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ABSTRACT  
 
Quantitative Structure Property Relationship (QSPR) analysis was applied to 36 Persistent Organic Pollutants 
(POPs) using a combination of 0D, 1D, 2D and 3D molecular descriptors obtained by Semi empirical (pm3) 
method. The computed descriptors were correlated with the log of their experimental octanol-air partition 
coefficient (pKOA).Genetic function approximation was used to derive the most statistically significant QSPR model 
as a calibration model for predicting the pKOA of this class of molecules. Among the obtained QSPR models, the 
most statistically significant one was a five parameter linear equation with the squared correlation coefficient R2 
value of 0.9889, adjusted squared correlation coefficient R 2

adj value of 0.9860 and Leave one out (LOO) cross 
validation coefficient (Q2) value of 0.9827. An external set was used for confirming the predictive power of the 
model (R 2

pred. = 0.7471). It is envisaged that the QSPR results identified in this study will offer an efficient and cost 
effective method of assessing the fate of POPs in the environment. 
 
Keywords: POPs, GFA, QSAR, Descriptors, octanol-air partition coefficient. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 
Persistent Organic Pollutants (POPs) are chemical substances that persist in the environment, bio-accumulate 
through the food web, and pose a risk of causing adverse effects to human health and the environment. With the 
evidence of long-range transport of these substances to regions where they have never been used or produced and 
the consequent threats they pose to the environment of the whole globe, the international community has now, at 
several occasions, called for urgent global actions to reduce and eliminate releases of these chemicals, because they 
are in a nutshell: Highly toxic to humans and the environment, Persistent in the environment, resisting bio-
degradation, Taken up and bio-accumulated in terrestrial and aquatic ecosystems Capable of long-range, trans 
boundary atmospheric transport and deposition. In nature these substances affect plant and animal development and 
growth. They can cause reduced reproductive success, birth defects, behavioral changes and death. They are 
suspected human carcinogens and disrupt the immune and endocrine systems [1]. 
 
The fate and behavior of persistent organic pollutants (POPs) in the environment has attracted substantial scientific 
and political interest, arising from concern over human exposure to these chemicals and their discovery in primeval 
environments far from source regions. The ability of certain POPs to undergo long range atmospheric transport has 
resulted in the negotiation of protocols (e.g. UN/ECE, UNEP) for their reduction or elimination, to reduce the risks 
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to regional and global environments. These chemicals are released into the environment through a range of 
processes which include; release during the production process, release during use or accidental release during 
combustion processes [2]. 
 
The fate of these chemicals in the environment; where they are released, the physical processes governing their 
transport, where they accumulate need to be given important consideration. This requires absorption of enormous 
spectrum of information and ultirnately lead to models of chemical fate [3, 4]. One of these important information is 
the octanol-air partition coefficient, KOA. 
 
The transport of chernical through the globe is often compared to chromatography [5] where the air is the mobile 
phase and terrestrial lipids represent the stationary phase. The sinks for lipophilic chemicals thus include waxy 
cuticle on vegetation, the organic matter in soil and the oily filmwhich coats atmospheric particulate matter. Because 
octanol is a replacement for organic or lipid phases, the octanol-air partition coefficient (KOA)is recognized as a 
good descriptor for atmosphere-terrestrial lipid exchange [6, 7]. 
 
However, experimental determination of KOW is costly and time consuming, and sometimes restricted by lack of 
sufficiently pure chemicals [8] hampering effective and transparent risk assessment process to the regulated and the 
regulator. To achieve the sustainable use of chemicals, they is a needfor validated process of risk assessment (in this 
case, bio-accumulations of POPs) through which we can evaluate the impact of both existing chemicals and those 
which will be produced in the future [2]. This has necessitated the development of a predictive Quantitative-
structure property relationship model for KOA of POPs. 
 
The aim of this work is to build a rational and predictive Quantitative-structure property relationship model for 
octanol-air partition coefficient KOA at room temperature of POPs. 
 

MATERIALS AND METHODS 
 

Hansch’s approach [9] was used in the QSPR studies. In this approach, structural properties of compounds are 
calculated in terms of different physicochemical parameters and these parameters were correlated with biological 
activity through equation using regression analysis. 
 
Data collection  
The chemical structures and experimental octanol-air partition coefficient in logarithmic scale (KOA) of some 
persistent organic pollutant minimum were taken from literature [8, 4, 10]. The notation, structure and KOA value for 
each member of the data set are presented in Table 1 below. 
 

