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ABSTRACT 
 
Human immunodeficiency virus protease (HIV-1PR) is an emerging and potential drug target for anti-HIV therapy. 
This enzyme plays a crucial role in the process of viral maturation and infectivity. Increased resistance in strains of 
protease inhibitors is a major obstacle to anti-HIV therapy. The aim of the study was to correlate the chemical 
structure of compounds with experimental data from biological activity anti-HIV-1 protease. In the present study a 
series of 5,6-dihydro-2-pyrones derivatives (containing 24 compounds) as HIV-1PR inhibitors was subjected to 
quantitative structure–activity relationship (QSAR) analysis. For building the regression models, genetic function 
approximation (GFA) were used to predict the HIV-1PR inhibition activity. Based on prediction, the best validation 
model for anti-HIV inhibition activity with squared correlation coefficient (R2)= 0.9541, cross validated correlation 
coefficient (Q2cv)= 0.7440 and external prediction ability pred_R2= 0.9266 showed that Sum of E-State descriptors 
of strength for potential Hydrogen Bonds of path length 6, Minimum E-State descriptors of strength for potential 
Hydrogen Bonds of path length 6, Overall or summation solute hydrogen bond basicity and Solvation Energy were 
the positive contributors. Leave one out cross validation and Y-randomization analysis were performed in order to 
confirm the robustness of the model. The proposed model provides a better understanding on the binding mode 
pattern of the compounds to the binding site of HIV-1 enzyme. The results of the present study is useful for designing 
more potent HIV-1PR inhibitors. 
 
Keyword: QSAR analysis, Anti-HIV, Protease inhibitors, Regression analysis, semi-empirical, GFA.  
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INTRODUCTION 
 

A number of targets for potential chemotherapeutic intervention of the human HIV-1 are provided by the retrovirus 
life cycle [1]. The HIV-1 protease-mediated transformation from the immature, non-dangerous virion, to the mature, 
infective virus is a crucial stage in the HIV-1 life cycle [2,3]. HIV-1 protease has therefore become a major target 
for anti-AIDS drug design, and its inhibition has been shown to extend the length and improve the quality of life of 
AIDS patients [4]. A large number of inhibitors have been designed, synthesized, and assayed, and several HIV-1 
protease inhibitors are now utilized in the treatment of AIDS [5]. The role of the protease in infection spreading is to 
act as a “molecular scissor”, cleaving inactive viral polyproteins into smaller, functional proteins. In the presence of 
protease inhibitors, viral particles are unable to mature and are cleared rapidly [6].  
 
Extensive clinical trials have led to the development of the following five HIV-1 PR inhibitors that are approved by 
the United States Food and Drug Administration (US-FDA): Saquinavir mesylate (SAQ), Ritonavir (RIT), Indinavir 
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sulfate (IND), Nelfinavir mesylate (NLF), and Amprenavir (APR) [7]. Such drugs particularly are effective in short-
term treatments, while resistance limits their long-term efficacy. The widespread use of these chemotherapeutics has 
resulted in the emergence of drug-resistant mutants that pose a continuing challenge to the design of new active 
compounds. Many crystallographic [8] and energetic studies [9] about the HIV-1 PR, wild type and mutants, have 
made the enzyme an attractive target for the computer-aided drug design strategy [10]. The resistance of the HIV-1 
PR mutants indulged us to apply very fast and precise techniques, able to predict the biological activity for the new 
HIV-1 PR inhibitors. 
 
Quantitative structure activity relationships (QSARs), one of the most widely used methods in chemometrics, and 
molecular docking are two of the supportive methods for drug design and prediction of drug activity [11]. QSAR 
models are mathematical equations which generate a communication between chemical structures and their 
biological activities, while molecular docking is done to specify the structural features that are important for 
interaction with a receptor [12]. 
 
 In this report, we have performed a QSAR study on 24 compounds of 5,6-dihydro-2-pyrones derivatives [13] which 
had been synthesized and evaluated as Anti-HIV-1 protease inhibitors. The study is hoped to provide a better 
understanding of the binding pattern of the compounds and may also be useful for the designing more potent HIV-
PR inhibitors. 
 

MATERIALS AND METHODS 
 

Chemical Data 
Molecules 
24 molecules belonging to 5,6-dihydro-2-pyrones used as anti-HIV-1 protease inhibitors were taken from the 
literature and used for the present study [13]. These were divided into eighteen (18) training six (6) test sets, 
respectively. The structures observed, and the biological activities of the training and test sets of these compounds 
are presented in Fig.1 and Table, respectively. Predictive power of the models obtained was evaluated by a test set 
of 6 5,6-dihydro-2-pyrones as anti-HIV-1 protease inhibitors molecules with uniformly distributed biological 
activity. Selection of test set molecules was made by considering the fact that, test set molecules represent range of 
biological activity similar to training set. The mean of biological activity of training and test set was 0.9789 and 
0.6889, respectively. Therefore test set is the true representative of the training set. 
 
