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ABSTRACT

Human immunodeficiency virus protease (HIV-1PRjrigmerging and potential drugrget for anti-HIV therapy.
This enzyme plays a crucial role in the procesdral maturation and infectivity. Increased resista in strains of
protease inhibitors is a major obstacle to anti-Hiherapy. The aim of the study was to correlate chemical
structure of compounds with experimental data flmological activity anti-HIV-1 protease. In the [ment study a
series of 5,6-dihydro-2-pyrones derivatives (camtad 24 compounds) adIV-1PR inhibitors was subjected to
guantitative structure—activity relationship (QSA&)alysis.For building the regression models, gendtinction
approximation (GFA) were used to predict the HIVRLIRhibition activity. Based on prediction, the bealidation
model for anti-HIV inhibition activity with squarezbrrelation coefficient (§= 0.9541, croswalidated correlation
coefficient (Gcv)= 0.7440 and external prediction ability pred=R0.9266showed that Sum of E-State descriptors
of strength for potential Hydrogen Bonds of pathgin 6, Minimum E-State descriptors of strengthdotential
Hydrogen Bonds of path length 6, Overall or sumorasolute hydrogen bond basicity and Solvation Eypevere
the positive contributors. Leave one out crossdaion and Y-randomization analysis were perforrimedrder to
confirm the robustness of the model. The proposedehprovides a better understanding on the bindimgde
pattern of the compounds to the binding site of-HI&hzyme. The results of the present study isifsefdesigning
more potent HIV-1PR inhibitors.

Keyword: QSAR analysis, Anti-HIV, Protease inhibitors, Reggion analysis, semi-empirical, GFA.

INTRODUCTION

A number of targets for potential chemotherapeiutiervention of the human HIV-1 are provided by te&ovirus
life cycle [1]. The HIV-1 protease-mediated tramgfiation from the immature, non-dangerous virionthi® mature,
infective virus is a crucial stage in the HIV-1eli€ycle [2,3]. HIV-1 protease has therefore becanmeajor target
for anti-AIDS drug design, and its inhibition haselm shown to extend the length and improve thetgudllife of
AIDS patients [4]. A large number of inhibitors lalseen designed, synthesized, and assayed, andlsdié-1
protease inhibitors are now utilized in the treattrad AIDS [5]. The role of the protease in infextispreading is to
act as a “molecular scissor”, cleaving inactiveavpolyproteins into smaller, functional proteifrs the presence of
protease inhibitors, viral particles are unablenttture and are cleared rapidly [6].

Extensive clinical trials have led to the developingf the following five HIV-1 PR inhibitors thare approved by
the United States Food and Drug Administration {I3A): Saquinavir mesylate (SAQ), Ritonavir (RIThdinavir
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sulfate (IND), Nelfinavir mesylate (NLF), and Ampiavir (APR) [7]. Such drugs particularly are effeetin short-
term treatments, while resistance limits their koaign efficacy. The widespread use of these cheenaffeutics has
resulted in the emergence of drug-resistant mutdraispose a continuing challenge to the designes¥ active
compounds. Many crystallographic [8] and energsticlies [9] about the HIV-1 PR, wild type and misamave
made the enzyme an attractive target for the coengitied drug design strategy [10]. The resistaiche HIV-1
PR mutants indulged us to apply very fast and peetgchniques, able to predict the biological #@gtior the new
HIV-1 PR inhibitors.

Quantitative structure activity relationships (QS#Rone of the most widely used methods in chemaesetand
molecular docking are two of the supportive methfmsdrug design and prediction of drug activitd J[1IQSAR
models are mathematical equations which generatmnamunication between chemical structures and their
biological activities, while molecular docking ik to specify the structural features that areomamt for
interaction with a receptor [12].

In this report, we have performed a QSAR studpérompounds of 5,6-dihydro-2-pyrones derivativiedj jvhich
had been synthesized and evaluated as Anti-HIVetepse inhibitors. The study is hoped to provideetter
understanding of the binding pattern of the compisuend may also be useful for the designing motenpaiV-
PR inhibitors.

