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ABSTRACT

The Fourier transform is simply the frequency spectrum of a signal. The Fourier Transform is optimum when
dealing with boundary value problems. The Méellin Transform has special importance in scale representation of
signal because it is scale invariant transform. For control systems engineering, stability of electrical networks etc.,
Mellin Transformis used. It is also useful for solving the Cauchy differential equation and Wave equation with the
help of Matlab. When these two transforms are combined the resultant Fourier-Finite Mellin Transform may be
applied in image processing, pattern recognition, speech processing, radar signal analysis etc. Some partial
differential equation may be solved by using Fourier-Finite Mellin Transform. This paper discusses an extension of
Fourier-Finite Méllin Transform in the distributional generalized sense. The Twelve testing function space are
defined by using Gelfand-Shilove technique. In this paper the results on countable union space are also described.

Keywords: Fourier transform, Finite Mellin transform, Fouriemite Mellin transform, generalized function.

INTRODUCTION

The classical theory of integral transformations haen extended to generalized functions by maapgleeBut the
main credit goes to Zemanian [ 9] who gave the feayhe extension and called it the theory of gatieed integral
transformations. Generalized function has beenieludn certain larger spaces by Gelfand, Shilo\,[Z8manian
[8]. Fourier transforms is used for deriving prottigbdensities of sums and differences of randamables is well
known. The Fourier transform transforms a functimm its more easily understood time or spatial dominto a
function existing in frequency space. The esseand,beauty, of the transform is that it demonstralenost any
function can be broken up into a sum of known p#dainusoidal functions, each of which is charazesl by its
amplitude and frequency.

The Mellin Transform has special importance in scapresentation of signal because it is scaleisviatransform.
The scale-invariance property of the Mellin tramsfocombined with the translation invariance propest the
Fourier transform provide a way of representingnhaigfree of Doppler distortion. It is useful forsmdution of
certain types of classical boundary and initialugaproblems. Mellin transform is also useful foe gummation of
the series and solution of the Cauchy’s linearedéhtial equation.

The Fourier-Finite Mellin transform may be appliedimage processing, pattern recognition, speecdegssing,
radar signal analysis etc., and some partial difféal equation may be solved by using FouriertEiMellin
Transform. The Fourier-Finite Mellin Transform mhg used for image recognition and processing, mewem
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detection [2] and derivation of densities for algeb combinations of random variables and many mofre
Fourier-Mellin Transform should provide a trulynisdation, rotation and scale-invariant measurendfreage.

In the present paper, Fourier-Finite Mellin tramefds extended in the distributional sense. Tha plathe paper is
as follows. The definitions are given in sectionr2section 3, testing function spaces are deflne@Gelfand-Shilov
technique. Section 4 describes the Distributionethésalized Fourier-Finite Mellin TransformiN(,T). In section 5.
Some results on countable union spaces are prohedniotations and terminologies are as per Zemd8iah

2. Definitions
The Fourier Transform with parameteof f (t) is denoted b¥[f(t)] = F(s) and is given by

FIF®©1=F(s) = [ e " f(t)dt (2.1)
Whenever this integral is exists, for parameter 0.

The Finite-Mellin integral transform with parameteof f (x) is denoted by, [f (x)] = F (p) and is given by

a?P

MyF (Ol = [ (G — 2071) f()dx p

Whenever this integral is exists for> 0 is the parameter.
The Fourier-Finite Mellin Transform is defined as,

FMp{f(t,x)} = F(s,p) = J, [} f(t, x)K(t, x)dtdx, (2.3)

a?P
op+L

WhereK (t, x) = e St(

— xp—l)

3. Various Testing Function Spaces
3.1. The spac#My o

It is given by
Sup
FMppeo ={0: 9 € Ex/Vbeiqi(t:x) =0 < t < oo [th2, ()xT* ' DEDIG(8, x)| < CqA¥K**}  (3.1)
0<x<a

foreachk,l,q =0,1,2, ... ... ....
x+b
Where 4, .(x) = {x”

Where the constantsand(,, depend on the testing functign

3.2.The SpaceFMﬁb,C
Sup
This space is given b‘ny_b'C ={p: ¢ € E,/0p cpoquP(t,X) =0 < t < o0 |tFA, ()xT* DDl P (L, x)| <
0<x<a
CBU%}  (3.2)

The constants,, andB depend orp.

