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ABSTRACT 
 
Describing species variation and delineation are fundamental to biology and much debate exists surrounding on 
what applied approach is appropriate. Species delineation now used separate elaborate datasets to quantify 
independently and test species criteria. However, the complexity of the speciation process has ushered the need to 
infuse studies with new tools and techniques capable of aiding in species delineation. Herewith, an integrative 
approach using Correlation Analysis based on Distances was used to circumvent the traditional morphological 
analysis and provide a novel means of describing closely related complex species (sibling species) diversity using 
the genus Neurothemis as a case study. Correlation Analysis based on distances proved to be useful by looking into 
the relative contribution of each trait considered to species/group divergence and distinctiveness. Results 
demonstrate noted differences between female and male morphs. On one hand, females exhibited female-limited 
polymorphism which was suggested to have possibly evolved throughout sexual selection. On the other hand, 
polymorphism being limited to males mostly plays a role in male-male competition for access to females. 
Differences were attributed mainly by external morphological wing characters such as the fore- wing triangle, hind 
wing triangle, the radial planate, fore- wing subtriangle, number of anal loop ‘sole cells’, hind wing supertriangle, 
number of cross veins in the cubital space of the hind wing (behind the median space), wing pigmentation, shape of 
synthorax, shape of epiproct and shape of left and right cerci. Here, the utilization of a number of characters for 
species delineation proved to be effective in understanding variation and the nature of the Neurothemis species 
found in Iligan City. 
____________________________________________________________________________________________ 
 

INTRODUCTION 
 

It has been a subject of tremendous debates about the applied approach to describing diversity. Wherein, one must 
vividly distinguish the nature of these two scientific tasks: delineating and classifying species and the most 
fundamental question of taxonomy is not how to identify species, but rather how to delineate them. Species 
delineation is said to be fundamental to the discovery of life’s diversity because through it one can determine and 
recognize whether or not different specimens are members of the same cohesive lineage. Careful consideration of 
species delimitation is required to support crucial decisions based on accurate species identification [1,2]. Erroneous 
species boundaries or diversity estimates may often lead to incorrect answers to such questions as to how 
phylogenetic trees must be reconstructed rigorously and analyzed critically because these are first steps toward 
discussing broader questions.  Proponents from different disciplines raised issues as to what characters should be 
used to delineate organisms. It is evident that no single individual is “typical” of the characters of the population and 
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the continuous variation among the members of a population manifests itself most conspicuously in linear 
measurements and proportions. Mean values, variances and coefficients for each trait are characteristic of each 
population and species [3,4,5,1]. Hence, each character may show a different degree of variability within a single 
population. Similarly, there are different degrees of variability among related species. Thus, the question on what 
characters to use or what characters would best delineate species. 
 
Apparently, the uses of morphological characters of adult specimens among others have become frequent, but they 
are supplemented already to an increasing extent by other characters [6,7]. This is particularly true for “difficult” 
species, genera, and families in which the evidence from morphology has been equivocal or contradictory. The 
increasing utilization of new characters is justified because (1) morphology reflects only part of the genotype and 
may not reflect genetic relationship accurately, (2) morphology in certain taxa does not supply sufficient characters, 
and (3) any character may be misleading because of special adaptations. Thus, the introduction of new kinds of 
systematic/taxonomic characters has been one feature of the so called new systematics. However, these characters 
do not displace the use of traditional morphological characters [5]. Meanwhile, the emergence of Geometric 
Morphometrics (GM), also known as the statistical analysis of shapes, somehow, became a breakthrough because it 
is a collaboration of different fields (Image Analysis, Biology, Geometry, Statistics) based on Cartesian landmark 
coordinates. The method works by separating shape from overall size, position, and orientation of the landmark 
configurations, thus the resulting Procrustes shape coordinates can be used for statistical analysis. The powerful 
visualization tools and the typically large amount of shape variables gave rise to a specific exploratory style of 
analysis, allowing the identification and quantification of previously unknown shape features [8,9]. Herewith, these 
systems of identification and delineation should not be seen as competing against each other or exclusive, but rather 
as approaches to the same goal which simply differ in the characters they consider. One system or the other may be 
favoured for particular cases depending on the results it provides, but they also can be used concurrently. It is very 
likely that what will work best for identification will depend on the particular species being considered, even among 
closely related species.  
 
