
Available online at www.scholarsresearchlibrary.com

Scholars Research Library

Archives of Applied Science Research, 2013, 5 (3):270-277

(http://scholarsresearchlibrary.com/archive.html)

ISSN 0975-508X

CODEN (USA) AASRC9

270
Scholars Research Library

FPGA implementations of the hummingbird cryptographic algorithm

Ashwani Sengar, Prince Nagar and Mayank Sharma

E & CE Department, Sharda University, Greater Noida, India

ABSTRACT

Hummingbird is a new ultra-lightweight crypto-graphic algorithm targeted for resource-constrained devices like
RFID tags, smart cards, and wireless sensor nodes. In this paper, we design the algorithim using Dsp module, we
describe efficient hardware implementations of a Hummingbird component in field-programmable gate array
(FPGA) devices. We implement an encryption/decryption core on the low-cost Xilinx FPGA series Vertex-5 and
compare our results with other reported lightweight block cipher implementations. Our experimental results
highlight that in the context of low-cost FPGA implementation Hummingbird has favorable efficiency and low area
requirements.

Key words: Lightweight cryptographic primitive, resource-constrained devices, FPGA implementations.

INTRODUCTION

Hummingbird is a recently proposed ultra-lightweight cryp-tographic algorithm targeted for low-cost smart devices
like RFID tags, smart cards, and wireless sensor nodes [3]. It has a hybrid structure of block cipher and stream
cipher and was developed with both lightweight software and lightweight hardware implementations for constrained
devices in mind. Moreover, Hummingbird has been shown to be resistant to the most common attacks to block
ciphers and stream ciphers including birthday attack, differential and linear cryptanalysis, structure attacks, algebraic
attacks, cube attacks, etc. [3].

In practice, Hummingbird has been implemented across a wide range of different target platforms [3], [5]. Those
imple-mentations demonstrate that Hummingbird provides efficient and flexible software solutions for various
embedded applica-tions. However, the hardware performance of Hummingbird has not yet been investigated in
detail. As a result, our main contribution in this paper is to close this gap and provide the first efficient hardware
implementations of Humming-bird encryption/decryption cores on low-cost FPGAs. Our implementation results
show that on the Vertex-5 XC5VLX30 FPGA device the speed optimized Hummingbird encryption core can
achieve a throughput of 160:4 Mbps at the cost of 273 slices, whereas the encryption/decryption core can be
implemented in 558 slices and operate at 128:8 Mbps.

II. THE HUMMINGBIRD CRYPTOGRAPHIC ALGORITHM
Hummingbird is neither a block cipher nor a stream cipher, but a rotor machine equipped with novel rotor-stepping
rules. The design of Hummingbird is based on an elegant combi-nation of a block cipher and stream cipher with 16-
bit block size, 256-bit key size, and 80-bit internal state. Figure 1(a) and Figure 1(b) illustrate the initialization and
encryption processes of the Hummingbird cryptographic algorithm, re-spectively. Both initialization and encryption
consist of four 16-bit block ciphers Eki (i = 1; 2; 3; 4), four 16-bit internal state registers RSi (i = 1; 2; 3; 4), and a
16-stage Linear Shift Feedback Register (LFSR). Moreover, the 256-bit secret key K is divided into four 64-bit
subkeys k1; k2; k3 and k4 which are used in the four block ciphers, respectively.

After a system initialization process as shown in Figure 1(a), a 16-bit plaintext block PTi is encrypted by passing

Ashwani Sengar et al Arch. Appl. Sci. Res., 2013, 5 (3):270-277
__

271
Scholars Research Library

four identical block ciphers Eki (·) (i = 1; 2; 3; 4) in a consecutive manner, each of which is a typical substitution-
permutation (SP) network with 16-bit block size and 64-bit key as shown in Figure 1(c). The block cipher consists
of four regular rounds and a final round. The substitution layer is composed of four S-boxes with 4-bit inputs and 4-
bit outputs as shown in Table I.