TABLE I: Experimental K OA values of the selected POPs 
 

S/n Molecular Structure LogKOA 

C1 

 

6.82 

C2 

 

7.34 

C3 
 

 

 

 

 

7.85 
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C4 

 

7.93 

C5 

 

7.80 

C6 

 

7.94 

C7 

 

8.22 

C8 

 

8.64 

C9 

 

8.90 

C10 

 

8.00 

C11 

 

9.80 

C12 

 
 

 

 

 

9.76 
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C13 

 

9.52 

C14 

 

8.89 

C15 

 

10.12 

C16 

 

11.31 

C17 

 

8.27 

C18 

 

8.27 

C19 

 

9.02 

C20 

 

9.76 

C21 

 

10.51 
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C22 

 

11.26 

C23 

 

5.20 

C24 

 

5.94 

C25 

 

7.62 

C26 

 

8.36 

C27 

 

9.11 

C28 

 

9.86 

C29 

 

10.61 

C30 

 

11.35 

C31 

 

12.10 

C32 

 
 

 

9.73 
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C33 

 

6.79 

C34 

 

7.57 

C35 

 

8.88 

C36 

 

8.80 

 
Geometry optimization 
Geometry optimization has to do with the technique that tries to find the conformation of minimum energy of the 
molecule.The molecular structure of each compound in the data set was drawn with Chemdraw ultra V12.0 and 
saved as *cdx file. Calculations were performed using the molecular modeling program SPARTAN’14 V1.1.0 on 
H.P 650 computer system (Intel Pentium), 2.43GHz processor, 4GB ram size on Microsoft windows 7 Ultimate 
operating system. 
 
The computational method invoked for calculating geometries in the present caseis termed a “cascade method” by 
Hehre [11] because of its use of molecular mechanicsas precursor for the more accurate semi-empirical methods. 
The attractiveness of the method lies in its ability to make calculations less computationally taxing by relegating 
initial geometry calculationsto less computationally intensive (and possibly more inaccurate) methods. In this 
method, the initial calculations, which may be initialized in a geometry far from that of equilibrium, are performed 
by those methods requiring less computational effort, allowing equilibrium geometries to be “honed in on” in later 
stages, leaving the refining to the more accurate and computationally intensive theories. 
 
The molecules were first pre-optimized with the molecular mechanics procedure included in Spartan’14 V1.1.0 
software and the resulting geometries were further refined by means of Semi-empirical (pm3). The lowest energy 
structure was used for each molecule to calculate their physicochemical properties (molecular descriptor).  
 
Descriptor calculation 
The molecular descriptor is the final result of a logic and mathematical procedure which transforms chemical 
information encoded within a symbolic representation of a molecule into a useful number or the result of some 
standardized experiment [12].Padel descriptor tool kit was used to calculate the descriptors of the optimized 
molecules. 
 
Training and Test set 
The training set encompasses the molecules used in model development while the test set is made up of molecules 
not used in building the model, they are used in the external validation of the model. The data set for KOA of the 
selected POPs was split into training and test set. At least 70% of the data set was used as training set and the rest as 



John Philip Ameji  et al                             J. Comput. Methods Mol. Des., 2015, 5 (4):46-60  
______________________________________________________________________________ 

52 
Available online at www.scholarsresearchlibrary.com 

test set in line with the optimum splitting pattern of data set in QSAR study [13]. Consequently, the data set of 36 
complexes was split into 25 training set and 11 test set. The training set was used to generate the model while the 
test set was used to evaluate its prediction abilities. The selection of training and test set was done using the Random 
Selection method. 
 
Learning process 
In this process, the correlation between the observed KOA of the selected POPs and the calculated descriptors was 
obtained via correlation analysis using the Microsoft excel package in Microsoft office 2013. Pearson's correlation 
matrix was used as a qualitative model, in order to select the suitable descriptors for regression analysis. The 
selected descriptors were subjected to regression analysis with the experimentally determined octanol-air partition 
coefficienton logarithmic scale (pKOA) as the dependent variable and the selected descriptors as the independent 
variables using Genetic function approximation (GFA) method in Material studio software. To develop the 
optimization model, 25 samples were included in the training set. The number of descriptors in the regression 
equation was set to 5, and Population and Generation were set to 1,000 and 5,000, respectively. The number of top 
equations returned was 5. Mutation probability was 0.1, and the smoothing parameter was 0.5. The models were 
scored based on Friedman’s LOF. 
 