Thereby, an integrative approach to taxonomy should now become general. Wherein, it became necessary because 
the complexity of species biology requires that species boundaries be studied from multiple, complementary 
perspectives [10]. Also, the level of confidence in species supported by different kinds of data is much higher than 
for species supported by only one kind. A way to collate all available characters is important. Such approach could 
help solve problematic species complexes also addressing cryptic speciation occurring in some odonate species. But, 
it is inevitable that discordant characters may create a problem. To circumvent the issue, the utilization of a technical 
approach is necessary which has the capacity to collate all available datasets thus, demonstrating the process of 
integrative taxonomy for studies on species delineation and variations. 
 
In Odonata an enormous amount of variation is prevalent both in their life histories and their activities [11]. 
Odonates as model organisms are of particular interest due to the number of characters that can relatively be 
considered. The wings alone are a rich source of taxonomic characters. Here, a clear understanding of the 
relationships among the Odonata can have far reaching implications in Odonate biology and over the past 45 years, 
there have been many studies attempting to resolve the relationships within the Odonata [12,13,14,15,16,17] based 
on morphological characters. In particular, the genus Neurothemis is said to be a difficult genus having exhibited 
notable variations even within sibling species. This had befuddled many taxonomists where species can be very 
similar in terms of appearance, behaviour and other notable characteristics [18,19]. There are numerous species of 
Libellulid dragonflies under the genus Neurothemis where most species are red in color and among these are the two 
(2) most popular species found in Iligan City: Neurothemis terminata, Ris 1911 and Neurothemis ramburii, Kaup 
and Brauer 1866.  These two species were considered problematic because they showed similarities in terms of color 
and patterns which often lead to confusion and difficulty in identification process. Males of the species are very 
similar except for a few traits and the female usually exhibits female-limited polymorphism [20,21,22,19]. Although 
there are many morphological studies that had attempted to use different characters to resolve the relationships of 
the Odonates based on wing venation [12,14,16], morphology of the flight apparatus and copulatory structures [15], 
none have been able to come to robust conclusions. Recently there were also several studies conducted on Odonates 
(Libellulidae) using cytotaxonomical method [23], evaluation based on morphological and physiochemical 
characters [24], characters based on external genitalia [25], and a study on the relationships of Anisoptera based on 
mitochondrial 16S rRNA gene sequences [26]. However, there is a dearth of studies demonstrating the process of 
integrative taxonomy for studies on species delineation and variations. In this study, a new procedure which is a 
combination of already available analytical methods: Squared Euclidean distance, geometric morphometics: 
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landmark and outline based approaches and correlation analysis based on distances were utilized to look into 
relationships of species belonging to one controversial and difficult genus. Independent of any form there be should 
a dependable and fast method for species delineation and incorporating characters from other disciplines will 
increase reliability. Herewith, morphological inference is enhanced by providing sets of data directly applicable to a 
taxonomic problem [10,27]. 
 
A major hurdle would be a corroboration of species boundaries via independent lines of evidence for diagnosing 
species [28], and it is in this perspective that motivates the investigation of a integrative approach for species 
delimitation. This study is a simulation that was used to evaluate the accuracy of an integrative approach for 
delineation and understanding species variation on the genus Neurothemis. Linnaeus’s dictum: “It is the genus that 
gives the characters, and not the characters that make the genus.” The soundest genera are based on an overall 
appreciation and weighing of various considerations [29,30]. The species included in a genus usually have many 
features in common, and recognition of a higher taxon is generally based on the presence of a correlated character 
complex, but as Darwin (1859) said “The importance, of classification of characters, mainly depends on their being 
correlated with other several characters of more or less importance, the value indeed of an aggregate of characters is 
very evident in natural history,” [31, 5].  
 

MATERIALS AND METHODS 
 

1. Specimen Collection, Preservation and Identification 
The specimens were collected from different areas in Iligan City. A total of 12 morphotypes (8 female morphs and 4 
male morphs) were collected belonging to two Neurothemis species. This was done by using sweep nets for catching 
samples and appropriate preservation techniques were applied. The specimens were then placed in envelopes for a 
while to void any intestinal contents then, were immersed briefly in 95% acetone. Acetone extracts fat and water 
from specimens, and suited for better drying and color preservation. The abdomens were straightened and the legs 
were arranged in place for each specimen, such that the genitalia were not obscured on the second abdominal 
segments of males. Specimens were then placed in labeled envelopes and submerged in acetone (in a tightly closed 
plastic container) for 16 – 24 hours inside air-tight specimen containers. Afterwards, the specimens were removed 
from the acetone and placed in the open for a few days, by then the acetone had completely evaporated. Specimens 
were then taken out of the glassine envelopes and stored permanently in clear envelopes made of cellophane, mylar 
or polypropylene. The identification and collection data were typed on 3" x 5" cards, which were inserted in the 
envelopes behind the specimen. The envelopes were then stored like a card file in cabinets [32]. Identification 
process was done using available taxonomic keys, field guides, monographs and consultation with odonate experts 
under International Dragonfly Fund [19]. 
 