TABLE I FOUR S-BOXES IN HEXADECIMAL NOTATION

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S1(x) 8 6 5 F 1 C A 9 E B 2 4 7 0 D 3
S2(x) 0 7 E 1 5 B 8 2 3 A D 6 F C 4 9
S3(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D
S4(x) 0 7 3 4 C 1 A F D E 6 B 2 8 9 5

The permutation layer in the 16-bit block cipher is given by the linear transform L : {0; 1}16 → {0; 1}16 defined as
follows:

L(m) = m ⊕ (m ≪ 6) ⊕ (m ≪ 10);

where m = (m0; m1; ··· ; m15) is a 16-bit data block.

To further reduce the consumption of the area and power of Hummingbird in hardware implementations, four S-
boxes used in Hummingbird can be replaced by a single S-box, which is repeated four times in the 16-bit block
cipher. The compact version of Hummingbird can achieve the same security level as the original Hummingbird and
will be implemented on FPGAs in this paper. For more details about Hummingbird, the interested reader is referred
to [3].

TABLE II AREA REQUIREMENT COMPARISON FOR THE LOOP-UNROLLED ARCHITECTURE OF 16-BIT BLOCK CIPHER
ON THE SPARTAN-3 XC3S200 FPGA

S-box
Implementati

on

LUTs

FFs
Total

Occupied

 Strategy Slices
S1 (x)

LUT 186 16 107
BFR 186 16 109

S2 (x)
LUT 193 16 112
BFR 186 16 107

S3 (x)
LUT 186 16 101
BFR 186 16 106

S4 (x)
LUT 190 16 104
BFR 187 16 109

When comparing different S-boxes and implementation strategies, Table II shows that the loop-unrolled architecture
occupies the minimal number of slices provided that the S-box S3(x) is employed and implemented by a LUT.
Therefore, the S-box S3(x) is chosen for efficient implementation of speed optimized Hummingbird

Ashwani Sengar et al Arch. Appl. Sci. Res., 2013, 5 (3):270-277
__

272
Scholars Research Library

encryption/decryption cores that are described in detail in the following subsections.

Table III Notation

A . Initialization Process
The overall structure of the Hummingbird initialization algorithm is shown in Figure 1(a). When using
Hummingbird in practice, four 16-bit random nonces NONCEi are first chosen to initialize the four internal state
registers RSi (i = 1; 2; 3; 4), respectively, followed by four consecutive encryptions on the message RS1 RS3 by
Hummingbird running in initialization mode (see Figure 1(a)). The final 16-bit ciphertext TV is used to initialize the
LFSR. Moreover, the 13th bit of the LFSR is always set to prevent a zero register. The LFSR is also stepped once
before it is used to update the internal state register RS3. We summarize the Hummingbird initialization process in
the following Algorithm 1.

Algorithm 1 Hummingbird Initialization
Input: Four 16-bit random nonce NONCEi (i = 1; 2; 3; 4)
Output: Initialized four rotors RSi4 (i = 1; 2; 3; 4) and LFSR

1: RS10 = NONCE1 [Nonce Initialization]
2: RS20 = NONCE2
3: RS30 = NONCE3
4: RS40 = NONCE4
5: for t = 0 to 3 do
6: V 12t = Ek1 ((RS1t RS3t) RS1t)
7: V 23t = Ek2 (V 12t RS2t)
8: V 34t = Ek3 (V 23t RS3t)
9: TVt = Ek4 (V 34t RS4t)
10: RS1t+1 = RS1t TVt
11: RS2t+1 = RS2t V 12t
12: RS3t+1 = RS3t V 23t
13: RS4t+1 = RS4t V 34t
14: end for
15: LFSR = TV3 | 0x1000 [LFSR Initialization]
16: return RSi4 (i = 1; 2; 3; 4) and LFSR

B . Encryption Process
The overall structure of the Hummingbird encryption algorithm is depicted in Figure 1(b). After a system
initialization process, a 16-bit plaintext block PTi is encrypted by first exe-cuting a modulo 216 addition of PTi and
the content of the first internal state register RS1. The result of the addition is then encrypted by the first block
cipher Ek1 . This procedure is repeated in a similar manner for another three times and the output of Ek4 is the
correspond-ing ciphertext CTi. Furthermore, the states of the four internal state registers will also be updated in an

Ashwani Sengar et al Arch. Appl. Sci. Res., 2013, 5 (3):270-277
__

273
Scholars Research Library

unpredictable way based on their current states, the outputs of the first three block ciphers, and the state of the
LFSR. Algorithm 2 describes the detailed procedure of Hummingbird encryption.