MATERIALS AND METHODS

Chemical Data

Molecules

24 molecules belonging to 5,6-dihydro-2-pyronesduas anti-HIV-1 protease inhibitors were taken freme
literature and used for the present study [13].sEhwere divided into eighteen (18) training six (€3t sets,
respectively. The structures observed, and thedichl activities of the training and test setdhddse compounds
are presented in Fig.1 and Table, respectivelydiBtiee power of the models obtained was evaluted test set
of 6 5,6-dihydro-2-pyrones as anti-HIV-1 proteasdilbitors molecules with uniformly distributed hagjical
activity. Selection of test set molecules was miagleonsidering the fact that, test set moleculpsagent range of
biological activity similar to training set. The are of biological activity of training and test seas 0.9789 and
0.6889, respectively. Therefore test set is the tepresentative of the training set.

Figure 1: General structure of 5,6-dihydro-2-py®oempounds used in the present study.
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Figure 1. Substituted 5,6-dihydro-2-pyrones compouts
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Table 1. Biological activities of training and tesset derivatives

CompNo X Y Z pIC50
1° H Ph H 1.5440
2 H Ph OH 1.5185
3 H Ph O(CH),OH 0.8325
4 H Ph CHOH 0.8195
5° H Ph OCH 1.1760
6° 4-0OH Pr H 1.041:

7 4-NH, Ph H 1.3802
8 H Ph-OH H 1.6020
9° H PF-NH, H 1.505:

10° H PhO(CH),OH H 1.0792
11° 4-0H Ph CHOH 0.2304
12 30H Pt CH,OH 0.397¢

13 4-NH, Ph CHOH 0.4913
14 3-NH, Ph CHOH 0.6020
15° H PhO(CH),OH CH,OH 0.1461
16° H PhO(CH),OH O(CH),OH 0.8061
17 H PhO(CH),OH OH 0.5682
18 H PhO(CH),OH CHOCH;  0.6532
19 4-OH  PhOH CHOH 2.0791
20 4-OH  Cyclohexyl CHOH 0.6127
21° 4-OH Isopropyl CHOH 0.5563
27 4-OH  Methyl CHOH 0.6334
23 4-NH, Cyclohexyl CHOH 0.5051
24 4-NH, isopropyl CHOH 0.4313

aTraining setTest set®Outlier

Biological activity
The logarithm of measured 4¢£(uM) against anti-HIV-1 protease inhibitors as gl(pICso = log 1/IG) was used
as dependent variable, consequently correlatingate linearly to the independent variable/desoript

Molecular Modeling

Software

All molecular modeling studies were carried oungsEpartan’14 version 1.1.2 [14] and PaDEL-Desoripersion
2.18 [15] running on DELL INSPIRON Pentium, Dualregporocessor window seven (7) operating system. The
molecular structures of the compounds in the seteceries were drawn in the graphic user interfaficéne
software. Structures were built using 2D applicatiool and exported in 3D format. All 3D structureere
geometrically optimized by minimizing energy. Cdétion of the structural electronic and other diggors of 5,6-
dihydro-2-pyrones derivatives was conducted withgami-empirical Parametric model 3 (PM3) methdictvis a
better method than the others semi-empirical methMethod of PM3 is repair method of before all likedified
intermediate neglect of differential overlap (MND@®)gthod [16], which can predicts compounds haviakgnce
many with the best accuracies [17]. The PM3 methad be used for the analysis of 5,6-dihydro-2-pgson
derivatives, because 5,6-dihydro-2-pyrones dexeatare organic compounds considering atoms of, @ &hd N.

Calculation of descriptors

Different types of descriptors were calculated dach molecule in the study table using defaultirggtwithin
Spartan’14 version 1.1.2 [14] and PaDEL-Descripension 2.18 [15]. These descriptors include etetty, spatial,
structural, and thermodynamic. Some of the lislegcriptors used in the study is given in givenl@&b

Generation of QSAR models

QSAR analysis in computational research is resptmédr the generation of models to correlate madal activity

and physicochemical properties of a series of cam@s. The underlying assumption is that the vaniatiof

biological activity within a series can be correthtwith changes in measured or computed moleceitduifes of the
molecules. In the present study, we have used igdinettion approximation (GFA) technique to generdifferent

