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ABSTRACT

Quantitative Sructure Property Relationship (QSPR) analysis was applied to 36 Persistent Organic Pollutants
(POPs) using a combination of 0D, 1D, 2D and 3D molecular descriptors obtained by Semi empirical (pm?3)
method. The computed descriptors were correlated with the log of their experimental octanol-air partition
coefficient (pKoa).Genetic function approximation was used to derive the most statistically significant QSPR model
as a calibration model for predicting the pKoa of this class of molecules. Among the obtained QSPR models, the
most statistically significant one was a five parameter linear equation with the squared correlation coefficient R?
value of 0.9889, adjusted squared correlation coefficient R Zadj value of 0.9860 and Leave one out (LOO) cross
validation coefficient (Q%) value of 0.9827. An external set was used for confirming the predictive power of the
model (R Zpred, = 0.7471). It is envisaged that the QSPR results identified in this study will offer an efficient and cost
effective method of assessing the fate of POPs in the environment.

Keywords: POPs, GFA, QSAR, Descriptors, octanol-air pamitcoefficient.

INTRODUCTION

Persistent Organic Pollutants (POPs) are chemigbstances that persist in the environment, bioactaie
through the food web, and pose a risk of causinge effects to human health and the environnWith the
evidence of long-range transport of these substatoceegions where they have never been used duped and
the consequent threats they pose to the environofethie whole globe, the international community mow, at
several occasions, called for urgent global actiongduce and eliminate releases of these chesnizatause they
are in a nutshell: Highly toxic to humans and thwienment, Persistent in the environment, regjstiro-
degradation, Taken up and bio-accumulated in teif@ksand aquatic ecosystems Capable of long-ratges
boundary atmospheric transport and depositionatane these substances affect plant and animalapewent and
growth. They can cause reduced reproductive sucdddh defects, behavioral changes and death. Tdrey
suspected human carcinogens and disrupt the imamohendocrine systems [1].

The fate and behavior of persistent organic pahitgPOPS) in the environment has attracted sutiestacientific
and political interest, arising from concern ovantan exposure to these chemicals and their disgovgrrimeval
environments far from source regions. The abilitg@rtain POPs to undergo long range atmosphexitsport has
resulted in the negotiation of protocols (e.g. UBEE UNEP) for their reduction or elimination, taltee the risks
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to regional and global environments. These chemieaé released into the environment through a rasfge
processes which include; release during the pramtugirocess, release during use or accidental selearing
combustion processes [2].

The fate of these chemicals in the environment;revibey are released, the physical processes gogetimeir
transport, where they accumulate need to be gingoitant consideration. This requires absorptioerdrmous
spectrum of information and ultirnately lead to ralsdof chemical fate [3, 4]. One of these imporiafdarmation is
the octanol-air partition coefficient,d.

The transport of chernical through the globe i®mftompared to chromatography [5] where the ahdésmobile
phase and terrestrial lipids represent the statyophase. The sinks for lipophilic chemicals thoslide waxy
cuticle on vegetation, the organic matter in sod #e oily filmwhich coats atmospheric particulatatter. Because
octanol is a replacement for organic or lipid plsaghe octanol-air partition coefficient §K)is recognized as a
good descriptor for atmosphere-terrestrial lipidleange [6, 7].

However, experimental determination l§§y is costly and time consuming, and sometimes oésttiby lack of
sufficiently pure chemicals [8] hampering effectamed transparent risk assessment process to thkated) and the
regulator. To achieve the sustainable use of chemithey is a needfor validated process of risessment (in this
case, bio-accumulations of POPs) through which are evaluate the impact of both existing chemicals those
which will be produced in the future [2]. This hascessitated the development of a predictive Quaine-
structure property relationship model fog0f POPs.

The aim of this work is to build a rational and dlictive Quantitative-structure property relationsimodel for
octanol-air partition coefficient & at room temperature of POPs.