Algorithm 2 Hummingbird Encryption
Input: A 16-bit plaintext PTi and four rotors RSit (i = 1; 2; 3; 4)
Output: A 16-bit ciphertext CTi

1: V 12t = Ek1 (PTi RS1t) [Block Encryption]
2: V 23t = Ek2 (V 12t RS2t)
3: V 34t = Ek3 (V 23t RS3t)
4: CTi = Ek4 (V 34t RS4t)
5: LFSRt+1 ← LFSRt [Internal State Updating]
6: RS1t+1 = RS1t V 34t
7: RS3t+1 = RS3t V 23t LFSRt+1
8: RS4t+1 = RS4t V 12t RS1t+1
9: RS2t+1 = RS2t V 12t RS4t+1
10: return CTi

C . Decryption Process
The overall structure of the Hummingbird decryption algorithm is illustrated in Figure 1(c). The decryption process
follows the similar pattern as the encryption and a detailed descrip-tion is shown in the following Algorithm 3.

Algorithm 3 Hummingbird Decryption
Input: A 16-bit ciphertext CTi and four rotors RSit (i = 1; 2; 3; 4)
Output: A 16-bit plaintext PTi

1: V 34t = Dk4 (CTi) RS4t [Block Decryption]
2: V 23t = Dk3 (V 34t) RS3t
3: V 12t = Dk2 (V 23t) RS2t
4: PTi = Dk1 (V 12t) RS1t
5: LFSRt+1 ← LFSRt [Internal State Updating]
6: RS1t+1 = RS1t V 34t
7: RS3t+1 = RS3t V 23t LFSRt+1
8: RS4t+1 = RS4t V 12t RS1t+1
9: RS2t+1 = RS2t V 12t RS4t+1
10: return PTi

D. 16-Bit Block Cipher
Hummingbird employs four identical block ciphers Eki (·) (i = 1; 2; 3; 4) in a consecutive manner, each of which is a
typical substitution-permutation (SP) network with 16-bit block size and 64-bit key as shown in the following Figure
2.

The block cipher consists of four regular rounds and a final round. The 64-bit subkey ki is split into four 16-bit round
keys K1

(i); K2
(i); K3

(i) and K4
(i) that are used in the four regular rounds, respectively. Moreover, the final round utilizes

two keys K5
(i) and K6

(i) directly derived from the four round keys (see Fig. 2). While each regular round comprises of
a key mixing step, a substitution layer, and a permutation layer, the final round only includes the key mixing and the
S-box substitution steps. The key mixing step is implemented using a simple exclusive-OR operation, whereas the
substitution layer is composed of four S-boxes with 4-bit inputs and 4-bit outputs as shown in Table IV.

Ashwani Sengar et al Arch. Appl. Sci. Res., 2013, 5 (3):270-277
__

274
Scholars Research Library

 Fig. 2The Structure of Block Cipher in the Hummingbird Cryptographic Algorithm

Table IV Four S-Boxes in Hexadecimal Notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S1(x) 8 6 5 F 1 C A 9 E B 2 4 7 0 D 3
S2(x) 0 7 E 1 5 B 8 2 3 A D 6 F C 4 9
S3(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D
S4(x) 0 7 3 4 C 1 A F D E 6 B 2 8 9 5

The selected four S-boxes, denoted by Si(x) : F4

2 → F4
2; i = 1; 2; 3; 4, are Serpent-type S-boxes [1] with additional

properties (see [9] for more details) which can ensure that the 16-bit block cipher is resistant to linear and
differential attacks as well as interpolation attack. The permutation layer in the 16-bit block cipher is given by the
linear transform
L : {0; 1}16 → {0; 1}16 defined as follows:

L(m) = m ⊕ (m ≪ 6) ⊕ (m ≪ 10);

where m = (m0; m1; ··· ; m15) is a 16-bit data block. We give a detailed description for the encryption process of the
16-bit block cipher in the following Algorithm 4. The decryption process can be easily derived from the encryption
and therefore is omitted here.