1D, 2D, and 3D QSAR models from various descriptailable within Spartan’14 version 1.1.2 [14] @paDEL

version 2.18 [15] modeling software in order to wdesl correlation between the structure and bioldgictvity of

the present series of molecules. Our approachwsllimne methodology used previously to generateesstal 3D
QSAR models for anticancer [18], antimalarial [1&jti-tubercular [20], and anti-fungi agents [2&FA technique
was used since it generates a population of equatiather than one single equation for correlatietween
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biological activity and physicochemical propertig€SFA developed by Rogers, involved the combinatain
Friedman’s multi variant adaptive regression s@i(fdARS) algorithm with Holland’s genetic algorithim evolve
population of equations that best fit the traingeg data [22]. This is done as follows:

(i) An initial population of equations is generatedragdom choice of descriptors. The fitness of eaphraton is
scored by Lack- of- Fit (LOF) measure,

Where LSE is least square errois the number of basic functions in the modek the smoothing parameter which
controls the number of terms in the equations @iglthe number of features contained in all termghefmodels,
andmis the number of compounds in the training set.

LOF = 1)

(i) Pair's form the population of equations are choatmandom and “crossovers” are performed and prpgen
equations are generated.
(iii) The fitness of each progeny equation is assesse@®bymeasure.

If the fitness of new progeny equation is betteentit is preserved. The model with proper balasfcall statistical
terms will be used to explain variance in the bjidal activity. A distinctive feature of GFA is thé produces a
population of models (e.g. 100), instead of getrgah single model, as do most other statisticathods. The
range of variations in this population gives addd@drmation on the quality fit and importance o&tHescriptors.
By examining these models, additional informatian de obtained. For example, the frequency of dsa o
particular descriptor in the population of equasionay indicate how relevant the descriptor is ® ghediction of
activity. Combination of robust statistical techumigGFA coupled with the use of different types ebdiptors
would result in better prediction of biological iadly for anti-HIV-1 protease inhibitors. The numbef terms in the
equation was fixed to one, two, three and fourudirig constant in the training set. The set of &éqna generated
were evaluated on the following basis: (a) LOF meas(b) Variable terms in the equations; (¢) Crneafdated and
non-cross validate®®; (d) Randomized cross validat&d; (e) Predictive ability of equation. Cross valethi’
(Q%cv), Randomized cross validatd®f, were calculated using cross validated test opitibthe statistical tools
supported in material studio version 7.0.

All possible combination of descriptors was consédeto find the best regression model. The mullirearity
among variables was identified using variance figftafactor (VIF) [23]. The VIF for the ith regrées coefficient
is expressed as:

1

VIF = =

)

R; represents the coefficient produced by regressiaglescriptor xi against the other descripteyg; + i) If VIF
was greater than 10, it was not considered as &lm®dle predictive activity of the model is quaati#d in terms of
R*which is defined as:

R2=1-— Z(yp‘r’ed_ya.ctua.l)z (3)

EVactual—Ymean)?

In this equationy,,eq, Yactuar and Ymeqan are the predicted, actual, and mean values oftdinget property,
respectively. We have used leave-one-out crossiatadin to verify the performance of a trained modfehe cross-
validation criteria were less than 0.5, then theyewnot considered as models.

The predictiveR was based only molecules not included in the tngisiet and is defined as:

Y(Ypred(resty=YT t)z
Rgred =1- pred(Test) es (4)

— 2
(Y (Test)~Y training)
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WhereYprea(resty, and Yesry  indicate predicted, observed and activity valuespectively of the test set
compounds and,,ning indicates mean of observed activity values of titaéning set. For a predictive QSAR
model, the value ok}, should be more than 0.5 [20, 24-26].

Like RPcv the predictiveR® can assume a negative value reflecting a compéete of predictive ability of the
training set for the molecules included in the &=4t[27,28].

Q is the quality factor [29,30]. The quality factQris used to decide the predictive potential & thodels. The
quality factor Q is defined as the ratio of cortiela coefficient to the standard error of estimati@/e found it to be
a good parameter to explain the predictive potenfidhe models proposed by us. The higher theevaluQ the
better is the predictive potential of the mode&-§4].