MATERIALS AND METHODS

Hansch’'s approach [9] was used in the QSPR stuttiethis approach, structural properties of computsuare
calculated in terms of different physicochemicaigmaeters and these parameters were correlatedbiaikbgical
activity through equation using regression analysis

Data collection

The chemical structures and experimental octamopartition coefficient in logarithmic scale @) of some
persistent organic pollutant minimum were takemfildgerature [8, 4, 10]. The notation, structurel &y, value for
each member of the data set are presented in Tdidéow.

TABLE I: Experimental K o4 values of the selected POPs

S/n Molecular Structure LogKoa

C1 O 6.82
i
<l
c2 O O 7.34

c3 O 7.85
<l
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= T~ S
33 | | 6.79
/ /
c34 “ 7.57
i “ )
c36 ‘ 8.80

Geometry optimization

Geometry optimization has to do with the technithat tries to find the conformation of minimum egeof the
molecule.The molecular structure of each compounthé data set was drawn with Chemdraw ultra VEhG
saved ascdx file. Calculations were performed using the ecalar modeling program SPARTAN’14 V1.1.0 on
H.P 650 computer system (Intel Pentium), 2.43GHx@ssor, 4GB ram size on Microsoft windows 7 Ultena
operating system.

The computational method invoked for calculatingmetries in the present caseis termed a “cascatleodieby

Hehre [11] because of its use of molecular meclsasiprecursor for the more accurate semi-empinehods.
The attractiveness of the method lies in its abilit make calculations less computationally taxirygrelegating
initial geometry calculationsto less computatiopdltitensive (and possibly more inaccurate) methddsthis

method, the initial calculations, which may beialized in a geometry far from that of equilibriuare performed
by those methods requiring less computational gffdlowing equilibrium geometries to be “honedan” in later

stages, leaving the refining to the more accunatecamputationally intensive theories.

The molecules were first pre-optimized with the ewollar mechanics procedure included in Spartan’141X0
software and the resulting geometries were furthBned by means of Semi-empirical (pm3). The lawesergy
structure was used for each molecule to calcuetie physicochemical properties (molecular desorjpt

Descriptor calculation

The molecular descriptor is the final result ofogit and mathematical procedure which transformsmibal
information encoded within a symbolic representataf a molecule into a useful humber or the resfilsome
standardized experiment [1R&del descriptor tool kit was used to calculate the descriptorstief optimized
molecules.

Training and Test set

The training set encompasses the molecules useddel development while the test set is made umalecules
not used in building the model, they are used @édkternal validation of the model. The data setkig, of the
selected POPs was split into training and testAgdeast 70% of the data set was used as traggb@nd the rest as
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test set in line with the optimum splitting patterhdata set in QSAR study [13]. Consequently,db&a set of 36
complexes was split into 25 training set and 11 $e& The training set was used to generate thadehwhile the

test set was used to evaluate its prediction egslifThe selection of training and test set wasdming the Random
Selection method.

Learning process

In this process, the correlation between the oleskKp, of the selected POPs and the calculated descriptass
obtained via correlation analysis using the Micfosacel package in Microsoft office 2013. Pearsarorrelation
matrix was used as a qualitative model, in ordesdtect the suitable descriptors for regressiorlyaisa The
selected descriptors were subjected to regressialysas with the experimentally determined octaaiolpartition
coefficienton logarithmic scale (p}£) as the dependent variable and the selected gewsrias the independent
variables using Genetic function approximation (GFAethod in Material studio software. To develog th
optimization model, 25 samples were included in titmning set. The number of descriptors in thergsgion
equation was set to 5, and Population and Genaratére set to 1,000 and 5,000, respectively. Thehsu of top
equations returned was 5. Mutation probability Wak, and the smoothing parameter was 0.5. The madete
scored based on Friedman’s LOF.