III. FPGA IMPLEMENTATIONS OF HUMMINGBIRD
In this section efficient FPGA implementations of a stand-alone Hummingbird component are described. Note that
the choice of different kinds of I/O interfaces has a significant influence on the performance of hardware
implementation and is highly application specific. Therefore, we do not implement any specific I/O logic in order to
obtain the accurate perfor-mance profile of a plain Hummingbird encryption/decryption core and to provide enough
flexibility for various applications.

A. Selection of a “Hardware-Friendly” S-Box
A “hardware-friendly” S-box is the S-box that can be efficiently implemented in the target hardware platform with a
small area requirement. Four 4 × 4 S-boxes Si(x) : F4

2 → F4
2 (i = 1; 2; 3; 4) have been carefully selected in

Hummingbird according to certain security criteria (see Section II). To implement the compact version of
Hummingbird, we need to choose a “hardware-friendly” S-box from four S-boxes listed in Table I. By using the
Boolean minimization tool Espresso [4] we can obtain the minimal Boolean function representa-tions (BFR) for the
four S-boxes in Hummingbird. Note that each S-box can be implemented in hardware by using either a look-up table
(LUT) or the Boolean function representations (i.e., combinatorial logic). The exact efficiency of the above two
approaches significantly depends on specific hardware platforms and synthesis tools. Therefore, for the proposed
architecture of the 16-bit block cipher in Section III-B we investigate two implementation strategies (i.e., LUT and
BFR) for the four S-boxes and select one that results in the most area-efficient implementation of the 16-bit block

Ashwani Sengar et al Arch. Appl. Sci. Res., 2013, 5 (3):270-277
__

275
Scholars Research Library

cipher.

B. Loop-Unrolled Architecture of 16-bit Block Cipher
The loop-unrolled architecture for the 16-bit block cipher is illustrated in Figure 3. In this architecture, only one 16-
bit block of data is processed at a time. However, five rounds are cascaded and the whole encryption can be
performed in a single clock cycle. The loop-unrolled architecture consists of 8 XORs, 20 S-boxes, and 4 permutation
layers for the datapath. To select a “hardware-friendly” S-box for the compact version of Hummingbird, we
implement the loop-unrolled architec-ture of the 16-bit block cipher on the target FPGA platform and test one S-box
candidate from Table I each time. Table II summarizes the area requirement when using different S-boxes and
implementation strategies. All experimental results are from post-place and route analysis.

Fig. 3. Loop-Unrolled Architecture of 16-bit Block Cipher

TABLE V AREA REQUIREMENT COMPARISON FOR THE LOOP-UNROLLED ARCHITECTURE OF 16-BIT BLOCK CIPHER
ON THE SPARTAN-3 XC3S200 FPGA

S-box
Implementati

on

LUTs

FFs
Total

Occupied

 Strategy Slices
S1 (x)

LUT 186 16 107
BFR 186 16 109

S2 (x)
LUT 193 16 112
BFR 186 16 107

S3 (x)
LUT 186 16 101
BFR 186 16 106

S4 (x)
LUT 190 16 104
BFR 187 16 109

When comparing different S-boxes and implementation strategies, Table V shows that the loop-unrolled architecture
occupies the minimal number of slices provided that the S-box S3(x) is employed and implemented by a LUT.
Therefore, the S-box S3(x) is chosen for efficient implementation of speed optimized Hummingbird
encryption/decryption cores that are described in detail in the following subsections.
C. Speed Optimized Hummingbird Encryption Core

The top-level description of a speed optimized Humming-bird encryption core is illustrated in Figure 3. After the
chip enable signal changes from ‘0’ to ‘1’, the initialization process (see Figure 1(a)) begins and four rotors RSi (i =
1; 2; 3; 4) are first initialized by four 16-bit random nonce through the interface RSi within four clock cycles. From
the fifth clock cycle, the core starts encrypting RS1 RS3 for four times and each iteration requires four clock cycles
to finish encryptions by four 16-bit block ciphers as well as the internal state updating. During the above procedure,
the 64-bit subkeys ki (i = 1; 2; 3; 4) are read from an external register under the control of a key selection signal.
Moreover, depending on the value of a round counter, the multiplexer M5 chooses the correct computation results to
update four rotors and other multiplexers select appropriate inputs to feed the 16-bit block cipher. Once the
initialization process is done after 20 clock cycles, the first 16-bit plaintext block is read from an external register for
encryption. With another four clock cycles, the corresponding ciphertext is output from the encryption core.
Therefore, the proposed speed optimized Hummingbird en-cryption core can encrypt one 16-bit plaintext block per
4 clock cycles, after an initialization process of 20 clock cycles.