3.3. The Spaca“MﬁbJC’a

This space is formed by combining the condition&)(@nd (3.2)~"Mf'b'c_a ={p:¢ EE,./PpcyqP(t,x) =
Sup
0<t<oo|thd, (X)xT*DIDI(t, x)|
0<x<a
< CA*K B! '} (3.3)

3.4. The SpaceFMy .,
It is given by
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Sup
FMppey = {b: b € Ev/pcpqid(t,X) = 0 <t <o |[th2(0)x T D{DI(t,x)| < CieAlq?}  (3.4)
0<x<a
3.5. The Space FMy cqm
It is defined as
Sup
FMf,b,c,a,m ={p:p € E+/Vb,c,k,q,l¢(t' X)=0<t<oo |tk/1b'c(x)xq+1Dng¢(t, x)|
0<x<a
< Cgs(m + 8)kkka) (3.5)

For anyd > 0, wherem is the constant depending on the functfon

3.6. The SpaceFMF}

It is defined as,
p Sup
n
FMpy, ={$:¢ €E,/0pcpqiP(t,Xx) =0<t<oo0 |t* 25, () x T 1DIDL (8, %) |
0<x<a
< Crge(n + e)’l’B} (3.6)

For any e > 0, where n is the constant depending on the funcfion

3.7. The SpaceFM®"

f.bcam
This space is defined by combining (3.5) and (3.6)
Sup
FMfB.Z.c,a,m ={p:p € Ey/PbcigiP(tx) =0<t<oo |tk/1b,c(x)xQ+1Dtng¢(tf x)|
0<x<a
< Cse(m + &)k (n + €)tk e 'F} 3.7

Foranys > 0, e > 0 and for givenm >0 andn > 0.

3.8. The Space FMypcayp
This space is given by
Sup
FMf,b,c,y.p ={¢p:9p € E+/Seb,c,k,q,l¢(t' X)=0<t<o |tklb'c(x)xQ+1Dtng¢(t, x)|
0<x<a
< Cuer(p + )97} (3.8)

For anyy > 0, wherep is the constant depending on the funcion

3.9. The SpaceFMj . ,

It is given by
Sup
FM}/,b,c,a = {d) ¢ € E—/yb,c,k,q,ld)(t' x) =-0<t<0 |(_ t)klb,c(x)xq+1DéDJ?¢(t; x)|
0<x<a
< CigA*kR} (3.9)

The smooth functiog (¢, x) defined onl; is inFMy, . . if ¢¥(t,x) = p(—t,x) iSINFMy ), oo

3.10. The SpaceF"Mﬁ_b_c

We define this space as,
Sup
FYME, . = {0:¢ € E_/Gycieqid(t,X) = —o0 < £ < 0 |(-£) 2 ()xT*1DIDIP (£, %)
0<x<a
< GBI} (3.10)
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Here¢"(t,x) = ¢(—t,x) isin FVMﬁb.c

3.11. The SpaceF"Mff

,b,c,a

Combining the conditions of (3.9) and (3.10) we get

Sup
FVMJF.b,c,a ={¢: €E_/ppciqd(t,x) = —00 <t <0 |(-)%A(X)xT DD P(t, x)|
0<x<a
< CA¥k**B!|'F} (3.11)

Where the constantg, B, C depend on the testing functign

3.12. The SpaceF*My, .,

It is given by
Sup
Fva,b,c,y ={¢p: 9 € E—/ﬂb,c,k,q,l¢(t' x)= 0<t<oo |tk/lb,c(x)(_x)‘HlDéDJ?d’(t: x)|
—-a<x<0
< (A9} (3.12)