It is a distinctive characteristic of GFA thatiuld create a population of models rather thaimgles model. GFA
algorithm, selecting the basis functions genetygcatleveloped better models than those made usiegwie
regression methods. And then, the models were atgirsing the “lack of fit” (LOF), which was meast using a
slight variation of the original Friedman formuga that best model received the best fitness $tdie

In Materials Studio, LOF is measured using a sligintiation of the original Friedman formula [15]hf revised
formula is:

LOF = SSE /{ — %)2 (1)

Where SSE is the sum of squares of errors, c iadh#&er of terms in the model, other than the @omnderm, d is a
user-defined smoothing parameter, p is the totatber of descriptors contained in all model terngmd@ring the
constant term) and M is the number of samplesertrifining set. Unlike the commonly used least segieneasure,
the LOF measure cannot always be reduced by addang terms to the regression model. While the ream tmay
reduce the SSE, it also increases the values ol pawhich tends to increase the LOF score. Tadding a new
term may reduce the SSE, but actually increases@kescore. By limiting the tendency to simply addre terms,
the LOF measure resists over fitting better than SISE measure (Materials Studio 5.0 Manual).Theifsignt
regression is given by F-test, and the higher #iae; the better the model [16].

Model Validation

A reliable validation procedure is required in arde confirm the existence of chance correlatioasweell as
ascertaining the fitting ability, stability, relidiby and predictive ability of the developed maoslelThe validation
parameters of the optimum model were compared tvélstandards shown in table 2 below.

Table 2 Validation metrics for a generally acceptable QSARnodel

S/n | Metric symbol Name Threshold

1 Coefficient of determination >0.6

2 Q LOO cross validation coefficient <0.5

3 R%ored External test set’s coefficient of determina >0.€

4 R?-Q° Difference between?and C? <0.7

5 F value Variation ratio High

6 F—r/r Golbraikh and Tropsha condition <0.1

7 P—rlr Golbraikh and Tropsha condition <0.1

8 K and K Intercept 0.85kork<1.15

Source: Roy et al.; Ravinchandranet al.; Golbraikh and Tropsha [18, 19, 20]

2.6.1 Internal validation parameters
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R? (the square of the correlation coefficient):describes the fraction of the total variationikttred to the model.
The closer the value of?Rs to 1.0, the better the regression equationaplthe Y variable. Ris the most
commonly used internal validation indicator anéxpressed as follows:
RZ=1- S (Yobs—Ypred)? @)
Y (Yobs—Ytraining)?

Where, Yobs; Ypred ;Ytraining are the experimemadperty, the predicted property and the mean éxgertal
property of the samples in the training set, retpely .

Adjusted R? (R%g): R® value varies directly with the increase in numbéregressors i.e. descriptors, thug, R
cannot be a useful measure for the goodness ofIrfiadeherefore, R is adjusted for the number of explanatory

variables in the model. The adjustetidefined as:
n-1 _ (n—-1)R%-pP

Rzadj =1-(1-R%) n-p-1 n-p+1 (3)
Where p = number of independent variables in thdeho

(Brandon-Vaughn and Orr, 2015).

Q? (Leave one out cross validation coefficient)The LOO cross validated coefficient3Q@s given by;
Q=1 _Z(rp-v)? @

L(y-ym)?

Where Yp and Y represent the predicted and obsemesidity respectively of the training set angithe mean
activity value of the training set [17].

Variance Ratio (F): this parameter is used to judge the overall sigaifce of the regression coefficient. It is the
ratio of regression mean square to deviations reqaare defined as:

S (Ycal-ym)?
- 14
F= /Z(Yobs—Ycal)2 (5)

N-P-1

WhereY,s stands for the observed response value, whilg isthe model-derived calculated response apid the
average of the observed response values.The F hakiéwo degrees of freedom: p,N\o — 1. The computed F
value ofa model should be significant at p < 0A%igh F value is an indication that the regressioafficients are
significant [18].

Standard error of estimate (s):Low standard error of estimate is an indicatioraajood model. It is defined as
follows:
_ (Yobs—Ycal)?
S =V N-P-1
(6)
Its degree of freedom is N-p-1 [18].

2.6.2 Metrics for external validation
External validation of QSAR model is necessary tdeo to ensure the predictability and applicabiliy the
developed QSAR model for the prediction of untestedecules.

Predictive R? (R® eq):R? pred is termed the predictive’ Bf a development model and is an important paremet
that is used to test the external predictive abifta QSAR model. The predicted Ralue is calculated as follows;

=1 S[Yobs(test)-Ypred(test)]?