 It is a distinctive characteristic of GFA that it could create a population of models rather than a single model. GFA 
algorithm, selecting the basis functions genetically, developed better models than those made using stepwise 
regression methods. And then, the models were estimated using the “lack of fit” (LOF), which was measured using a 
slight variation of the original Friedman formula, so that best model received the best fitness score [14].  
 
In Materials Studio, LOF is measured using a slight variation of the original Friedman formula [15]. The revised 
formula is: 
 

LOF = SSE / (1 − ����
� )2           (1) 

 
Where SSE is the sum of squares of errors, c is the number of terms in the model, other than the constant term, d is a 
user-defined smoothing parameter, p is the total number of descriptors contained in all model terms (ignoring the 
constant term) and M is the number of samples in the training set. Unlike the commonly used least squares measure, 
the LOF measure cannot always be reduced by adding more terms to the regression model. While the new term may 
reduce the SSE, it also increases the values of c and p, which tends to increase the LOF score. Thus, adding a new 
term may reduce the SSE, but actually increases the LOF score. By limiting the tendency to simply add more terms, 
the LOF measure resists over fitting better than the SSE measure (Materials Studio 5.0 Manual).The significant 
regression is given by F-test, and the higher the value, the better the model [16]. 
 
Model Validation 
A reliable validation procedure is required in order to confirm the existence of chance correlations as well as 
ascertaining the fitting ability, stability, reliability and predictive ability of the developed models. The validation 
parameters of the optimum model were compared with the standards shown in table 2 below. 
 

Table 2: Validation metrics for a generally acceptable QSAR model 
 

S/n Metric symbol                              Name Threshold 
1 R2 Coefficient of determination ≥ 0.6 
2 Q2 LOO  cross validation coefficient ˂ 0.5 
3 R2

pred. External test set’s coefficient of determination ≥ 0.6 
4 R2 - Q2 Difference between R2 and Q2 ≤ 0.3 
5 F value Variation ratio High 
6 r2 – r02 / r2 Golbraikh and Tropsha condition ˂ 0.1 
7 r2 – r’02 / r2 Golbraikh and Tropsha condition ˂ 0.1 
8 K and K’  Intercept 0.85 ≤ k or k’ ≤ 1.15 

Source: Roy et al.; Ravinchandranet al.; Golbraikh and Tropsha [18, 19, 20] 
 
2.6.1 Internal validation parameters 
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R2 (the square of the correlation coefficient): describes the fraction of the total variation attributed to the model. 
The closer the value of R2 is to 1.0, the better the regression equation explains the Y variable. R2 is the most 
commonly used internal validation indicator and is expressed as follows: 

R2 = 1 - 
∑(
��
�
����)�

∑(
��
�
��������)�           (2) 

 
Where, Yobs; Ypred ;Ytraining are the experimental property, the predicted property and the mean experimental 
property of the samples in the training set, respectively . 
 
Adjusted R2 (R2

adj): R2 value varies directly with the increase in number of regressors i.e. descriptors, thus, R2 
cannot be a useful measure for the goodness of model fit. Therefore, R2 is adjusted for the number of explanatory 
variables in the model. The adjusted R2 is defined as: 

R2
adj = 1- (1 − ��) ���

����� = 
(���)����

�����          (3) 

 
Where p = number of independent variables in the model. 
(Brandon-Vaughn and Orr, 2015). 
 
Q2 (Leave one out cross validation coefficient): The LOO cross validated coefficient (Q2) is given by;  

Q2 = 1 - 
∑(
��
)�
∑(
�
�)�            (4) 

 
Where Yp and Y represent the predicted and observed activity respectively of the training set and Ymthe mean 
activity value of the training set [17]. 
 
Variance Ratio (F): this parameter is used to judge the overall significance of the regression coefficient. It is the 
ratio of regression mean square to deviations mean square defined as: 

F =     

∑(
����
�)�
� ∑(
��
�
���)

 ����
�!          (5) 

WhereYobs stands for the observed response value, while Ycalc isthe model-derived calculated response and Ymis the 
average of the observed response values.The F value has two degrees of freedom: p, N − p − 1. The computed F 
value ofa model should be significant at p < 0.05. A high F value is an indication that the regression coefficients are 
significant [18]. 
 