2. Morphological Analysis and Phenetic Analysis 
Thirty (30) individuals per morphotype (morph) were examined based on their morphology for a set of characters. 
Adult morphological and biological characters were selected for coding. A character is the ‘presence’ versus 
‘absence’ of something (taxon, species with a particular morphological structure) or it could be a plain description of 
the external morphology of organisms [33,34,35]. External morphological data were utilized in order to prepare the 
character state table and the character matrix. A total of 57 characters were used. All of the observed characters were 
assigned values of 0, 1,2,3 or 4… and these values were used to conduct the phenetic analysis using Statistical 
Package Social Science (SPSS) for IBM, version 19 (Table 1 and 2). The characteristics of the species were then 
equally weighted and treated unordered for quantification, objectification and efficient classification. The names of 
the species were substituted with the Operational Taxonomic Unit (OTU) code numbers in order to be suitable for 
computer processing. The raw data obtained were then organized in order to measure the similarity between the 
OTUs. The Squared Euclidean Distance (Distance (X × Y) = Σ(Xi – Yi) 2) algorithm was employed to calculate the 
dissimilarity coefficient and then categorized the ones with the lowest coefficient and connected them to the one 
with the higher coefficient. Resulting squared distances values were later loaded to CORIANDIS software for data 
analysis. A total of 57 characters were used inclusive of qualitative and quantitative characters [36,37].  
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Table 1. Morphological Character Selection and Coding 
 