2
R
pred. Y[Yobs(test)-Ym(training)]?

@)

Y pred(iesty @NA Yops(esyy iNdicate predicted and observed activity valuespeetively of the test set compounds and
Y m(raining) iNdicates mean activity value of the training [4€4.
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Golbraikh and Tropsha’s criteria: according to Golbraikh and Tropsha, models areidensd satisfactory, if all
the following conditions are met.

(@) Ries> 0.5

(b) P—r?/ P<0.1
(€) P=ro2/P<0.1
(d) 0.85<k<1.15
(e) 0.85<k <1.15

Parameters®rand p ? are the squared correlation coefficients betwéendbserved and predicted values of the
compounds with and without intercept, respectivélye parameter£bears the same meaning but uses the reversed
axes. K is the intercept of the plot of the obsdraad predicted values of the compounds antthéreversed axes
intercept [20].

RESULTS AND DISCUSSION

Table 3: GFA derived QSAR models for the ka of the selected POPs

Model Equation Definition of terms
pKOA= 1.2010§7752 *X99 X99 : CW : VP-3
-0.421961296 * X148 X148 : ET : nssCH2
- 0.259510614 * X316 : .

1. X316 : LG : SsClI
+0.070956322 * X781 %781 : ADJ - WPSA-3

*

S ool TXB10 | X810: AEM : MOMI-R
PKOA= 1.201087752 * X99 o
- 0.259510614 * X316 ;gié CI‘_’é\gF;gI
- 5.485496838 * X639 LG .
2. + 0070956322 * X781 X639 : XX : HybRatio
+0.931435567 * X810 X781 : ADJ : WPSA-3
] X810 : AEM : MOMI-R
PKOA = 0.971655315 * X99
- 7.881157260 * X639
3. | -4.131893428 * X745
+1.029703269 * X810
+0.085465727
PKOA = 0.971655315 * X99
- 0.606242867 * X148
4. | -4131893428 * X745
+1.029703269 * X810
+0.085465727
PKOA = 1.210319413 * X99 woe . or
- 0.259275231 * X316 ;gi’é ,(:I‘_’é',\gzgl
5. | -0.388137940 " X504 X504 : SM : maxssCH2

| +0.069010864 * X781 ong . ol s
+0.924947849 * X810 oo WSS
- 0.658474833 - AEM:

X99:CW : VP-3

X639 : XX : HybRatio
X745 : ABZ : RotBtFrac
X810 : AEM : MOMI-R

X99:CW : VP-3

X148 : ET : nssCH2
X745 : ABZ : RotBtFrac
X810 : AEM : MOMI-R

Table 4: Validation Parameters of the models

S/n Parameters Model 1 Model 3 model Model 4 Néde
1 | Friedman LOF 0.0657320p 0.0657320 0.06622P00 6Q2ZWO0| 0.0671780
2 | R-squared 0.98891300 0.98891B30 0.98633500 0.88633 0.98866900
3 | Adjusted R-squared 0.98599500 0.9859950 0.9835(20.98360200/ 0.98568700
4 | Cross validated R-squared 0.98272800 0.982728®8004600| 0.98014600 0.98235100
5 Significant Regression Yes Yes Yes Yes Yes
6 Significance-of-regression F-value 338.929759 .@3B76| 360.90597% 360.905975 331.549784
7 | Critical SOR F-value (95%) 2.76172000 2.7617200.91@76100| 2.91676100 2.76172000
8 Replicate points 0 0 0 0 0
9 | Computed experimental error 0.00000000 0.000000000000000] 0.00000000 0.000000p0
10 | Min expt. error for non-significant LOF (95%) 16242700| 0.152427 0.16577700 0.16577700 0.15409500

The GFA algorithm makes use of a population of marogdels rather than generating a single model.mbdels
are scored using Friedman's “lack of fit” (LOF) reege as the evaluation function [15, 21] as wellotser
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validation parameters as shown in Table 4 abovee®8an statistical significance, model 1 is sebtce the
optimization model for predicting the octanol-aartition coefficient of POPs because it has thetlé®F score

and minimum experimental error, highest R-squaadflisted R-squared, Cross validated R-squared aatLE.
Table 5: Detailed definition of descriptors