Standard error of estimate (s): Low standard error of estimate is an indication of a good model. It is defined as 
follows: 

S = √
(
��
�
���)�

 ����   

            (6) 
Its degree of freedom is N-p-1 [18]. 
 
 
2.6.2 Metrics for external validation  
External validation of QSAR model is necessary to order to ensure the predictability and applicability of the 
developed QSAR model for the prediction of untested molecules.  
 
Predictive R2 (R2

 pred.):R
2 pred is termed the predictive R2 of a development model and is an important parameter 

that is used to test the external predictive ability of a QSAR model. The predicted R2 value is calculated as follows; 
 

R2
pred. =1 – 

∑[
��
(��
�)�
����(��
�)]�
∑[
��
(��
�)�
�(��������)]�                (7) 

 
Ypred(test) and Yobs(test) indicate predicted and observed activity values respectively of the test set compounds and 
Ym(training) indicates mean activity value of the training set [19]. 
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Golbraikh and Tropsha’s criteria: according to Golbraikh and Tropsha, models are considered satisfactory, if all 
the following conditions are met. 
 
(a) R2

 test ˃ 0.5 
(b) r2 – r0

2 / r2 ˂ 0.1 
(c) r2 – r’0

2 / r2 ˂ 0.1 
(d) 0.85 ≤ k ≤ 1.15 
(e) 0.85 ≤ k’ ≤ 1.15 
 
Parameters r2 and r0 

2 are the squared correlation coefficients between the observed and predicted values of the 
compounds with and without intercept, respectively. The parameter r’

0
2bears the same meaning but uses the reversed 

axes. K is the intercept of the plot of the observed and predicted values of the compounds and K’ the reversed axes 
intercept [20]. 
 

RESULTS AND DISCUSSION 
 

Table 3: GFA derived QSAR models for the KOA of the selected POPs 
 

Model Equation Definition of terms 

1. 

$KOA=  1.201087752 * X99 
- 0.421961296 * X148 
- 0.259510614 * X316 
+ 0.070956322 * X781 
+ 0.931435567 * X810 
- 0.673649058 

X99 : CW : VP-3 
X148 : ET : nssCH2 
X316 : LG : SsCl 
X781 : ADJ : WPSA-3 
X810 : AEM : MOMI-R 

2. 

$KOA=  1.201087752 * X99 
- 0.259510614 * X316 
- 5.485496838 * X639 
+ 0.070956322 * X781 
+ 0.931435567 * X810 
- 0.673649058 

X99 : CW : VP-3 
X316 : LG : SsCl 
X639 : XX : HybRatio 
X781 : ADJ : WPSA-3 
X810 : AEM : MOMI-R 

3. 

$KOA =  0.971655315 * X99 
- 7.881157260 * X639 
- 4.131893428 * X745 
+ 1.029703269 * X810 
+ 0.085465727 

X99 : CW : VP-3 
X639 : XX : HybRatio 
X745 : ABZ : RotBtFrac 
X810 : AEM : MOMI-R 

4. 

$KOA =  0.971655315 * X99 
- 0.606242867 * X148 
- 4.131893428 * X745 
+ 1.029703269 * X810 
+ 0.085465727 

X99 : CW : VP-3 
X148 : ET : nssCH2 
X745 : ABZ : RotBtFrac 
X810 : AEM : MOMI-R 

5. 

$KOA =  1.210319413 * X99 
- 0.259275231 * X316 
- 0.388137940 * X504 
+ 0.069010864 * X781 
+ 0.924947849 * X810 
- 0.658474833 

X99 : CW : VP-3 
X316 : LG : SsCl 
X504 : SM : maxssCH2 
X781 : ADJ : WPSA-3 
X810 : AEM : MOMI-R 

 
Table 4: Validation Parameters of the models 

 
S/n Parameters Model 1 Model 2 model 3 Model 4 Model 5 
1 Friedman LOF 0.06573200 0.0657320 0.06622200 0.06622200 0.06717800 
2 R-squared 0.98891300 0.9889130 0.98633500 0.98633500 0.98866900 
3 Adjusted R-squared 0.98599500 0.9859950 0.98360200 0.98360200 0.98568700 
4 Cross validated R-squared 0.98272800 0.9827280 0.98014600 0.98014600 0.98235100 
5 Significant Regression Yes Yes Yes Yes Yes 
6 Significance-of-regression F-value 338.929759 338.92976 360.905975 360.905975 331.549784 
7 Critical SOR F-value (95%) 2.76172000 2.7617200 2.91676100 2.91676100 2.76172000 
8 Replicate points 0 0 0 0 0 
9 Computed experimental error 0.00000000 0.0000000 0.00000000 0.00000000 0.00000000 
10 Min expt. error for non-significant LOF (95%) 0.15242700 0.1524270 0.16577700 0.16577700 0.15409500 