D. Implementation Results and Comparisons
A summary of our implementation results is presented in Table VI, where the area requirements (in slices), the
maximum work frequency, and the throughput are provided. All experimental results were extracted after place and
route with the ISE Design Suite 9.2i from Xilinx on a XC5VLX30 Vertex-5 platform with speed grade −5. From
Table III, we note that the speed optimized Hummingbird encryption core can achieve a throughput of 160:4 Mbps
at the cost of 273 slices, whereas the Hummingbird encryption/decryption core occupies 558 slices and operates at
128:8 Mbps on the target FPGA platform.

TABLE VI IMPLEMENTATION RESULTS FOR COMPACT VERSION OF HUMMINGBIRD ON

Ashwani Sengar et al Arch. Appl. Sci. Res., 2013, 5 (3):270-277
__

276
Scholars Research Library

THE XC5VLX30 Vertex-5 FPGA

Mode # LUTs # FFs Total Occupied Max. Freq. # CLK Cycles Throughput Efficiency
(Enc/Dec) Slices (MHz) Init. Enc/Dec (Mbps) (Mbps/# Slices)

Enc 473 120 273 40:1

20 4
160:4 0:59

Enc/Dec 1; 024 145 558 32:2 128:8 0:23

TABLE VII PERFORMANCE COMPARISON OF FPGA IMPLEMENTATIONS OF CRYPTOGRAPHIC ALGORITHMS

Cipher Key Block FPGA Total Occupied Max. Freq. Throughput Efficiency
 Size Size Device Slices (MHz) (Mbps) (Mbps/# Slices)

Hummingbird 256 16 Vertex-5 XC5VLX30 273 40:1 160:4 0:59

PRESENT [10]
80 64

Spartan-3 XC3S400-5
176 258 516 2:93

128 64 202 254 508 2:51
PRESENT [7] 80 64 Spartan-3E XC3S500 271 – – –

XTEA [8] 128 64
Spartan-3 XC3S50-5 254 62:6 36 0:14

Virtex-5 XC5VLX85-3 9; 647 332:2 20; 645 2:14
ICEBERG [12] 128 64 Virtex-2 631 – 1; 016 1:61

SEA [9] 126 126 Virtex-2 XC2V4000 424 145 156 0:368
AES [2] Spartan-2 XC2S30-6 522 60 166 0:32

AES [6]
 Spartan-3 XC3S2000-5 17; 425 196:1 25; 107 1:44

128 128 Spartan-2 XC2S15-6 264 67 2:2 0:01
AES [11] Spartan-2 XC2V40-6 1; 214 123 358 0:29
AES [1] Spartan-3 1; 800 150 1700 0:9

Table VII describes the performance comparison of our Hummingbird implementation with existing FPGA
implementations of block ciphers PRESENT [7], [10], XTEA [8], ICEBERG [12], SEA [9] as well as AES [1], [2],
[6], [11]. Note that numerous AES hardware architectures have been proposed in literature and we only focus on
those implementations using low-cost Vertex series FPGA devices with speed grade -5 and above for the purpose of
comparison. Moreover, the implementation figures of ICEBERG and SEA are only available on Virtex-2 series
FPGAs. We also would like to point out that it is quite difficult to provide a fair com-parison among different
implementations on FPGAs, taking into account the diversity of FPGA devices and packages, speed grade level, and
synthesis and implementation tools. Therefore, we also include additional information such as implementation
platform and speed grade level in Table IV.

Our experimental results show that in the context of low-cost FPGA implementation Hummingbird can achieve
larger throughput with smaller area requirement, when compared to block ciphers XTEA, ICEBERG, SEA and
AES. How-ever, the implementation of the ultra-lightweight block cipher PRESENT is more efficient than that of
Hummingbird, although a slightly larger (and hence more expensive) FPGA device Vertex-5 XC5VLX30 is
required. The main reason is due to the complex internal state updating procedure in Hummingbird cipher (see
Figure 1(a) and Figure 1(b)). As a result, the control unit is more complicated and the delay of the critical path is
much longer in the Hummingbird hardware architecture than those in the PRESENT core.