CHARACTERS 
1. Compound eye: (0) contact; (1) apart 
2. Triangle direction of forewing and hindwing: (0) different; (1) the same 
3. Corpora incerta of compound eye: (0) curved; (1) smooth 
4. Lobe on abdomen’s second node: (0) absent; (1) present 
5. Metallic luster on thorax: (0) absent; (1) present 
6. Anal angle of hindwing: (0) projected; (1) round 
7. Abdomen length: (0) over 40 mm; (1) under 40mm 
8. Hindwing length: (0) over 40 mm; (1) under 40mm 
9. Abdomen's third node: (0) not; (1) slender 
10. Shape of abdomen’s first, second, and third nodes: (0) not; (1) club–shaped 
11. Superior appendage, compared with inferior appendage:(0) not; (1) longer 
12. Back side of superior appendage: (0) bending; (1) straight 
13. Pterostigma: (0) not; (1) black 
14. Yellow line on front head: (0) none; (1) 1; (2) 2 
15. Two black spot patterns on frons: (0) absent; (1) present 
16. A band on the brim of the upper frons: (0) absent; (1) straight; (2) T–shaped 
17. A pattern on the whole abdomen: (0) absent; (1) present 
18. Membranule: (0) small; (1) big 
19. Brindle on wing: (0) absent; (1) present 
20. Basal part of hindwing: (0) not; (1) transparent 
21. Macrotrichium on prothorax anal margin: (0) dense; (1) thin 
22. White powder on abdomen: (0) absent; (1) present 
23. The end of the wing: (0) not; (1) colored 
24.  Lobe on the abdomen’s tenth node: (0) absent; (1) present 
25. Abdomen: (0) not; (1) wide and flat 
26. Wide yellow band on the abdomen's second, third, and fourth nodes: (0) absent; (1) present 
27. Both sides of the abdomen's node: (0) not; (1) saw–toothed 
28. Two yellow bands on the medithorax: (0) absent; (1) present 
29.  Vein: (0) not; (1) black 
30. Costa: (0) not; (1) black 
31. Leg: (0) not; (1) black 
32. Cercus: (0) black; (1) brown; (2) white 
33. Cercus length: (0) long; (1) short 
34. Brace vein: (0) absent; (1) present 
35. Antenodal crossvein: (0) not; (1) in line 
36. Right Fore- wing triangle: (0) one cell; (1) two cells; (2) three cells; (3) four cells; (4) five cells; (5) six cells; (6) seven cells; (7) eight cells; (8) 
nine  cells; (9) ten cells; (10) eleven cells; (11) twelve cells; (12) thirteen cells 
37. Left Fore- wing triangle: (0) one cell; (1) two cells; (2) three cells; (3) four cells; (4) five cells; (5) six cells;  (6) seven cells; (7) eight cells; (8) 
nine  cells; (9) ten cells; (10) eleven cells; (11) twelve cells; (12) thirteen cells 
38. Right hindwing triangle:(0) one cell; (1)two cells; (2) three cells; (3) four cells 
39. Left hindwing triangle:(0) one cell; (1)two cells; (2) three cells; (3) four cells 
40. Right wing Radial planate: (0) one cell wide; (1)  combination of one and two cells wide; (2) two cells wide;(3) combination of two and three cells 
wide. The radial planate is outlined by two longitudinal veins. This character has been used as a key character at the generic level. 
41. Left wing Radial planate: (0) one cell wide; (1)  combination of one and two cells wide; (2) two cells wide;(3) combination of two and three cells 
wide. 
42. Right fore- wing subtriangle: (0) one cell; (1) two cells; (2) three cells; (3) four cells; (4) five cells; (5) six cells; (6) seven cells; (7) eight cells;(8) 
twelve to twenty cells. 
43. Left fore- wing subtriangle: (0) one cell; (1) two cells; (2) three cells; (3) four cells; (4) five cells; (5) six cells; (6) seven cells; (7) eight cells;(8) 
twelve to twenty cells. 
44. Anal loop shape: (0) indistinct or absent (‘boot’ shape not present); (1) boot-shaped with straight midrib; (2) boot-shaped with midrib ankled at 
“ankle.” Fraser (1957) viewed an indistinct anal loop as an ancestral state for Libellulidae. 
45. Right wing Anal loop ‘sole’ cells: (0) three cells; (1) four cells; (2) five cells; (3) six cells; (4) seven cells; (5) eight cells; (6) nine cells; (7) eleven 
cells; (8) twelve to twenty 
46. Left wing Anal loop ‘sole’ cells: (0) three cells; (1) four cells; (2) five cells; (3) six cells; (4) seven cells; (5) eight cells; (6) nine cells; (7) eleven 
cells; (8) twelve to twenty 
47. Radial planate: (0) absent or weakly defined; (1) strongly defined 
48. Medial planate: (0) absent or weakly defined; (1) strongly defined. Most libellulids have obvious medial planates, but some species do not have.
49. Hind wing subtriangle: (0) absent; (1) present 
50. Right hind wing supertriangle: (0) one cell; (1) two cells; (2) three cells 
51. Left hind wing supertriangle: (0) one cell; (1) two cells; (2) three cells 
52. Dominant body and wing color or pigmentation: (0) deep red; (1) light golden brown; (2) darker shade of brown; (3) brownish but with 
transparent hues 
53. Fore- wing antenodal cross veins (ACVs): (0) continuous through subcosta; (1) some skewed below subcosta making crossveins appear 
discontinuous 
54. Hind wing ACVs: (0) continuous through subcosta; (1) some skewed below subcosta making crossveins appear discontinuous.  The skewed 
state of the ACVs in either the fore- wing or hind wing is rare in libellulids, but when present, is quite visible as crossveins that are not collinear 
above and below the subcosta. 
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55. Hind wing nodus position: (0) equidistant between wing base and pterostigma; (1) closer to pterostigma than wing base; (2) closer to wing 
base than pterostigma. This character appears to be influenced by the wing size and lifestyle of the taxon.  
56. Basal area of the hindwing: (0) unexpanded with wing width nearly equal throughout; (1) wing base expanded and widest part of wing giving 
hindwing a triangular shape. 
57. Number of cross vein in the cubital space of the hind wing (behind the median space): (0) one; (1) more than one 

* Adapted from Kim, et al., 2009; Pilgrim and Von Dohlen, 2008 
 

Table 2. The Character data matrix for phenetic analysis 

 
 