 

The GFA algorithm makes use of a population of many models rather than generating a single model. The models 
are scored using Friedman's “lack of fit” (LOF) measure as the evaluation function [15, 21] as well as other 
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validation parameters as shown in Table 4 above. Based on statistical significance, model 1 is selected as the 
optimization model for predicting the octanol-air partition coefficient of POPs because it has the least LOF score 
and minimum experimental error, highest R-squared, adjusted R-squared, Cross validated R-squared and F-value. 

Table 5: Detailed definition of descriptors 
 

S/n Descriptor symbol Definition 
1 nssCH2 Count of atom-type E-State: -CH2- 
2 MOMI-R Radius of gyration  
3 WPSA-3 Total molecular surface area / 1000 
4 RotBFrac Fraction of rotatable bonds, excluding terminal bonds 
5 maxssCH2 Maximum atom-type E-State: -CH2- 
6 SsCl Sum of atom-type E-State: -Cl 
7 VP-3 Valence path, order 3 
8 HybRatio Fraction of sp3 carbons to sp2 carbons 

 

Plot of actual pKOA against predicted pKOA 
 

 

 
Figure 1 

 
Residual plot of model 1 
 

. 
 

Figure 2 
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Table 6a: External validation of Model 1 
 

Test set ActualpKOA VP-3 nssCH2 SsCl WPSA-3 MOMI-R predicted pKOA Residual 
C2 7.32 2.610648 0 1.901844 5.943832 5.441 7.45828 -0.13828 
C5 7.8 3.129618 0 2.977422 5.486272 5.783878 8.08937 -0.28937 
C8 8.64 3.938833 0 4.114013 5.359172 5.999731 8.95839 -0.3184 
C10 8 4.298418 0 5.081722 7.208836 6.549077 9.78216 -1.78216 
C13 9.52 4.379821 0 6.088428 6.043044 6.690994 9.66810 -0.1481 
C16 11.31 5.998251 0 8.460297 5.754481 7.137775 11.3921 -0.08214 
C19 9.02 4.179329 0 5.262004 5.907394 5.768978 8.77335 0.246647 
C22 11.26 5.888305 0 8.761588 5.204924 6.599153 10.6412 0.618789 
C28 9.86 4.25195 1 3.828033 6.317323 7.003276 9.98942 -0.12942 
C32 9.73 5.246311 0 5.874562 7.504219 6.672433 10.8508 -1.1208 
C35 8.88 3.412108 0 0 7.636583 5.285526 1.52498 -0.62499 

 
Table 6b: External validation of Model 1 

 
Cpds Yobs(test) Ym(traing) Ypred(test) (Yobs-Ypred)2 (Yobs-Ym)2 

C2 7.32 8.66 7.45828 0.019121 1.7956 
C5 7.8 8.66 8.089373 0.083737 0.7396 
C8 8.64 8.66 8.958396 0.101376 0.0004 
C10 8 8.66 9.782161 3.176098 0.4356 
C13 9.52 8.66 9.668104 0.021935 0.7396 
C16 11.31 8.66 11.39214 0.006748 7.0225 
C19 9.02 8.66 8.773353 0.060835 0.1296 
C22 11.26 8.66 10.64121 0.382899 6.76 
C28 9.86 8.66 9.989424 0.016751 1.44 
C32 9.73 8.66 10.8508 1.25619 1.1449 
C35 8.88 8.66 8.889819 9.64E-05 0.0484 

    ∑ = 5.125786 ∑=20.2562 

 
The predicted R2 value for the test set compounds was calculated using the formulae in equation 5. 