CONCLUSION

This paper presented the first efficient FPGA implementa-tions of the ultra-lightweight cryptographic algorithm
Hum-mingbird. The proposed speed optimized Hummingbird encryption/decryption cores can encrypt or decrypt a
16-bit message block with 4 clock cycles, after an initialization process of 20 clock cycles. Compared to other
lightweight FPGA implementations of block ciphers XTEA, ICEBERG, SEA and AES, Hummingbird can achieve
larger throughput with smaller area requirement. Consequently, Hummingbird can be considered as an ideal
cryptographic primitive for resource-constrained environments.

REFERENCES

[1] P. Bulens, F.-X. Standaert, J.-J. Quisquater, and P. Pellegrin, Progress in Cryptology - AFRICACRYPT 2008,
LNCS 5023, pp. 16-26, 2008.
[2] P. Chodowiec and K. Gaj, “Very Compact FPGA Implementation of the AES Algorithm”, The 5th International
Workshop on Cryptographic Hardware and Embedded Systems - CHES 2003, LNCS 2779, pp. 319-333, 2003.
[3] D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith, “Hummingbird: Ultra-Lightweight Cryptography for
Resource- Constrained Devices”, to appear in the proceedings of The 14th International Conference on Financial
Cryptography and Data Security - FC 2010, 2010.
[4] N. N. Espresso. Available at http://embedded.eecs.berkeley.edu/pubs/ downloads/espresso/index.htm, November

Ashwani Sengar et al Arch. Appl. Sci. Res., 2013, 5 (3):270-277
__

277
Scholars Research Library

1994.
[5] X. Fan, H. Hu, G. Gong, E. M. Smith and D. Engels, “Lightweight Implementation of Hummingbird
Cryptographic Algorithm on 4-Bit Microcontrollers”, The 1st International Workshop on RFID Security and
Cryptography 2009 (RISC’09), pp. 838-844, 2009.
[6] T. Good and M. Benaissa, “AES on FPGA from the Fastest to the Smallest”, The 7th International Workshop on
Cryptographic Hardware and Embedded Systems - CHES 2005, LNCS 3659, pp. 427-440, 2005.
[7] X. Guo, Z. Chen, and P. Schaumont, “Energy and Performance Evaluation of an FPGA-Based SoC Platform
with AES and PRESENT Copro-cessors”, Embedded Computer Systems: Architectures, Modeling, and Simulation -
SAMOS’2008, LNCS 5114, pp. 106-115, 2008.
[8] J.-P. Kaps, “Chai-Tea, Cryptographic Hardware Implemenations of xTEA”, The 9th International Conference on
Cryptology in India - INDOCRYPT 2008, LNCS 5356, pp. 363-375, 2008.
[9] F. Mace, F.-X. Standaert, and J.-J. Quisquater, “FPGA Implemenation(s) of a Scalable Encryption Algorithm”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 2, pp. 212-216, 2008.
[10] A. Poschmann, “Lightweight Cryptography - Cryptographic Engineering for a Pervasive World”, Ph.D. Thesis,
Department of Electrical Engi-neering and Information Sciences, Ruhr-Universita•et Bochum, Bochum, Germany,
2009.
[11] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat, “Compact and Efficient Encryption/Decryption
Module for FPGA Implementation of the AES Rijndael Very Well Suited for Small Embedded Applica-tions”,
International Conference on Information Technology: Coding and Computing - ITCC 2004, pp. 583-587, 2004.
[12] F.-X. Standaert, G. Piret, G. Rouvroy, and J.-J. Quisquater, “FPGA Implementations of the ICEBERG Block
Cipher”, Integration, the VLSI Journal, vol. 40, iss. 1, pp. 20-27, 2007.
[13] Xilinx Inc., “Spartan-3 FPGA Family Data Sheet”, DS099, December 4, 2009, available at
http://www.xilinx.com/support/documentation/data sheets/ds099.pdf.