3. Geometric Morphometrics (GM) 
a. General Procrustes Analysis (GPA) 
Geometric morphometrics (GM), as a statistical analysis of shape has been employed to clarify the relationships of 
closely related taxa [38,8,39,40,41,42,43,44,45,46,47]. This technique makes use of x, y coordinates (‘landmarks’) 
to quantify shape and allows both comparison of shape and investigation as to what landmarks caused such 
variations [48]. The coordinates obtained were compared between specimens after removing the effects of size, 
position, and orientation, allowing evaluation of differences in shape [49]. The specific body parts used in the study 
were carefully removed with the aid of forceps and digital images were obtained using HP2400 flatbed scanner at 
1200 resolution (dpi) for the wings and a digital microscope 20-400x magnification or stereomicroscope for the 
other body parts (synthorax) then landmarks (Figure 1 and 2; Table 3) were established on the digitized images. 
Landmarks are defined as specific points on a biological structure that can be located according to some rules and 
can be considered homologous across a sample of the same kind of structure [50,51]. The first order landmarks (type 
I), being located at fixed points while the other landmarks (type II) were located at points of inflexion. In the 
original sense of the term “landmarks,” are supposed to be located at homologous sites on the organism, however, it 
has been found useful to expand this concept so as to encompass “pseudolandmarks” which are located at mid-
points of rounding of the outline of the organism [52].  Landmarks were captured using the computer program 
tpsDig, version 2.10 (copyright© 2006, F. James Rohlf, Ecology & Evolution, SUNY at Stony Brook; available 
from the State University of New York [SUNY] Stony Brook. Generalized orthogonal least squares, Procrustes 
average configuration of landmarks were computed using the Generalized Procrustes Analysis (GPA) 
superimposition method [53,54]. This method was used because of low bias [55,56] as such it eliminated non-shape 
variation in configurations of landmarks by superimposing landmark configurations using least squares estimates for 
translation and rotation parameters. Unit centroid size was used as the alignment-scaling method. This procedure 
yields a consensus configuration, the central trend of an observed sample of landmarks, which is similar to a 
multidimensional average [57,8]. This procedure was used to extract the shape of the left fore-wing (LFW), right 
fore-wing (RFW), left hind wing (LHW), right hind wing (RHW) and synthorax (SYN). Procrustes fitted x and y 
coordinates defining the shape for each anatomical structure under study were then loaded to CORIANDIS software 
for further analysis.  
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Table 3A. Description of assigned landmarks on both left and right fore- wing of Neurothemis dragonflies respectively 
 

Landmark 
# 

Descriptive location Landmark 
# 

Descriptive location 

1 Proximal End of the Costa (C) 16 Distal End of the Radius (R) 
2 Proximal End of the Subcosta (Sc) 17 Origin of the Radial Branches (R2 and R3) 
3 Proximal End of the Radius + Media (R+M) 18 Anterior End of the 2nd Crossvein between  Radial Branches 

(R2 and R3) 
4 Proximal End of the Cubitus (Cu) 19 Posterior End of the 2nd Crossvein between Radial Branches (R2 

and R3); Origin of 
Radial Supplement (Rspl) 

5 Proximal End of the 1st Anal Vein (A/IA) 20 Proximal End of Radial Supplement (Rspl) 
6 Basal End of the Arculus (Arc) 21 Distal End of Radial Supplement 
7 Proximal End of the Anterior Margin of the 

Triangle (T) 
22 Distal End of Anterior Media (MA) 

8 Distal End of the Anterior Margin of the 
Triangle (T) 

23 Distal End of Radial Branch (R4) 

9 Midpoint of the Triangle (T) 24 Distal End of Intercalary Radial Vein (IR2) 
10 Midpoint of the Triangle (T) 25 Distal End of Radial Branch (R2) 
11 Posterior End of the Triangle (T) 26 Antero-lateral and Distal End of the Pterostigma 
12 Origin of Radial Branches (R2 and R4) 27 Postero-lateral and Distal End of the Pterostigma 
13 Origin of Intercalary Vein (IR3) 28 Antero-lateral and Proximal End of the 

Pterostigma 
14 Nodus (N) 29 Postero-lateral and Proximal End of the Pterostigma 
15 Distal End of the Subcosta (Sc)   

 
Table 3B. Description of assigned landmarks on both left and right hindwing  of Neurothemis dragonflies  respectively 

 
Landmark # Descriptive location Landmark # Descriptive location 

1 Proximal End of the Costa (C) 19 Origin of the Intercalary Radial Vein (IR3) 
2 Proximal End of the Subcosta (Sc) 20 Nodus (n) 
3 Proximal End of the Media (m)  21 Distal End of the Subcosta (Sc) 
4 Proximal End of the Cubitus (Cu) 22 Distal End of the Radius (R)  
5 Posterior End of the Anal Crossing (Ac)  23 Origin of the Radial Branches (R2 and R3) 
6 Basal End of the Arculus (Arc) 24 Distal End of Radial Supplement 
7 Posterior and Proximal Vertex of the 