Q== )
To check the external predictability of the seldateodel is fm which was proposed by Roy and Paul, 2008 [32]
and it was calculated by the following formula:

T =1L = T2 =) (6)

Wherer? is squared correlation coefficient between obskmed predicted values amd, is squared correlation
coefficient between observed and predicted valti#isintercept value set to zero. A valuerdfis greater tha.5
may be taken as an indicator of good external ptahlility.

According to Roy, 2007 [33]22,) is used to check the acceptability of the selentedel. The parameteﬁzp which
penalized the model *Ror the difference between squared mean correlatimefficient &) of the randomized
models and squared correlation coefficigRf) of the non-randomized model. A valueRsp should be greater than
0.5may be taken as an indication of model acceptglaitid can be calculated by the following formula:

RZ = R?(1—/R% — R2) (7)

Both the models have one outlier's compound 15abge its residual values exceeded twice the stdretesr of
estimate. When these outliers have been removettfie data set, we have got highly significant nhode

Regression analysis
The regression analysis is done using MaterialiStuersion 7.0 software.

Model Validation

The reliability of the models was indicated by creslidation experiments quantified with predicti@cv. For
leave one out (LOO) cross-validation a data panteimoved (left-out) from the set, and the modétted; the
predicted value for that point is then compareiistactual value. This is repeated until each ddtasibeen omitted
once; the sum of squares of these deletion residaal then be used to calcul@fe an equivalent statistic &.

2 _ 1 _ E0prea~es)”
Q=1 S prea—Tan)’ (8)

WhereY,qg andY,,, are the predicted and experimental biologicalvéis of the left out compound, respectively,
and Y,, is the average experimental activity of left-inngmounds. In addition to the traditional LOO cross-
validation. The @values can be considered a measure of the pregliptiwer of a model: wheread Ban always

be increased artificially by adding more parametarslescriptorsQ? decreases if a model is over parameterized
[27,34] and is therefore a more meaningful summséatistic for predictive models [35].

Y-Randomization Test

The statistical significance of the relationshipgvieen the anti-HIV activity and chemical structaiescriptors was
further demonstrated by randomization procedureantlomization is the most popular and probably rtiast

powerful technique for the validation of a given A/ model [36, 37]. In this approach, dependentalde vector
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(anti-HIV activity in this study) is randomly shigfl and a new QSAR model is built using the oribindependent
variables. The procedure is repeated number ofstitighe new QSAR models have lowet dhd @ values for
several trials (100 times in this study), then tdieen QSAR model is thought to be robust. Therefofe
randomization is useful to avoid any chance-conoeretation between dependent variable vector addpandent
variables. This Y-randomization was tested for neae low values of Rand Gwere observed (see Table 5).

Estimation of the Predictive Ability of a QSAR Modd
According to Golbraikh and Tropsha group [38, 39R&8AR model is considered predictive, if the follogy
conditions are satisfied:

R>0.8 9)
RF>0.6 (10)
If cross-validated? (Q%) = 0.5 (11)
If R? for external test seR’pred=> 0.6 (12)
Randomized? value should be as low asRb (13)
Randomized)?value should be as low as@ (14)
(r?—1r2)/r*<01and 0.85 < K < 1.15 (15)
r?-1r?)/r*<0.1and 0.85 <K' < 1.15 (16)
r,ﬁ(o,,em”) And R} are> 0.5 (or at least near 0.5) (17)

If the standard deviation SEE is not much largantstandard deviation of the biological data.
If its F value indicate that overall significanex¢l is better than 95%.

If its confidence interval of all individual regmaen coefficients proves that they are justifiedtheé 95%
significance level. Equation has to be rejectedhd above mentioned statistical measures are atisfied, the
number of the variables in the regression equasiamreasonably large and standard deviation idlenthan error
in the biological data [25].

RESULTS AND DISCUSSION

The statistical quality of the developed equatiaas judged by the parameters such as standarddrestimate
(SE), Fisher ratio (F test), Root mean square esfocross validation (RMSECV), Root mean squarereof
prediction (RMSEP), Quality factor (Q) and preditteorrelation coefficient of multiple determinarli(Rgred).