S/n | Descriptor symbo Definition

1 nssCH2 Count of atom-type E-State: -CH2-

2 MOMI-R Radius of gyration

3 WPSA-3 Total molecular surface area / 1000

4 RotBFrac Fraction of rotatable bonds, excluderginal bonds
5 maxssCH2 Maximum atom-type E-State: -CH2-

6 SsClI Sum of atom-type E-State: -Cl

7 VP-3 Valence path, order 3

8 HybRatio Fraction of sp3 carbons to sp2 carbons

Plot of actual pKoa against predicted pKoa
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Table 6a: External validation of Model 1

Test set| ActualpKa VP-3 nssCH2 SsCl WPSA- MOMI-R  predictedgK| Residual
Cc2 7.32 2.610648 0 1.901844 5.943832 5.441 7.45828 -0.13828
C5 7.8 3.12961§ 0 2.977422 5.4862[/12 5.783878 870893| -0.28937
C8 8.64 3.938833 0 4.114013 5.359172 5.999¥31 8®58 | -0.3184
C1c 8 4.29841. 0 5.08172: | 7.20883! | 6.54907 9.7821¢ -1.7821¢
C13 9.52 4.379821 0 6.088428 6.043044 6.690094 8806 -0.1481
C16 11.31 5.998251 0 8.460297 5.754481 7.137[75  3921. -0.08214
C19 9.02 4.179324 0 5.262004 5.907394 5.768D978 3857 0.246647
C22 11.26 5.888304 0 8.761588 5.204924 6.599153  6410. 0.618789
C28 9.86 4.25195 1 3.828033 6.317323 7.003276 9289 | -0.12942
C32 9.73 5.246311 0 5.874562 7.504219 6.672433 508.8 -1.1208
C35 8.88 3.412109 0 0 7.636583 5.285526 1.52498 62409
Table 6b: External validation of Model 1
Cpds| Yobs(test) Ym(traing) Ypred(test) (Yobs-Ypred)(Yobs-Ym}
C2 7.32 8.66 7.45828 0.019121 1.7956
C5 7.8 8.66 8.089373 0.083737 0.7396
C8 8.64 8.66 8.958396 0.101376 0.0004
C1C 8 8.6€ 9.78216: 3.17609 0.435¢
C13 9.52 8.66 9.668104 0.021935 0.7396
C16 11.31 8.66 11.39214 0.006748 7.0225
C19 9.02 8.66 8.773353 0.060835 0.1296
C22 11.26 8.66 10.64121 0.382899 6.76
Cc28 9.86 8.66 9.989424 0.016751 144
C3z 9.7t 8.6€ 10.850¢ 1.2561¢ 1.144¢
C35 8.88 8.66 8.889819 9.64E-05 0.0484
> =5.125786 | >=20.2562

The predicted Rvalue for the test set compounds was calculatiedytise formulae in equation 5.

1-E27%) = 0.7471

Thus, ngrEd- = 20.2562

Table 7: Golbraikh and Tropsha external validationparameters for model 1

s/n | paramete value
1 0.7532
2 ro 0.7524
3 [ 0.6924
4 k 1.027
5 K 0.9694

Based on the parameters above;
0.7532-0.6924

-1/ = =0.081
0.7521

rz_ r02/ r2 _0.7532-0.7524 _ 0.001
0.7521
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Table 8: Comparison of Yobs (training) and Ypred.(taining) of model 1

Cpd. Yobs. Ypred. residual

C1 6.82000000| 6.85148p  -0.143498p0
C3 7.8500000 | 7.50204' | 0.0333170

C4 7.9300000 | 8.08562 | 0.0625910

C6 7.94000000| 8.16061F  0.04847500
c7 8.22000000| 8.06166p -0.156241p0
Cc9 8.90000000| 8.88019B8 -0.251051p0
C11 | 9.80000000| 9.563873 -0.38314700
Clz | 9.7600000 | 10.0218! | 0.4179390

