.2184 4.3928 0.1744 4.2703 0.0519 
QTB63 4.5023 4.3194 -0.1829 4.4908 -0.0115 
QTB64 4.8044 4.6055 -0.1989 4.7727 -0.0317 
QTB65 4.2983 4.4199 0.1216 4.3877 0.0894 
QTB66 4.6281 4.7521 0.124 4.8536* 0.2255 
QTB67 4.6281* 4.4199 -0.2082 4.5977 -0.0304 
QTB68 4.3373 4.2968 -0.0405 4.6191* 0.2818 
QTB69 4.6383 4.2968 -0.3415 4.4706 -0.1677 
QTB70 3.9393* 4.1564 0.2171 4.1124 0.1731 
QTB71 4.1629 4.3034 0.1405 4.0037 -0.1592 
QTB72 4.1629 4.3034 0.1405 3.9775 -0.1854 
QTB73 4.4388 4.3033 -0.1355 4.2210* -0.2178 
QTB74 4.4185 4.1603 -0.2582 4.4249 0.0064 
QTB75 4.1816 4.1564 -0.0252 4.1949 0.0133 
QTB76 4.1816 4.1564 -0.0252 4.1850 0.0034 
QTB77 3.8948 4.0333 0.1385 3.9260 0.0312 
QTB78 4.1577 4.1564 -0.0013 4.1955 0.0378 

QTB41 TEMP-52 
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Fig. 4 Alignment of substituted Quinazolinone derivatives using template based alignment method. 

 
Model 4   
pMIC = +0.1129(±0.0016) E_993 +0.9839(±0.1510) S_1498 +1.9971(±0.2217) S_1506 -0.1212(±0.0122) E_566 -
0.0160(±0.0002)E_866  + 3.7861 
 
n=41, Degree of freedom=30, r2=0.9375, q2=0.9058, Ftest=45.007, r2se=0.1173,       q2se=0.1441, pred_r2=0.5204, 
pred_r2se=0.4496 --------------------------------------Eq (4)  
 
Model 5 
pMIC = +0.1122 E_993 +0.9816 S_1498 +2.0032 S_1506 -0.1224 E_566 -0.0162 E_866 -2.1769 S_920 + 3.7918 
 
n=41, Degree of freedom=30, r2=0.9167, q2=0.9046, Ftest=41.062, r2se=0.1173, q2se=0.1441, pred_r2=0.5000, 
pred_r2se=0.4496 ----------------------------------------Eq (5) 
 
The 3D data points were generated by MLR_SWFB (Model 4) and PLS_SWF (Model 5) method. The most 
significant model is Model 4 generated by MLR method which has been considered for discussion. The range of 
property values for generated data points helped for the design of pharmacophore for potent antitubercular drugs. 
The range was based on the variation of the field values at the chosen points using the most active (QTB41) 
molecule. The points generated in model 4 are (Fig.5) E_993, E_866, E_566, S_1498, S_1506 i.e. electrostatic and 
steric interactions fields at lattice points. The model shows best internal as well as external predictivity (q2=90%, 
Pred_r2= 52%) the internal as well as external validation errors are also very low (q2se=14%, pred_r2se=04%). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5 Stereo view of aligned molecules with the important steric and electrostatic points contributing to the Model 4 



Geeta Kant et al                                         J. Comput. Methods Mol. Des., 2014, 4 (1):70-79  
______________________________________________________________________________ 

78 
Available online at www.scholarsresearchlibrary.com 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6 Fitness Plot of 3D QSAR Model                             Fig.7 Contribution plot for 3D QSAR Model 

 
The 3D QSAR analysis showed that the steric descriptors S_1498 and S_1506 positively contributed when 
substituted at 3rd position of quinazolinone ring. Therefore, more bulky group should be introduced at 3rd position to 
enhance the activity while the electrostatic parameter E_993 showed positive contribution when substituted at 6th 
position of quinazolinone ring. Therefore, least electronegative atom like iodine and hydrogen are preferred than 
bromine, electrostatic descriptor E_866 showed negative contribution at 2nd position of quinazolinone ring, therefore 
more electronegative group such as –NH-,  shall be introduced at that region for better antitubercular activity 
and electrostatic descriptor E_566 showed negative contribution at 3rd position of quinazolinone ring, so more 
electronegative group shall be introduced at that position. 
 

CONCLUSION 
 
The 2D and 3D QSAR studies were conducted with a series of antitubercular agents, and some useful molecular 
models were obtained. The physicochemical, alignment-independent descriptors and steric, electrostatic force field 
parameters were found to have an important role in governing the change in activity. In 2D QSAR alignment-
independent descriptors like T_C_N_2, T_C_O_1 and T_O_Cl_7 showed positive contribution where as in 3D 
QSAR electrostatic E_993 and steric S_1498 and S_1506 descriptors showed positive contribution. Hence, these 
models are useful to provide better insight into the designing of more potent antitubercular agents in future before 
their synthesis. 
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