Model 1. One-variable mode. Successive regressiatysis indicated that one-variable model Sum dbt&e
descriptors of strength for potential Hydrogen Bowofl path length 6 (SHBInt6) as correlating degorifs the best
modelling the pIC50. This model is as follows:

pICso = 0.3400(SHBint6) + 1.0098

N = 18,R = 0.7735,R? = 0.5984, R, = 0.5733,Q3, = 0.2681, LOF = 0.3654,F = 23.8367,SE = 0.3062,Q =
2.5261,SSY = 1.4998, RMSECV = 0.2887, PRESS = 0.6898, RMSEP = 0.3714, Rzz,red = 0.5553
(18)

One-parametric equation modeled for HIV-1 Proteadsbitory activity and has good correlation betwee
biological activity and descriptor as indicated Ry= 0.7735 and explains 57.33% variance in intohitiLow
standard deviation of the model demonstrates acgwhthe model. The model showed overall signiita level
better than 95%, with the F = 23.8367. The positieefficient of SHBIint6 indicates that the increaseits
magnitude will enhance the activity (pIC50). Crostidated value (©= 0.2681<0.6) reflects the poor predictive
power of the model. The experimental and predigtddes of activity data, correlation matrix arewhdn Table 2
and 4, respectively, the plot of experimental vedicted property/ external test plot are showRigure 2a and 3a,
respectively

Model 2. Two-variable model. When (SHBIint8) Sum of E-Stassdatiptors of strength for potential Hydrogen
Bonds of path length 8 and (Wlambda3.mass) DireatioVHIM, weighted by atomic masses where added
together, the model shows significant improvemdintha parameters. The improved model is as foltows
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pICsy = 0.0613(SHBIint8) — 0.0621(Wlambda3.mass) + 1.8561

N = 18,R = 0.8534,R? = 0.7284,R, = 0.6921,Q2, = 0.6071,LOF = 0.2783,F = 20.1095,SE = 0.2601,Q =
3.2810,SSY = 1.0144, RMSECV = 0.2374, PRESS = 1.3689, RMSEP = 0.5232, Rzz,red =0.1175

(19)
Model 2 is a two parametric equation modeled and emnsidered to be a poor predictor of activityaduse of its
poor validation Rzpred = 0.1175<0.6) although the coefficient of deteratiion (R = 0.7284) is higher as compared
with model 1. Further, the descriptors (SHBIint8Ym of E-State descriptors of strength for potémiigdrogen
Bonds of path length 8 and (Wlambda3.mass) DireatioVHIM, weighted by atomic mass are found to kghly
correlated to each other as shown in the correlatiatrix (Table 4). The experimental and predictatlies of
activity data is shown in Table 2, the plot of esimental vs. predicted property and external testase shown in
Figure 2b and 3lrespectively The correlation coefficient between SHBInt8 andavbda3.mass is 0.853 which is
outside the acceptable range (< 0.8). The aboveshindicates that decrease in Wlambda3.mass amdase in
SHBInt8 will improve the activity (plgy) values. However, if the descriptor SHBint8 andawbda3.mass is
replaced by minHBint6 and MLFER_BH is added to middéviodel 3 is derived.

pICse = 0.5912(SHBint6) — 0.4315(minHBint6) — 1.0201(MLFR_BH) + 2.7221
N = 18,R = 0.9417,R? = 0.8869, R, = 0.8627, 0%, = 0.6210, LOF = 0.1314,F = 36.6071,SE = 0.1767,Q =
5.3294, SSY = 0.4222, RMSECV = 0.1532, PRESS = 0.1657, RMSEP = 0.1820, R%,,q = 0.8932
(20)

Model 3.When (minHBInt6) Minimum E-State descriptors ofestgth for potential Hydrogen Bonds of path length
6 and (MLFR_BH) Overall or summation solute hydnodmnd basicity is added to model 1, improves tiality

of prediction as indicated by much better staistigarameters in Table 6R* = 0.8869, @ = 0.6210). A plot of
experimentalvs predicted property and the external test set pletshown in Figure 2c and 3espectively The
negative coefficient of minHBiInt6 and MLFER_BH reted that the molecular flexibility of 5,6-dihyd@pyrones

is detrimental to the activity.