Thus, R2
pred. = 1 – (

).��)+,-
�..�)-� ) = 0.7471 

 
Table 7: Golbraikh and Tropsha external validation parameters for model 1 

 
s/n parameter value 
1 r2 0.7532 
2 r’02 0.7524 
3 r02 0.6924 
4 k 1.027 
5 K’  0.9694 

 
Based on the parameters above; 

r2 – r0
2 / r2 = 

..+)/��..-0�1
..+)�� = 0.081 

r2 – r’0
2 / r2  =

..+)/��..+)�1
..+)�� = 0.001 
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Table 8: Comparison of Yobs (training) and Ypred.(training) of model 1 
 

Cpd. Yobs. Ypred. residual 
C1 6.82000000 6.851482 -0.14349800 
C3 7.85000000 7.502049 0.03331700 
C4 7.93000000 8.085627 0.06259100 
C6 7.94000000 8.160617 0.04847500 
C7 8.22000000 8.061669 -0.15624100 
C9 8.90000000 8.880193 -0.25105100 
C11 9.80000000 9.563873 -0.38314700 
C12 9.76000000 10.02188 0.41793900 
C14 8.89000000 8.78033 0.04602700 
C15 10.12000000 10.54484 -0.08025300 
C17 8.27000000 8.379892 -0.14597800 
C18 8.27000000 8.357791 -0.08451000 
C20 9.76000000 9.498029 0.06949700 
C21 10.51000000 10.43915 0.26338100 
C23 5.20000000 5.241971 -0.06403100 
C24 5.94000000 5.88138 -0.05385800 
C25 7.62000000 7.757617 -0.05937800 
C26 8.36000000 8.290443 -0.02746400 
C27 9.11000000 9.142405 -0.13035200 
C29 10.61000000 10.6239 -0.01335500 
C30 11.35000000 11.19715 0.03552000 
C31 12.10000000 12.05141 0.23615000 
C33 6.79000000 6.877068 0.05682700 
C34 7.57000000 7.584947 -0.29004100 
C36 8.80000000 8.71428 0.26850600 

 
Table 9: Variance Inflation Factor (VIF) Statistic for the Descriptors in Model 1 

 
S/n Dependent Variable R2 VIF 
1 VP-3 0.86 7.14 
2 nssCH2 0.49 1.96 
3 sscl 0.82 5.56 
4 WPSA-3 0.28 1.39 
5 Momi-R 0.81 5.26 

 
3.3 Euclidean based applicability domain for the optimum QSAR model 
The theoretical region in the chemical space constructed byboth the model descriptors and modeled response is 
termed applicability domain (AD). It plays a crucial role for assessing the uncertainty in the prediction of a 
particular compound based on how similar it is to the compounds employed to construct the QSAR model. The 
concept of AD is very important to QSAR studies considering the fact that it is unfeasible to predict the whole 
universe of compounds using a single QSAR model [22]. Euclidean AD is based on distance scores calculated by 
the Euclideandistance norms. At first, normalized mean distance score for training set compounds are calculated and 
these values ranges from 0 to 1(0=least diverse, 1=most diverse training set compound). Then normalized mean 
distance score for test set are calculated, and those test compounds with score outside 0 to 1 range are said to be 
outside the applicability domain [23].  The Euclidean based applicability domain for the test and trainig set 
compounds of the optimum QSAR model (model 1) is shown in tables 9a and 9b respectively. 
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Table 10a: Euclidean based applicability domain for test set compounds 
 

Cpd. Distance Score Mean Distance Normalized Mean Distance 
C1 87.55 3.502 0.181 
C3 78.052 3.122 0.046 
C4 76.039 3.042 0.018 
C6 84.09 3.364 0.132 
C7 89.416 3.577 0.207 
C9 143.46 5.738 0.973 
C11 80.735 3.229 0.084 
C12 148.808 5.952 1 
C14 80.902 3.236 0.087 
C15 99.375 3.975 0.348 
C17 117.87 4.715 0.611 
C18 87.55 3.502 0.181 

 
Table 10b: Euclidean based applicability domain for training set compounds 

 
Cpd. Distance Score Mean Distance Normalized Mean Distance 
C1 101.776 4.071 0.382 
C3 94.672 3.787 0.282 
C4 84.131 3.365 0.132 
C6 80.655 3.226 0.083 
C7 98.031 3.921 0.329 
C9 84.848 3.394 0.142 
C11 78.907 3.156 0.058 
C12 92.282 3.691 0.248 
C14 96.151 3.846 0.303 
C15 111.823 4.473 0.525 
C17 74.794 2.992 0 
C18 76.277 3.051 0.021 
C20 96.148 3.846 0.303 
C21 145.347 5.814 1 
C23 114.941 4.598 0.569 
C24 132.129 5.285 0.813 
C25 102.551 4.102 0.393 
C26 88.143 3.526 0.189 
C27 79.64 3.186 0.069 
C29 88.504 3.54 0.194 
C30 99.909 3.996 0.356 
C31 122.89 4.916 0.682 
C33 118.914 4.757 0.625 
C34 116.109 4.644 0.586 
C36 114.436 4.577 0.562 

