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ABSTRACT 
 
Hummingbird is a new ultra-lightweight crypto-graphic algorithm targeted for resource-constrained devices like 
RFID tags, smart cards, and wireless sensor nodes. In this paper, we design the algorithim using Dsp module, we 
describe efficient hardware implementations of a Hummingbird component in field-programmable gate array 
(FPGA) devices. We implement an encryption/decryption core on the low-cost Xilinx FPGA series Vertex-5 and 
compare our results with other reported lightweight block cipher implementations. Our experimental results 
highlight that in the context of low-cost FPGA implementation Hummingbird has favorable efficiency and low area 
requirements. 
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INTRODUCTION 
 
Hummingbird is a recently proposed ultra-lightweight cryp-tographic algorithm targeted for low-cost smart devices 
like RFID tags, smart cards, and wireless sensor nodes [3]. It has a hybrid structure of block cipher and stream 
cipher and was developed with both lightweight software and lightweight hardware implementations for constrained 
devices in mind. Moreover, Hummingbird has been shown to be resistant to the most common attacks to block 
ciphers and stream ciphers including birthday attack, differential and linear cryptanalysis, structure attacks, algebraic 
attacks, cube attacks, etc. [3]. 
 
In practice, Hummingbird has been implemented across a wide range of different target platforms [3], [5]. Those 
imple-mentations demonstrate that Hummingbird provides efficient and flexible software solutions for various 
embedded applica-tions. However, the hardware performance of Hummingbird has not yet been investigated in 
detail. As a result, our main contribution in this paper is to close this gap and provide the first efficient hardware 
implementations of Humming-bird encryption/decryption cores on low-cost FPGAs. Our implementation results 
show that on the Vertex-5 XC5VLX30 FPGA device the speed optimized Hummingbird encryption core can 
achieve a throughput of 160:4 Mbps at the cost of 273 slices, whereas the encryption/decryption core can be 
implemented in 558 slices and operate at 128:8 Mbps. 
 
II. THE HUMMINGBIRD CRYPTOGRAPHIC ALGORITHM 
Hummingbird is neither a block cipher nor a stream cipher, but a rotor machine equipped with novel rotor-stepping 
rules. The design of Hummingbird is based on an elegant combi-nation of a block cipher and stream cipher with 16-
bit block size, 256-bit key size, and 80-bit internal state. Figure 1(a) and Figure 1(b) illustrate the initialization and 
encryption processes of the Hummingbird cryptographic algorithm, re-spectively. Both initialization and encryption 
consist of four 16-bit block ciphers Eki (i = 1; 2; 3; 4), four 16-bit internal state registers RSi (i = 1; 2; 3; 4), and a 
16-stage Linear Shift Feedback Register (LFSR). Moreover, the 256-bit secret key K is divided into four 64-bit 
subkeys k1; k2; k3 and k4 which are used in the four block ciphers, respectively. 
 
After a system initialization process as shown in Figure 1(a), a 16-bit plaintext block PTi is encrypted by passing 
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four identical block ciphers Eki (·) (i = 1; 2; 3; 4) in a consecutive manner, each of which is a typical substitution-
permutation (SP) network with 16-bit block size and 64-bit key as shown in Figure 1(c). The block cipher consists 
of four regular rounds and a final round. The substitution layer is composed of four S-boxes with 4-bit inputs and 4-
bit outputs as shown in Table I. 
                                                      

TABLE I FOUR S-BOXES IN HEXADECIMAL NOTATION 
 

x 0 1 2 3 4 5 6 7 8 9 A B C D E F 
S1(x) 8 6 5 F 1 C A 9 E B 2 4 7 0 D 3 
S2(x) 0 7 E 1 5 B 8 2 3 A D 6 F C 4 9 
S3(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D 
S4(x) 0 7 3 4 C 1 A F D E 6 B 2 8 9 5 

 
The permutation layer in the 16-bit block cipher is given by the linear transform L : {0; 1}16 → {0; 1}16 defined as 
follows: 
 
L(m) = m ⊕ (m ≪ 6) ⊕  (m ≪ 10); 
 
where m = (m0; m1; ··· ; m15) is a 16-bit data block. 
 
To further reduce the consumption of the area and power of Hummingbird in hardware implementations, four S-
boxes used in Hummingbird can be replaced by a single S-box, which is repeated four times in the 16-bit block 
cipher. The compact version of Hummingbird can achieve the same security level as the original Hummingbird and 
will be implemented on FPGAs in this paper. For more details about Hummingbird, the interested reader is referred 
to [3]. 
 