Model 4
Addition Solvation energy (Solvation E) to the abdWree-parametric model yielded a four-parameticlel. A
drastic improvement in variance is observed.

pICso = 0.6363(SHBint6) — 0.5368(minSHBint6) — 1.9624(MLFER_BH) — 0.0111(Solvation E.) + 3.5827
N = 18,R = 0.9768,R? = 0.9541, R, = 0.9400, 0%, = 0.7440, LOF = 0.0610, F = 67.6020,SE = 0.1148,Q =
8.5087,SSY = 0.1713, RMSECV = 0.0976, PRESS = 0.1139, RMSEP = 0.1509,R2,.4 = 0.9266

(21)

Model 4 is the best model since it shows best tatiom coefficient R = 0.9768 and explains 95.41&8tiance in
inhibition. Further, smaller standard error of estte, higheF and leave-one-out (LOO) cross validated value (Q2
= 0.744>0.6) demonstrates satisfactory predictiviéity of the model. The statistical parametershbddel 4 are
shown in Table 6This model indicates that Solvation energy are lyigbrrelated to the activity. The negative sign
of the coefficient of minSHBInt6, MLFER_BH and Sation E., indicates that inhibitory activity incess as the
descriptors decreases. A closed look at model datevthat Solvation energy play dominant role ihileiting the
activity. They belong to 2D and 3D autocorrelatiwategory. The brief description of the descriptisrgiven in
Table 3. The experimental and predicted valuesctifity data is shown in Table. Zhe plot of experimental vs.
predicted property and external test set plot hosva in Figure 2d and 3despectively

Cross validation

The cross validation analysis was performed ustagé one out (LOO) method [27, 34] in which one pound is
removed from the data set and the activity is dated using the rest of the data set. The crosdatad R in each
case was found to be very close to the value’dbRthe entire data set and hence these modelbeaarmed as
statistically significant.
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Cross validation provides the values of PRESS, 8% Rcv and PSE/RMSEP from which we can test the
predictive power of the proposed model. It is atjtleat PRESS, is a good estimate of the real preeierror of

the model and if it is smaller than SSY the modeldjts better than chance and can be consideatidtisally
significant. Also, if the PRESS value is transfodhieto a dimension-less term by relating it to thiéial sum of
squares, we obtain’gV, i.e., the complement to the traces on of urerpH variance over the total variance. The
PRESS and v have good properties. Still, for practical puses of end users the use of the square root of
PRESS/N, which is called the predictive squarergffPSE/RMSEP), is more directly related to the utzdety of

the predictions. The PSE/RMSEP values also sumgpontesults. The calculated cross-validated parammeonfirm

the validity of the models. All the requirements & ideal model have been fulfilled by model numbewhich
made it the best model 2Rakes into account the adjustment 6f R? is a measure of the percentage explained
variation in the dependent variable that takes attoount the relationship between the number oé<and the
number of independent variables in the regressiodeiy whereas Rwill always increase when an independent
variable is added. Rwill decrease if the added variable does not redhe unexplained variable enough to offset
the loss of decrease of freedom.

Comparison with other QSAR Studies

Agrawal and coworkers [13] proposed QSAR-based iplelregression analysis method for anti-HIV-1 paste
inhibitors activity of 24 5,6-dihydro-2-pyrones detives. They developed QSAR-based models on ritieeedata
set of 22 compounds and found that the best modehies 4 correlating descriptors with statistiqahlity given
by R = 0.9513 and 0.9519, F-value of 40.470 an@3®respectively. It is interesting to compare m@sults with
the results of Agrawal and coworkers. Our modelith four correlating parameters having the R =768 R =
0.9541 and F-value of 67.602 in the training set Rﬁ,ed: 0.9266 in the test set. GFA technique is bettantthe
previously reported one by Agrawal et al.; in aidditto that we also applied other statistical pagtars which are
better than the Agrawal and coworkers.