Hypertrigone (ht)  
25 Posterior End of the 2nd Crossvein between 

Radial Branches (R2 and R3); Origin of Radial 
Supplement (Rspl) 

8 Anterior and Proximal Vertex of the Subtrigone 
(t) 

26 Distal End of the Anterior Media (AM) 

9 Anterior and Proximal Vertex of the 
Hypertrigone (ht) 

27 Distal End of the Radial Branch (R4) 

10 Posterior and Proximal Vertex of the Subtrigone 
(t) 

28 Distal End of the Intercalary Radial Vein (IR3) 

11 (Cu2 + A2)  29 Distal End of the Radial Branch (R3) 
12 Distal Vertex of the Subtrigone (t) 30 Distal End of Intercalary Radial Vein (IR2) 
13 Anal Supplement (Aspl) 31 Distal End of Radial Branch (R2) 
14 Basal end of the Anal Vein (A3)  32 Antero-lateral and Distal end of the Pterostigma 
15 Second Branch of Cubital Vein (Cu2) 33 Postero- lateral and Distal end of the Pterostigma 
16 Distal End of the Cubito-anal Vein (Cu2) 34 Antero-lateral and Proximal end of the 

Pterostigma 
17 Distal End of the Posterior Cubital Vein 35 Postero-lateral and Proximal End of  the 

Pterostigma 
18 Origin of the Radial Branch (R4)    
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Figure 1. Landmarks for left and right fore- and hind wing of Neurothemis Dragonflies (Anisoptera) 
 

 
 

Figure 2. Landmarks on lateral view of the synthorax of Odonata :Anisoptera, Neurothemis dragonfly ;Hs-humeral suture, Ls1-1st lateral 
suture, and Ls2-2nd lateral suture 

 
Table 4. Description of assigned landmarks on the synthorax of Neurothemis 

 
Landmark # Descriptive location 

1 Anterior proximal end of the humeral suture 
2 Posterior distal end of the humeral suture 
3 Postero-lateral distal end of the humeral suture 
4 Posterior distal end of the first lateral suture 
5 Anterior proximal end of the first lateral suture 
6 Antero-lateral proximal end of the 1st lateral suture 
7 Sub antero-lateral proximal end of the 1st lateral suture 
8 Sub anterior proximal end of the 1st lateral suture 
9 Anterior proximal end of the 2nd lateral suture 
10 Posterior distal end of the 1st lateral suture 
11 Posterior distal end of the 2nd lateral suture 
12 Sub posterior distal end of the 2nd lateral suture 
13 Sub postero-lateral distal end of the 2nd lateral suture 
14 
15 
16 
17 

Postero-lateral distal end of the 2nd lateral suture 
Sub posterior distal end of the 2nd lateral suture 
Sub postero-lateral proximal end of the 2nd lateral suture 
Sub posterior proximal end of the 2nd lateral suture 

 
b. Elliptic Fourier Analysis (EFA) - Shape Analysis 
The upper appendages (cerci) and lower appendages (epiproct) were removed and placed under a Leica Dissecting 
Microscope for careful examination (figure 3). Image acquisition was done using a Canon Digital Camera 
Powershot A810 5x, 16 megapixels. The full colored images of male appendages were converted to 24-bitmap type, 
binary (black & white color) images. Then outlines of male appendages were digitized using the software package 
SHAPE version 1.3 [58] for examination of shape variation and were recorded as chain codes [59]. Herewith, the 
objects of interests were distinguished via segmentation technique through a “threshold procedure” where a 
parameter called the brightness threshold is manually chosen from brightness histogram and applied. Undesirable 
marks also termed as “noise” were consequently eliminated by erosion-dilation filter process. After noise reduction, 
the closed contour shape of the appendages was extracted via edge detection and the contours were stored in the 
form of chain codes [60]. Chain coding technique was used which relied on a contour representation to code shape 
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information. This method tracks the shape of the appendages and represents each movement by a chain code symbol 
ranging from 0-7. The set of possible movement depends on the type of contour representation, a pixel based 
contour representation were used in this study. Normalized Elliptic Fourier Descriptors (EFD) obtained from the 
chaincodes were calculated using Elliptic Fourier transformation as suggested by Kuhl and Giardina (1982) [61]. 
Normalization of data obtained from chain codes used the first harmonic ellipse as a basis which corresponds to the 
first Fourier approximation and utilized the 20 harmonics number to be calculated as suggested by Iwata and Ukai 
(2002) [58]. Principal component scores defining the shape of the left and right upper appendages (cerci) and lower 
appendage (epiproct) were obtained and loaded to CORIANDIS software for further analysis [62]. 
 