 
Tables 3, 4, and 5 give the GFA derived QSAR models for predicting the octanol-air partition coefficient of some 
selected POPs, validation parameters of the models, and detailed definition of the descriptors used in the models 
respectively. Based on the validation parameters, the penta-parametric model (model 1) was selected as the 
optimization model for predicting the octanol-air partition coefficient of POPs. The Genetic Function Algorithm 
derived QSAR model is good agreement with the threshold shown in Table 2 as R2 = 0.9889, R2adj = 0.9860, Q2 = 
0.9827,R2

pred. = 0.7471 and the Golbraikh and Tropsha criteria (Table 7) are also met. The predictability of model 
1is evidenced by the low residual values observed in Table 8 which gives the comparison of observed and 
predictedoctanol-air partition coefficient of the molecules. Also, the plot of predicted pKOAagainst observed 
pKOAshown in Figure 1 indicates that the model is well trained and it predicts well the pKOA of the compounds. 
Furthermore, the plot of observed pKOA versus residual pKOA (Figure 2) indicates that there was no systemic error in 
model development as the propagation of residuals was observed on both sides of zero [24]. 
 
The multi-collinearity between the descriptors used in the model was detected by calculating their variation inflation 
factors (VIF), which can be calculated as follows: 
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VIF = 1 1 − ��5            (4) 
 
Where R2 is the correlation coefficient of the multiple regression between the variables within the model. If VIF 
equals to 1, then no inter-correlation exists for each variable; if VIF falls into the range of 1–5, the related model is 
acceptable; and if VIF is larger than 10, the related model is unstable and a recheck is necessary [25, 26]. The 
corresponding VIF values of the five descriptors used in the optimization model (Model 1) are presented in Table 9. 
From this table, all the variables have VIF values of less than 10 indicating that the obtained model has statistical 
significance, and the descriptors were found to be reasonably orthogonal. 
 
The applicability domain of the optimization model (model 1) was also defined for test set (Table 10a) and training 
set (Table 10b) compounds using Euclidean based approach. The results showed that all the compounds fall within 
the applicability domain of the model as their normalized mean distance score fall within the range of 0 and 1. 
 
The result of the QSAR modelling indicated the predominance of the descriptors; nssCH2 (Count of atom-type E-
State: -CH2-), MOMI-R (Radius of gyration), WPSA-3 (Total molecular surface area / 1000), SsCl (Sum of atom-
type E-State: -Cl), VP-3 (Valence path, order 3). 
 
SsCl and nssCH2 are atom-type E-state indices proposed as molecular descriptors encoding topological and 
electronic information related to particular atom types in the molecule [27]. The negative correlation of the 
descriptors; SsCl and nssCH2 in the model implies that the KOA varies inversely with the values of these descriptors. 
Radius of gyration (MOMI-R) on the other hand is a size descriptor based on the distribution of atomic masses in a 
molecule. It is a measure of molecular compactness for long-chain molecules and, specifically, small values are 
obtained when most of the atoms are close to the center of mass [28].VP-3 (valence path, order 3) accounts for the 
presence of the heteroatom as well as double and triple bonds present in the compound [29] while WPSA-3 
describes the surface area of the molecule. The positive coefficient of the descriptors; VP-3, WPSA-3 and MOMI-
Rindicated that the magnitude of the KOA of these compounds increases with increase in the values of these 
descriptors. 
 

CONCLUSION 
 

The generated QSAR models, performed to explore the structural requirements controlling the observed octanol-air 
partition coefficient of POPs, hinted that this property is predominantly affected bynssCH2 (Count of atom-type E-
State: -CH2-), MOMI-R (Radius of gyration), WPSA-3 (Total molecular surface area / 1000), SsCl (Sum of atom-
type E-State: -Cl), VP-3 (Valence path, order 3). The robustness and applicability of QSAR equation has been 
established by internal and external validation techniques. It is envisaged that this validated process of risk 
assessment provided by this model will help evaluate the impact of both existing chemicals (POPs) and those which 
will be produced in the future. 
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