CONCLUSION

This studies obtained a multivariate QSAR model doset of 5,6-dihydro-2-pyrones that have the dapax

inhibiting HIV-1 protease inhibitors. The LOO crosgalidation method, the Y-randomization techniqumel dhe
external validation indicated that the model isndigant, robust and has good internal and extepnedlictability.
From the results it is concluded that 5,6-dihydspyPones as anti-HIV-1 protease inhibitors deriwesi can be
modeled using a four-parametric model which comstaiariety of molecular descriptors including SumEsState
descriptors of strength for potential Hydrogen Bowod path length 6, Minimum E-State descriptorstoéngth for
potential Hydrogen Bonds of path length 6, Oveallsummation solute hydrogen bond basicity and &mma

Energy. The results obtained is useful for pharmtical as well as medicinal chemists to synthesi® mrugs
having still better anti-HIV-1 potential.
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Table 2. Experimental and Predicted values of actity data

Eql: Eql:
Nam LogIC5 predicted residual Eq2: predicted Eqg2: residual Eq3: predicted Eq3: residual Eq4: predicted Eq4: residual
e 0 values values values values values values values values
1 1.544 1.00981 0.53419 1.538427 0.005573 1.45518 .08862 1.586565 -0.04257
2 15185 1.00981 0.50869 1.69202 -0.17352 1.20016 .31884 1.283918 0.234582
3 08325 1.00981 -0.17731 0.508488 0.324012 0.98492 -0.15242 0.89199 -0.05949
4 08195  0.685429 0.134071 0.744298 0.075202 0FHB71 -0.04769 0.850133 -0.03063
5 1.176 1.00981 0.16619 0.823853 0.352147 1.290947 -0.11495 1.284637 -0.10864
6  1.0413 1.00981 0.03149 1.060881 -0.01958 1.153236 -0.11194 1.218004 -0.1767
7 1.3802 1.00981 0.37039 1.032644 0.347556 1.185878 0.194322 1.258113 0.122087
9 15051  2.014505 -0.50941 1.654045 -0.14895 16579 -0.15286 1.54014 -0.03504
10  1.0792 1.00981 0.06939 0.737553 0.341647 0.98799 0.141201 0.931614 0.147586
12 0.3979  0.679356 -0.28146 0.693084 -0.29518 6552 -0.16449 0.486468 -0.08857
13 04913  0.683539 -0.19224 0.861803 -0.3705 09069 -0.1057 0.522129 -0.03083
14 0.602 0.68311 -0.08111 0.696135 -0.09414 0.59679 0.005206 0.553253 0.048747
16  0.8061 1.00981 -0.20371 0.928993 -0.12289 04677 0.338359 0.852914 -0.04681
18  0.6532 1.00981 -0.35661 0.631527 0.021673 04268 -0.07364 0.577896 0.075304
19  2.0791  1.720489 0.358611 1.759877 0.319223 2.079 0 2.0791 0
21 05563  0.685845 -0.12955 0.693528 -0.13723 0386 -0.03974 0.512763 0.043537
22 0.6334  0.682861 -0.04946 0.724226 -0.09083 0%d2 0.020401 0.601704 0.031696
23 05051  0.697272 -0.19217 0.839318 -0.33422 G538 -0.14323 0.589359 -0.08426
Test Set
8 1.602 2.0703 -0.4683 1.743631 -0.14163 1.651309 0.04931 1.492929 0.109071
11 0.2304  0.680289 -0.44989 0.906479 -0.67608 8362 -0.33243 0.502392 -0.27199
17  0.5682 1.0098 -0.4416 1.447847 -0.87965 0.68292 -0.11472 0.538205 0.029995
20  0.6127 0.69409 -0.08139 0.852429 -0.23973 08141 -0.0015 0.500979 0.111721
24 04313  0.689029 -0.25773 0.677249 -0.24595 Q830 -0.19888 0.552359 -0.12106
OUTLIE
15  0.1461 R
Table 3. List of some descriptors used in this stues
Descriptor Description Class
AlLogP Ghose-Crippen LogKow 2D
AMR Molar refractivity 2D
apol Sum of the atomic polarizabilities (includimgplicit hydrogens) 2D
nH Number of hydrogen atoms 2D
nN Number of nitrogen atoms 2D
nO Number of oxygen atoms 2D
ATScl ATS autocorrelation descriptor, weighted bgrges 2D
ATSc3 ATS autocorrelation descriptor, weighted bgrges 2D
ATSc5 ATS autocorrelation descriptor, weighted bgrges 2D
ATSml ATS autocorrelation descriptor, weighted bgled atomic mass 2D
ATSmM5 ATS autocorrelation descriptor, weighted bgled atomic mass 2D
BCUTw-1I nhigh lowest atom weighted BCU1 2D
BCUTc-1l nhigh lowest partial charge weighted BCUTS 2D
BCUTc-1h nlow highest partial charge weighted BCUTS 2D
BCUTp-1I nhigh lowest polarizability weighted BCU1 2D
BCUTp-1h nlow highest polarizability weighted BCUTS 2D
SHBInt6 Sum of E-State descriptors of strengthpfmtential Hydrogen Bonds of path length 6 2D
SHBIntE Sum of E-State descriptors of strength for potential HydroBends of path lengtk 2D
minHBINt6 Minimum E-State descriptors of strength potential Hydrogen Bonds of path length 6 2D
MLFER_BH Overall or summation solute hydrogen bond bas 2D
Wlambda3.mass Directional WHIM, weighted by atomisses 3D
P-Area(75) Polar area corresponding to absolutgegadf the electrostatic potential greater than 75 3D
Acc.P-Area(75)  Accessible Polar area corresponttirdpsolute values of the electrostatic potentieater than 75 3D
MaxEIPot Maximum values of the electrostatics ptiégn 3D
LogP Partition coefficient 3D
Solvation.E Solvation Energy 3D
EHOMO Highest occupied molecular orbital energy 3D
Dipole M Dipole Moment 3D
ELUMO Lowest unoccupied molecular orbital energy 3D
Ovality Ovality 2D
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Table 4. Correlation matrix showing correlation amang various physic-chemical parameters and inhibitoy activity