C14 | 8.8900000 | 8.7803! | 0.0460270
C15 | 10.1200000Q 10.54484 -0.08025300
C17 | 8.27000000| 8.379892 -0.14597800
C18 | 8.27000000| 8.357791 -0.08451000
C20 | 9.76000000| 9.498029  0.069497(0
C21 | 10.5100000 | 10.4391! | 0.2633810

C2Z | 5.2000000 | 5.24197. | -0.0640310
C24 | 5.94000000| 5.88138 -0.053858D0
C25 | 7.62000000| 7.757617 -0.05937800
C26 | 8.36000000| 8.29044B -0.02746400
C27 | 9.11000000] 9.142405 -0.13035200
C2¢ | 10.6100000 | 10.623¢ | -0.0133550
C30 | 11.3500000Q 11.19715 0.035520p0
C31 | 12.1000000Q 12.05141 0.236150p0
C33 | 6.79000000| 6.877068 0.056827(0
C34 | 7.57000000| 7.58494f7 -0.29004100
C36 | 8.80000000| 8.7142%§ 0.268506(0

Table 9: Variance Inflation Factor (VIF) Statistic for the Descriptors in Model 1

S/r | Dependent Variab | R | VIF
1 VP-3 0.8€ | 7.1«
2 nssCH2 049 1.9
3 | sscl 0.82| 5.56
4 WPSA-3 0.28| 1.39
5 Momi-R 0.81| 5.26

3.3 Euclidean based applicability domain for the ofpmum QSAR model

The theoretical region in the chemical space caotd byboth the model descriptors and modeledorespis
termed applicability domain (AD). It plays a cruciale for assessing the uncertainty in the préalictof a
particular compound based on how similar it istte tompounds employed to construct the QSAR mdded.
concept of AD is very important to QSAR studies sidaring the fact that it is unfeasible to prediat whole
universe of compounds using a single QSAR modéd]. [R@clidean AD is based on distance scores caledlby
the Euclideandistance norms. At first, normalizeshmdistance score for training set compoundsacelated and
these values ranges from 0 to 1(0O=least diversmost diverse training set compound). Then normdlizean
distance score for test set are calculated, amnsbthest compounds with score outside 0 to 1 rangesad to be
outside the applicability domain [23]. The Euchdebased applicability domain for the test andnigaiset
compounds of the optimum QSAR model (model 1) saghin tables 9a and 9b respectively.
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Table 10a: Euclidean based applicability domain fotest set compounds

Cpd. | Distance Scor¢ Mean Distance  Normalized Mdstabce
C1 87.55 3.502 0.181
C3 78.052 3.122 0.046
C4 76.039 3.042 0.018
Ccé 84.09 3.364 0.132
c7 89.416 3.577 0.207
Cc9 143.46 5.738 0.973
C11 80.735 3.229 0.084
C12 148.808 5.952 1
Cl14 80.902 3.236 0.087
C15 99.375 3.975 0.348
C17 117.87 4.715 0.611
C18 87.55 3.502 0.181

Table 10b: Euclidean based applicability domain fottraining set compounds

Cpd. | Distance Scor¢ Mean Distance  Normalized Mdstabce

C1 101.776 4.071 0.382
C3 94.672 3.787 0.282
C4 84.131 3.365 0.132
C6 80.655 3.226 0.083
C7 98.031 3.921 0.329
C9 84.848 3.394 0.142
Ci1 78.907 3.156 0.058
Ci12 92.282 3.691 0.248
Cl4 96.151 3.846 0.303
C15 111.823 4.473 0.525
C17 74.794 2.992 0

C18 76.277 3.051 0.021
C20 96.148 3.846 0.303
C21 145.347 5.814 1

C23 114.941 4.598 0.569
C24 132.129 5.285 0.813
C25 102.551 4.102 0.393
C26 88.143 3.526 0.189
Cc27 79.64 3.186 0.069
C29 88.504 3.54 0.194
C30 99.909 3.996 0.356
C31 122.89 4.916 0.682
C33 118.914 4.757 0.625
C34 116.10¢ 4.64¢ 0.58¢