 
 

TABLE II AREA REQUIREMENT COMPARISON FOR THE LOOP-UNROLLED ARCHITECTURE OF 16-BIT BLOCK CIPHER 
ON THE SPARTAN-3 XC3S200 FPGA 

 

S-box 
Implementati

on 
# 

LUTs 
# 

FFs 
Total 

Occupied 
 

  Strategy   Slices  
S1 (x) 

LUT 186 16 107  
BFR 186 16 109  

S2 (x) 
LUT 193 16 112  
BFR 186 16 107  

S3 (x) 
LUT 186 16 101  
BFR 186 16 106  

S4 (x) 
LUT 190 16 104  
BFR 187 16 109  

 
When comparing different S-boxes and implementation strategies, Table II shows that the loop-unrolled architecture 
occupies the minimal number of slices provided that the S-box S3(x) is employed and implemented by a LUT. 
Therefore, the S-box S3(x) is chosen for efficient implementation of speed optimized Hummingbird 
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encryption/decryption cores that are described in detail in the following subsections. 
 

Table III  Notation 
 

 
 
A . Initialization Process 
The overall structure of the Hummingbird initialization algorithm is shown in Figure 1(a). When using 
Hummingbird in practice, four 16-bit random nonces NONCEi are first chosen to initialize the four internal state 
registers RSi (i = 1; 2; 3; 4), respectively, followed by four consecutive encryptions on the message RS1 RS3 by 
Hummingbird running in initialization mode (see Figure 1(a)). The final 16-bit ciphertext TV is used to initialize the 
LFSR. Moreover, the 13th bit of the LFSR is always set to prevent a zero register. The LFSR is also stepped once 
before it is used to update the internal state register RS3. We summarize the Hummingbird initialization process in 
the following Algorithm 1. 
 
Algorithm 1 Hummingbird Initialization 
Input:  Four 16-bit random nonce NONCEi  (i = 1; 2; 3; 4) 
Output:  Initialized four rotors RSi4 (i = 1; 2; 3; 4) and LFSR 
 
1: RS10  = NONCE1 [Nonce Initialization] 
2: RS20  = NONCE2  
3: RS30  = NONCE3  
4: RS40  = NONCE4  
5: for t = 0 to 3 do  
6: V 12t  = Ek1 ((RS1t       RS3t)     RS1t)  
7: V 23t  = Ek2 (V 12t       RS2t)  
8: V 34t  = Ek3 (V 23t       RS3t)  
9: TVt  = Ek4 (V 34t       RS4t)  
10: RS1t+1  = RS1t       TVt  
11: RS2t+1  = RS2t       V 12t  
12: RS3t+1  = RS3t       V 23t  
13: RS4t+1  = RS4t       V 34t  
14: end for  
15: LFSR = TV3  | 0x1000 [LFSR Initialization] 
16:  return  RSi4 (i = 1; 2; 3; 4) and LFSR  
 
B .  Encryption Process 
The overall structure of the Hummingbird encryption algorithm is depicted in Figure 1(b). After a system 
initialization process, a 16-bit plaintext block PTi is encrypted by first exe-cuting a modulo 216 addition of PTi and 
the content of the first internal state register RS1. The result of the addition is then encrypted by the first block 
cipher Ek1 . This procedure is repeated in a similar manner for another three times and the output of Ek4 is the 
correspond-ing ciphertext CTi. Furthermore, the states of the four internal state registers will also be updated in an 
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unpredictable way based on their current states, the outputs of the first three block ciphers, and the state of the 
LFSR. Algorithm 2 describes the detailed procedure of  Hummingbird encryption. 
 
Algorithm 2 Hummingbird Encryption 
Input:  A 16-bit plaintext PTi  and four rotors RSit  (i = 1; 2; 3; 4) 
Output:  A 16-bit ciphertext CTi 
 
1:  V 12t  = Ek1 (PTi       RS1t) [Block Encryption] 
2:  V 23t  = Ek2 (V 12t       RS2t) 
3:  V 34t  = Ek3 (V 23t       RS3t) 
4:  CTi  = Ek4 (V 34t       RS4t) 
5:  LFSRt+1  ← LFSRt [Internal State Updating] 
6: RS1t+1  = RS1t       V 34t  
7: RS3t+1  = RS3t       V 23t       LFSRt+1  
8: RS4t+1  = RS4t       V 12t       RS1t+1  
9: RS2t+1  = RS2t       V 12t       RS4t+1  
10:  return  CTi  
 
C .  Decryption Process 
The overall structure of the Hummingbird decryption algorithm is illustrated in Figure 1(c). The decryption process 
follows the similar pattern as the encryption and a detailed descrip-tion is shown in the following Algorithm 3. 
 