LogIC50 SHBint6 SHBInt8 minHBInt6 Wlambda3.mass LIMER_BH Solvation.E

LogIC50 1

SHBInt6 0.7735 1

SHBinté 0.694" 0.711¢ 1

minHBInt6 0.4273 0.7442 0.3082 1

Wlambda3.mass -0.492 -0.224 0.0046 -0.3122 1

MLFER_BH -0.35:% -0.11: 0.074¢ -0.472¢ 0.571: 1

Solvation.E 0.2172 0.0175 -0.039 0.23717 -0.2523 .8588 1

Table 5. Y-randomization tested for the model

Model R F\iyranc Qzﬂanc

1 0.2018 0.0608 -0.2517
2 0.3514 0.1478 -0.3400
3 0.398¢ 0.180¢ -0.579¢

4 0.4355 0.2097 -1.7048

Figure 2a. Correlation between the predicted plG and the Observed PlGyby Eq (1)

Training Set plot for Equation 1
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Figure 2. Correlation between the predicted plG,and the Observed PIG, by Eq (2
Training Set plot for Equation 2
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Figure 2c. Correlation between the predicted plG, and Observed plG, by Eq (3)

Training Set plot for Equation 3
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Figure 2d. Correlation between the predicted plG, and the Observed PIGyby Eq (4)

Training Set plot for Equation 4
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Figure 3a. Correlation (external set) between thengdicted pICs, and Observed plGoby Eq (1)

Test Set plot for Equation 1
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Figure 3b. Correlation (external set) between thenredicted plCso and Observed plGo by Eq (2)

Test Set plot for Equation 2
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Figure 3c. Correlation (external set) between thenedicted pICso and Observed plGo by Eq (3)

Test Set plot for Equation 3
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Figure 3d. Correlation (external set) between thenredicted plCso and Observed plG, by Eq (4)

Test Set plot for Equation 4
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Table 6. Predicted values of the test set (externatoss-validation) and results of statistical parareters

K K /Tg - rirz/ r - Tg r?— r;z rrzn(test) RIZI rrzn(overall)
r? r?
Thresholdvalues 0.85<K<1.15 0.85<K <115 <03 <01 <01 =05 =05 >0.5
Model 1 0.7092 1.3613 0.5502 0.0963 0.0370 065 715 0.335
Model 2 0.649¢ 1.324: 0.8 0.10¢  1.372¢  0.08C  0.663t 0.29¢
Model 3 0.8896 1.0878 0.0620 0.1 0.053 0.631  0.8035737
Model 4 0.9599 1.0078 0.0435 0.074 _ 0.027 0.685 4185 0.863
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