C36 114.436 4.577 0.562

Tables 3, 4, and 5 give the GFA derived QSAR mottelipredicting the octanol-air partition coeffinteof some
selected POPs, validation parameters of the modat$,detailed definition of the descriptors usedhi& models
respectively. Based on the validation parametdrs, genta-parametric model (model 1) was selectethas
optimization model for predicting the octanol-a&rfition coefficient of POPs. The Genetic Functiigorithm
derived QSAR model is good agreement with the tiolesshown in Table 2 as’R: 0.9889, R,;= 0.9860, @ =
0.9827,F§pred = 0.7471 and the Golbraikh and Tropsha critefiab(e 7) are also met. The predictability of model
lis evidenced by the low residual values observed’able 8 which gives the comparison of observed an
predictedoctanol-air partition coefficient of theolecules. Also, the plot of predicted gpkagainst observed
pKoashown in Figure 1 indicates that the model is wielined and it predicts well the pK of the compounds.
Furthermore, the plot of observed gkversus residual pia (Figure 2) indicates that there was no systenriar én
model development as the propagation of residuatsabserved on both sides of zero [24].

The multi-collinearity between the descriptors usethe model was detected by calculating theiratem inflation

factors (VIF), which can be calculated as follows:
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VIE=1/ s (4)

Where R is the correlation coefficient of the multiple regsion between the variables within the modeVIF
equals to 1, then no inter-correlation exists fachevariable; if VIF falls into the range of 1-Betrelated model is
acceptable; and if VIF is larger than 10, the edlaodel is unstable and a recheck is necessary2B5 The
corresponding VIF values of the five descriptoredis the optimization model (Model 1) are presénteTable 9.
From this table, all the variables have VIF valoésess than 10 indicating that the obtained mduel statistical
significance, and the descriptors were found togasonably orthogonal.

The applicability domain of the optimization mod@eiodel 1) was also defined for test set (Table Hbal) training
set (Table 10b) compounds using Euclidean basedagip. The results showed that all the compounitisviin
the applicability domain of the model as their nalimed mean distance score fall within the range and 1.

The result of the QSAR modelling indicated the prathance of the descriptors; nssCH2 (Count of atype-E-
State: -CH2-), MOMI-R (Radius of gyration), WPSABotal molecular surface area / 1000), SsCI (Suratofn-
type E-State: -Cl), VP-3 (Valence path, order 3).

SsCl and nssCH2 are atom-type E-state indices pemp@s molecular descriptors encoding topological a
electronic information related to particular atogpds in the molecule [27]. The negative correlatafnthe
descriptors; SsCl and nssCH2 in the model imphas the kK, varies inversely with the values of these descripto
Radius of gyration (MOMI-R) on the other hand isize descriptor based on the distribution of atomésses in a
molecule. It is a measure of molecular compactfiessong-chain molecules and, specifically, smallues are
obtained when most of the atoms are close to theecef mass [28].VP-3 (valence path, order 3) ant®for the
presence of the heteroatom as well as double apl& toonds present in the compound [29] while WPSA-
describes the surface area of the molecule. Thigiyeosoefficient of the descriptors; VP-3, WPSAaB8d MOMI-
Rindicated that the magnitude of theKof these compounds increases with increase invéthges of these
descriptors.

CONCLUSION

The generated QSAR models, performed to exploretituetural requirements controlling the observethiol-air
partition coefficient of POPs, hinted that this peay is predominantly affected bynssCH2 (Counatoim-type E-
State: -CH2-), MOMI-R (Radius of gyration), WPSABotal molecular surface area / 1000), SsCI (Suratofn-
type E-State: -Cl), VP-3 (Valence path, order 3)eTrobustness and applicability of QSAR equatios been
established by internal and external validationhbégues. It is envisaged that this validated precesb risk
assessment provided by this model will help evaldla¢ impact of both existing chemicals (POPs)tande which
will be produced in the future.
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