Algorithm 3 Hummingbird Decryption 
Input:  A 16-bit ciphertext CTi  and four rotors RSit  (i = 1; 2; 3; 4) 
Output:  A 16-bit plaintext PTi 
 
1:  V 34t  = Dk4 (CTi)     RS4t [Block Decryption] 
2:  V 23t  = Dk3 (V 34t)     RS3t 
3:  V 12t  = Dk2 (V 23t)     RS2t 
4:  PTi  = Dk1 (V 12t)     RS1t 
5:  LFSRt+1  ← LFSRt [Internal State Updating] 
6: RS1t+1  = RS1t       V 34t  
7: RS3t+1  = RS3t       V 23t       LFSRt+1  
8: RS4t+1  = RS4t       V 12t       RS1t+1  
9: RS2t+1  = RS2t       V 12t       RS4t+1  
10:  return  PTi  
 
D. 16-Bit Block Cipher 
Hummingbird employs four identical block ciphers Eki (·) (i = 1; 2; 3; 4) in a consecutive manner, each of which is a 
typical substitution-permutation (SP) network with 16-bit block size and 64-bit key as shown in the following Figure 
2. 
 
The block cipher consists of four regular rounds and a final round. The 64-bit subkey ki is split into four 16-bit round 
keys K1

(i); K2
(i); K3

(i) and K4
(i) that are used in the four regular rounds, respectively. Moreover, the final round utilizes 

two keys K5
(i) and K6

(i) directly derived from the four round keys (see Fig. 2). While each regular round comprises of 
a key mixing step, a substitution layer, and a permutation layer, the final round only includes the key mixing and the 
S-box substitution steps. The key mixing step is implemented using a simple exclusive-OR operation, whereas the 
substitution layer is composed of four S-boxes with 4-bit inputs and 4-bit outputs as shown in Table IV. 
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 Fig. 2The Structure of Block Cipher in the Hummingbird Cryptographic Algorithm 

 
Table IV  Four S-Boxes in Hexadecimal Notation 

 
x 0 1 2 3 4 5 6 7 8 9 A B C D E F 

S1(x) 8 6 5 F 1 C A 9 E B 2 4 7 0 D 3 
S2(x) 0 7 E 1 5 B 8 2 3 A D 6 F C 4 9 
S3(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D 
S4(x) 0 7 3 4 C 1 A F D E 6 B 2 8 9 5 

 
The selected four S-boxes, denoted by Si(x) : F4

2 → F4
2; i = 1; 2; 3; 4, are Serpent-type S-boxes [1] with additional 

properties (see [9] for more details) which can ensure that the 16-bit block cipher is resistant to linear and 
differential attacks as well as interpolation attack. The permutation layer in the 16-bit block cipher is given by the 
linear transform 
L : {0; 1}16  → {0; 1}16 defined as follows: 
 
L(m) = m ⊕ (m ≪ 6) ⊕  (m ≪ 10); 
 
where m = (m0; m1; ··· ; m15) is a 16-bit data block. We give a detailed description for the encryption process of the 
16-bit block cipher in the following Algorithm 4. The decryption process can be easily derived from the encryption 
and therefore is omitted here. 
 
III. FPGA IMPLEMENTATIONS OF HUMMINGBIRD 
In this section efficient FPGA implementations of a stand-alone Hummingbird component are described. Note that 
the choice of different kinds of I/O interfaces has a significant influence on the performance of hardware 
implementation and is highly application specific. Therefore, we do not implement any specific I/O logic in order to 
obtain the accurate perfor-mance profile of a plain Hummingbird encryption/decryption core and to provide enough 
flexibility for various applications. 
 