 
 

Figure 3. Neurothemis male appendages: upper (cerci) and lower (epiproct) 
 
4. Correlation Analysis based on Distances.  
Correlation based on distances implements a method for a broad spectrum of data types, including 2-D landmark 
and distance data. It allows a study of associations among multivariate datasets. The main core of this method is that 
it allows comparison via correlation analyses of matrices of distances among specimens or groups. In this case, 
landmark and non-landmark data were loaded to the software and utilized. This provides a modern approach and 
vividly look into associations among groups respectively, based on the relative contribution and distribution of each 
trait (each dataset) to species diversity, distinctiveness and similarities in terms of congruence among traits [63,64] 
by considering multiple set of characters. In other words, it is a measure of how much of the information in the 
datasets/squared distances was used in defining the weights used to compute the compromise [65]. The resulting 
graph contained plots or clusters (stars), each corresponding to a different species group. Congruence and 
multivariate covariance measure how similar the interspecific locations of traits/datasets (represented as colored 
points) in space. If two traits tend to be consistently different or similar between pairs of species, they were said to 
be (positively) congruent, and show in the plot as a general tendency to cluster together within species. If two traits 
were inconsistent in how similar they were between species, results show low congruence and covariance values. 
Trait variance or disparity was proportional to the area occupied by datasets.  
 

RESULTS AND DISCUSSION 
 

This study utilized a technical approach which has the capacity to collate all available datasets thus, demonstrating 
the process of integrative taxonomy for studies on species delineation and variations on two cosmopolitan 
Neurothemis species having different morphotypes through Correlation Analysis based on Distances 
(CORIANDIS). Neurothemis species, also known as “red dragonflies,” are often seen in drains, ditches, ponds, 
shallow streams and not so densely shaded areas in Iligan City. The two cosmopolitan species often seen and 
confused are: Neurothemis terminata, Ris 1911 and Neurothemis ramburii, Kaup and Brauer 1866. This study shed 
light on the nature and variation of Neurothemis species after much dilemma. Correlation Analysis based on 
Distances (CORIANDIS) has the capacity to integrate all available character data sets, investigate, visualize 
underlying relationships and sources of variability among the groups in terms of relative contribution of traits and 
congruence among characters [63,64]. Figure 4a shows the resulting clusters that represent the location of the female 
morphs (m1, m2, m3…) on the ‘compromise’ space reflecting overall similarity based on six (6) combined character 
sets. This procedure allows both looking into similarities among specimens/groups, and interpreting such similarities 
in terms of congruence among traits where, N. ram m4 and N. ter m1; N. ram m3, N. ram m5, N. ram m6 and N. 
ram m7 were clustered together. While, N.ram m1 and N.ram m2 departs considerably from other populations, 
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although this seems to be largely a function of the external morphological wing characters such as fore- wing 
triangle, hind wing triangle, the radial planate, fore- wing subtriangle, number of anal loop ‘sole cells’, hind wing 
supertriangle and number of cross veins in the cubital space of the hind wing (behind the median space), wing 
pigmentation and the shape of the synthorax. This is expressed as the magnitude of the vectors emanating from the 
centroid in the compromise space.  Figure 4b is a disparity plot for female Neurothemis morphs showing vividly the 
relative contribution of the combined character sets to species’ divergence. Here, the total height of the stacked-bar 
chart equals the total or standardized sum of squared distances for each character set considered to the origin (a 
measure of variance or disparity). This shows how much each population differs from the rest by interpreting such 
differences in terms of individual character [65].  Trait variance or disparity was proportional to the area occupied 
by datasets. Herewith, noted differences have been observed between female morphs. It was apparent that wing 
characters and shape of synthorax play a great role in differentiating one morphotype to the other. This is further 
evidence to the homoplasious nature of the wing.  Also, the life habits of these odonates may be selecting for 
convergent changes such that the nature of the wings and shape of synthorax may be reflective of their lifestyle and 
their habitats [66,67]. In addition, it was also evident that females of these species exhibit female-limited 
polymorphism (wing and body coloration) [20,21,22,19]. This is suggested to have evolved throughout sexual 
selection. On one hand, when polymorphism is limited to males, it mostly plays a role in male-male competition for 
access to females [68,69,70]. On the other hand, female-limited polymorphisms are important for regulating costly 
intersexual interactions [71,68,72]. Moreover, figure 5a shows the resulting clusters and respective location on the 
‘compromise’ space for male Neurothemis morphs based on nine (9) combined character sets and figure 5b 
(disparity plot) shows vividly the relative contribution of the combined character sets to species’ divergence. 
Additional 3 characters (shape of epiproct, left and right cerci) were included for the male populations since these 
characters are of importance especially to investigation of possible species divergence and differentiation. The 
terminal abdominal appendages on the males are called claspers. The claspers are formed by a pair of upper 
appendages, called cerci, and a single lower appendage, an epiproct. These two are designed to lock into species-
specific grooves and notches on the female in order to secure the two together for mating. With this, Inter-specific 
sexual activity is normally discouraged by the lock-and-key aspect of the attachment process. For the females, the 
terminal appendages consist of a pair of cerci, which have little or no function [73]. Herewith, noted differences 
have been observed between the male morphs which seems to be a function of the external morphological wing 
characters such as the fore- wing triangle, hind wing triangle, the radial planate, fore- wing subtriangle, number of 
anal loop ‘sole cells’, hind wing supertriangle, number of cross veins in the cubital space of the hind wing (behind 
the median space), shape of synthorax, shape of epiproct, shape of left and right cerci. It is noted though, that 
significant difference was observed between groups especially in terms of the lower appendage (epiproct). With this, 
it is hypothesized that this feature proved to be an important factor in the lock-and-key aspect and specificity of the 
attachment process dealing with copulation in Neurothemis species. Thus, draws the line between groups leading to 
possible reproductive isolation. For the upper appendages (cerci), which function somewhat as hooks to hold the 
female in tandem prior to mating, significant difference was notable between species and not between morphs 
belonging to same species. However, by looking on the overall contribution of all character sets, close association 
was notable between N. ram morph 1 and 2 and between N. ter morph 1 and 2.  
 