4. Distributional Generalized Fourier-Finite Mellin Transforms (FMT)
For (t,x) € FM;f,’C’a , WhereFM]ff,’C’a is the dual space o‘I’Mﬁb'c'a It contains all distributions of compact

support. The distributional Fourier-Finite Mellirabsform is a function of (t,x) is defined as"M{f (t,x)} =
) 2p
F(s,p) = {f(6,), e (g —x7™)) (4.1)

Where, for each fixed (0 <t < »), x (0 <x < a),s> 0 andp > 0, the right hand side of (4.1) has a sense as
. 2
an application of (t,x) € FM/% ., to e (xa - x”‘l) EFM), ...

p+

5. RESULTS ON COUNTABLE UNION SPACE
5.1. Theorem: For a real numbets,, b,, c; andc, such thatb, < b, andc, < ¢, then
FMfpyc,q © FMgp,c, , @nd the induced topology @ty p, ., . is weaker than the original topology thafjs., , /

Mfrbzcz,a = TbZrCZra'

Proof: Consider ,
Su;
Vockard(tx) = P52, ()1 DIDIG (L, )]

Su
< VP16 2,0, COXTIDIDIG (6, 2)| = Vi, (6 %)
HenceFMyp,c,, © FMsp,c,, if by < b; ande, < ¢;

Second part of the proof is simple and hence odhiffhis completes the proof.

5.2. Theorem: If a; < a, andp; < B, then FM]E;,M1 c FM]f?f,m2 and the topology oFMﬁ},’c'al is equivalent to
the topology induced oﬁM]f},'C’al by FMﬁf,,C’az.

Proof: Letg € FM]‘f'_},_m1 therefore

Pociqid(t x) = Sll‘p|tk/1b,c(x)xq+1DgD,?¢(t, x)| < CA*K* BB < CAKI*e2 Bz
Wherek,q,l = 0,1,2,3 ... ... ...

Henceg € FMff,'C_az.
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ConsequentIyTMj‘f[’j;,w1 c Fij,'C'a2 the topology oFMf_;,'C'al is equivalent to the topology

T,fﬁ_az / Fij,_C'az It is clear from the definition of the topologiesthese spaces.
(o]
5.3. Theorem: FMs ) . = U FM]f;','C'a_ and if the spac€ Mg, . is equipped with the strict M ;, . inductive
a, i =1 l

limit topology defined by the injection maps frd?Mﬁ;’,'C_ai to FM; ;. then the sequenge,} in FM;, . converges
to zero iff{¢,} iscontained in somBMPm and converges to zero.

f.bcam
[o0]

Proof: Once we show thaFM;, . = Y FM]f;C'ai

a, B =1
¢}
B.
Clearly U FMg, o ©FMpp,
a, B =1

For proving other inclusion , lei € FM; . then
Pociqi(P) = 51;p|t"/lb'c(x)xq“DtlD,?(jb(t, x)| is bounded by some number. We can choose theeirsteg, and

Bm such thatpy, .y (@) < CAKKKempB!Fm
Thereforee FMPm , for some integers,,, andg,, .

f.b.c.am
o0

HenceFM; . c U FMP

f.bca;
a,pi =1
(0]
— Bi
ThusFM;, . = U FMf_;,'C_ai
a,pi=1
5.4. Definition
Let {b,} and{c,} be monotonic sequence, convergingite- andz — respectively.
(0]
Now we define countable union spagé/;(w,z,a) = U FMg, . .
n=1

Concerning this space we prove next theorem.

5.5. Theorem: The spaceFM;(w,z a) is independent of the choice of the sequenglg,} and {c,} . If
FM;(w,z, ) is equipped with the strict inductive limit topologdefined byFM;,, . . then the sequencéd,} in
FMs(w,z,a) converges to zero if{¢,} belongs to som&M; . . and converges to zero in that space. Moreover
FM;(w, z,a) is complete.

Proof: Proof is easy and hence omitted.
CONCLUSION

In this paper Fourier-Finite Mellin Transform isngealized in the distributional sense. Twelve tastiunction
spaces using Gelfand Shilov technique are develdided some results on countable unionspace aregro
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