A. Selection of a “Hardware-Friendly” S-Box 
A “hardware-friendly” S-box is the S-box that can be efficiently implemented in the target hardware platform with a 
small area requirement. Four 4 × 4 S-boxes Si(x) : F4

2 → F4
2 (i = 1; 2; 3; 4) have been carefully selected in 

Hummingbird according to certain security criteria (see Section II). To implement the compact version of 
Hummingbird, we need to choose a “hardware-friendly” S-box from four S-boxes listed in Table I. By using the 
Boolean minimization tool Espresso [4] we can obtain the minimal Boolean function representa-tions (BFR) for the 
four S-boxes in Hummingbird. Note that each S-box can be implemented in hardware by using either a look-up table 
(LUT) or the Boolean function representations (i.e., combinatorial logic). The exact efficiency of the above two 
approaches significantly depends on specific hardware platforms and synthesis tools. Therefore, for the proposed 
architecture of the 16-bit block cipher in Section III-B we investigate two implementation strategies (i.e., LUT and 
BFR) for the four S-boxes and select one that results in the most area-efficient implementation of the 16-bit block 
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cipher. 
 
B. Loop-Unrolled Architecture of 16-bit Block Cipher 
The loop-unrolled architecture for the 16-bit block cipher is illustrated in Figure 3. In this architecture, only one 16-
bit block of data is processed at a time. However, five rounds are cascaded and the whole encryption can be 
performed in a single clock cycle. The loop-unrolled architecture consists of 8 XORs, 20 S-boxes, and 4 permutation 
layers for the datapath. To select a “hardware-friendly” S-box for the compact version of Hummingbird, we 
implement the loop-unrolled architec-ture of the 16-bit block cipher on the target FPGA platform and test one S-box 
candidate from Table I each time. Table II summarizes the area requirement when using different S-boxes and 
implementation strategies. All experimental results are from post-place and route analysis. 
 

 
 

Fig. 3.  Loop-Unrolled Architecture of 16-bit Block Cipher 
 

TABLE V AREA REQUIREMENT COMPARISON FOR THE LOOP-UNROLLED ARCHITECTURE OF 16-BIT BLOCK CIPHER 
ON THE SPARTAN-3 XC3S200 FPGA 

 

S-box 
Implementati

on 
# 

LUTs 
# 

FFs 
Total 

Occupied 
 

  Strategy   Slices  
S1 (x) 

LUT 186 16 107  
BFR 186 16 109  

S2 (x) 
LUT 193 16 112  
BFR 186 16 107  

S3 (x) 
LUT 186 16 101  
BFR 186 16 106  

S4 (x) 
LUT 190 16 104  
BFR 187 16 109  

 
When comparing different S-boxes and implementation strategies, Table V shows that the loop-unrolled architecture 
occupies the minimal number of slices provided that the S-box S3(x) is employed and implemented by a LUT. 
Therefore, the S-box S3(x) is chosen for efficient implementation of speed optimized Hummingbird 
encryption/decryption cores that are described in detail in the following subsections. 
C. Speed Optimized Hummingbird Encryption Core 
 
The top-level description of a speed optimized Humming-bird encryption core is illustrated in Figure 3. After the 
chip enable signal changes from ‘0’ to ‘1’, the initialization process (see Figure 1(a)) begins and four rotors RSi (i = 
1; 2; 3; 4) are first initialized by four 16-bit random nonce through the interface RSi within four clock cycles. From 
the fifth clock cycle, the core starts encrypting RS1 RS3 for four times and each iteration requires four clock cycles 
to finish encryptions by four 16-bit block ciphers as well as the internal state updating. During the above procedure, 
the 64-bit subkeys ki (i = 1; 2; 3; 4) are read from an external register under the control of a key selection signal. 
Moreover, depending on the value of a round counter, the multiplexer M5 chooses the correct computation results to 
update four rotors and other multiplexers select appropriate inputs to feed the 16-bit block cipher. Once the 
initialization process is done after 20 clock cycles, the first 16-bit plaintext block is read from an external register for 
encryption. With another four clock cycles, the corresponding ciphertext is output from the encryption core. 
Therefore, the proposed speed optimized Hummingbird en-cryption core can encrypt one 16-bit plaintext block per 
4 clock cycles, after an initialization process of 20 clock cycles. 
 
D. Implementation Results and Comparisons 
A summary of our implementation results is presented in Table VI, where the area requirements (in slices), the 
maximum work frequency, and the throughput are provided. All experimental results were extracted after place and 
route with the ISE Design Suite 9.2i from Xilinx on a XC5VLX30 Vertex-5 platform with speed grade −5. From 
Table III, we note that the speed optimized Hummingbird encryption core can achieve a throughput of 160:4 Mbps 
at the cost of 273 slices, whereas the Hummingbird encryption/decryption core occupies 558 slices and operates at 
128:8 Mbps on the target FPGA platform. 