Hence, it is hypothesized that differences between groups may be reflective of their lifestyle and their habitats 
[66,67]. However, current and strong sexual selection may promote adaptive population divergence in these species 
and that premating sexual isolation may have arisen as a correlated response to divergent sexual selection. The 
results may highlight the importance of sexual selection, rather than natural selection in the adaptive radiation of 
odonates, and supports previous suggestions that divergent sexual selection promotes speciation in this group. 
Accordingly, several meta-analysis on selection studies especially in natural populations have been published and 
one conclusion from these studies indicate that the strength of selection on phenotypic traits found to be strong in 
natural populations although the definition of weak and strong is still subject to discussion [74,75,76]. Here, the 
utilization of a number of character data sets and an integrative approach for species delineation proved to be 
effective in understanding variation and the nature of the Neurothemis species found in Iligan City. 
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Figure 4. Species/ groups original distance matrices and their compromise projected onto compromise space (a); Disparity plot showing 
squared distances to centroid for each character set (b) for female Neurothemis morphs 
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Figure 5. Species/ groups original distance matrices and their compromise projected onto compromise space (a); Disparity plot showing 
squared distances to centroid for each character set (b) for male Neurothemis morphs 

 
CONCLUSION 

 
This study is a simulation that was used to evaluate the accuracy of an integrative approach for species delineation 
and understanding variation on the genus Neurothemis. Among the characters that best contribute to species 
divergence/ distinctiveness were external morphological wing characters such as the fore- wing triangle, hind wing 
triangle, the radial planate, fore- wing subtriangle, number of anal loop ‘sole cells’, hind wing supertriangle, number 
of cross veins in the cubital space of the hind wing (behind the median space), wing pigmentation, shape of 
synthorax, shape of epiproct and shape of left and right cerci.  In this study, the utilization of a number of characters 
for species delineation proved to be effective in understanding variation and the nature of the Neurothemis species 
found in Iligan City. The results of this study indicate that indeed the value and utilization of an aggregate of 



Sharon Rose M. Tabugo et al                                                Euro J Zool Res, 2014, 3 (1):19-31 

______________________________________________________________________________ 

30 
Scholars Research Library 

characters is important and evident in natural history. Herewith, morphological inference is enhanced by providing 
sets of data directly applicable to the taxonomic problem. 
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