TABLE VI IMPLEMENTATION RESULTS FOR COMPACT VERSION OF HUMMINGBIRD                                                     ON 
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THE XC5VLX30 Vertex-5 FPGA 
 

Mode # LUTs # FFs Total Occupied Max. Freq. # CLK Cycles Throughput Efficiency  
(Enc/Dec)   Slices (MHz) Init. Enc/Dec (Mbps) (Mbps/# Slices)  

          
Enc 473 120 273 40:1 

20 4 
160:4 0:59  

Enc/Dec 1; 024 145 558 32:2 128:8 0:23  
 

TABLE VII PERFORMANCE COMPARISON OF FPGA IMPLEMENTATIONS OF CRYPTOGRAPHIC ALGORITHMS 
 

Cipher Key Block FPGA Total Occupied Max. Freq. Throughput Efficiency  
 Size Size Device Slices (MHz) (Mbps) (Mbps/# Slices)  
         

Hummingbird 256 16 Vertex-5 XC5VLX30 273 40:1 160:4 0:59  

PRESENT [10] 
80 64 

Spartan-3 XC3S400-5 
176 258 516 2:93  

128 64 202 254 508 2:51  
PRESENT [7] 80 64 Spartan-3E XC3S500 271 – – –  

XTEA [8] 128 64 
Spartan-3 XC3S50-5 254 62:6 36 0:14  

Virtex-5 XC5VLX85-3 9; 647 332:2 20; 645 2:14  
ICEBERG [12] 128 64 Virtex-2 631 – 1; 016 1:61  

SEA [9] 126 126 Virtex-2 XC2V4000 424 145 156 0:368  
AES [2]   Spartan-2 XC2S30-6 522 60 166 0:32  

AES [6] 
  Spartan-3 XC3S2000-5 17; 425 196:1 25; 107 1:44  

128 128 Spartan-2 XC2S15-6 264 67 2:2 0:01  
AES [11]   Spartan-2 XC2V40-6 1; 214 123 358 0:29  
AES [1]   Spartan-3 1; 800 150 1700 0:9  

 
Table VII describes the performance comparison of our Hummingbird implementation with existing FPGA 
implementations of block ciphers PRESENT [7], [10], XTEA [8], ICEBERG [12], SEA [9] as well as AES [1], [2], 
[6], [11]. Note that numerous AES hardware architectures have been proposed in literature and we only focus on 
those implementations using low-cost Vertex series FPGA devices with speed grade -5 and above for the purpose of 
comparison. Moreover, the implementation figures of ICEBERG and SEA are only available on Virtex-2 series 
FPGAs. We also would like to point out that it is quite difficult to provide a fair com-parison among different 
implementations on FPGAs, taking into account the diversity of FPGA devices and packages, speed grade level, and 
synthesis and implementation tools. Therefore, we also include additional information such as implementation 
platform and speed grade level in Table IV. 
 
Our experimental results show that in the context of low-cost FPGA implementation Hummingbird can achieve 
larger throughput with smaller area requirement, when compared to block ciphers XTEA, ICEBERG, SEA and 
AES. How-ever, the implementation of the ultra-lightweight block cipher PRESENT is more efficient than that of 
Hummingbird, although a slightly larger (and hence more expensive) FPGA device Vertex-5 XC5VLX30 is 
required. The main reason is due to the complex internal state updating procedure in Hummingbird cipher (see 
Figure 1(a) and Figure 1(b)). As a result, the control unit is more complicated and the delay of the critical path is 
much longer in the Hummingbird hardware architecture than those in the PRESENT core. 
   

CONCLUSION 
 
This paper presented the first efficient FPGA implementa-tions of the ultra-lightweight cryptographic algorithm 
Hum-mingbird. The proposed speed optimized Hummingbird encryption/decryption cores can encrypt or decrypt a 
16-bit message block with 4 clock cycles, after an initialization process of 20 clock cycles. Compared to other 
lightweight FPGA implementations of block ciphers XTEA, ICEBERG, SEA and AES, Hummingbird can achieve 
larger throughput with smaller area requirement. Consequently, Hummingbird can be considered as an ideal 
cryptographic primitive for resource-constrained environments. 
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