Figure 1: General structure of 5,6-dihydro-2-pyrones compounds used in the present study. 

 
 

Figure 1. Substituted 5,6-dihydro-2-pyrones compounds 
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Table 1. Biological activities of training and test set derivatives 
 

Comp No X Y Z  pIC50 
1a H Ph H 1.5440 
2a H Ph OH 1.5185 
3a H Ph O(CH2)2OH 0.8325 
4a H Ph CH2OH 0.8195 
5a H Ph OCH3 1.1760 
6a 4-OH Ph H 1.0413 
7a 4-NH2 Ph H 1.3802 
8b H Ph-OH H 1.6020 
9a H Ph-NH2 H 1.5051 
10a H PhO(CH2)2OH H 1.0792 
11b 4-OH Ph CH2OH 0.2304 
12a 3-OH Ph CH2OH 0.3979 
13a 4-NH2 Ph CH2OH 0.4913 
14a 3-NH2 Ph CH2OH 0.6020 
15o H PhO(CH2)2OH CH2OH 0.1461 
16a H PhO(CH2)2OH O(CH2)2OH 0.8061 
17b H PhO(CH2)2OH OH 0.5682 
18a H PhO(CH2)2OH CH2OCH3  0.6532 
19a 4-OH PhOH CH2OH 2.0791 
20b 4-OH Cyclohexyl CH2OH 0.6127 
21a 4-OH Isopropyl CH2OH 0.5563 
22a 4-OH Methyl CH2OH 0.6334 
23a 4-NH2 Cyclohexyl CH2OH 0.5051 
24b 4-NH2 isopropyl CH2OH 0.4313 

aTraining set; bTest set; oOutlier 

 
Biological activity 
The logarithm of measured IC50 (µM) against anti-HIV-1 protease inhibitors as pIC50 (pIC50 = log 1/IC50) was used 
as dependent variable, consequently correlating the data linearly to the independent variable/descriptors. 
 
Molecular Modeling 
Software 
All molecular modeling studies were carried out using Spartan’14 version 1.1.2 [14] and PaDEL-Descriptor version 
2.18 [15] running on DELL INSPIRON Pentium, Dual-core processor window seven (7) operating system. The 
molecular structures of the compounds in the selected series were drawn in the graphic user interface of the 
software. Structures were built using 2D application tool and exported in 3D format. All 3D structures were 
geometrically optimized by minimizing energy. Calculation of the structural electronic and other descriptors of 5,6-
dihydro-2-pyrones derivatives was conducted with the semi-empirical Parametric model 3 (PM3) method, which is a 
better method than the others semi-empirical method. Method of PM3 is repair method of before all like modified 
intermediate neglect of differential overlap (MNDO) method [16], which can predicts compounds having valence 
many with the best accuracies [17]. The PM3 method can be used for the analysis of 5,6-dihydro-2-pyrones 
derivatives, because 5,6-dihydro-2-pyrones derivatives are organic compounds considering atoms of C, H, O and N. 
 
Calculation of descriptors 
Different types of descriptors were calculated for each molecule in the study table using default settings within 
Spartan’14 version 1.1.2 [14] and PaDEL-Descriptor version 2.18 [15]. These descriptors include electronic, spatial, 
structural, and thermodynamic. Some of the list of descriptors used in the study is given in given Table 3. 
 
Generation of QSAR models 
QSAR analysis in computational research is responsible for the generation of models to correlate biological activity 
and physicochemical properties of a series of compounds. The underlying assumption is that the variations of 
biological activity within a series can be correlated with changes in measured or computed molecular features of the 
molecules. In the present study, we have used genetic function approximation (GFA) technique to generate different 
1D, 2D, and 3D QSAR models from various descriptors available within Spartan’14 version 1.1.2 [14] and PaDEL 
version 2.18 [15] modeling software in order to deduce correlation between the structure and biological activity of 
the present series of molecules. Our approach follows the methodology used previously to generate successful 3D 
QSAR models for anticancer [18], antimalarial [19], anti-tubercular [20], and anti-fungi agents [21]. GFA technique 
was used since it generates a population of equations rather than one single equation for correlation between 
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biological activity and physicochemical properties. GFA developed by Rogers, involved the combination of 
Friedman’s multi variant adaptive regression splines (MARS) algorithm with Holland’s genetic algorithm to evolve 
population of equations that best fit the training set data [22]. This is done as follows: 
 
(i) An initial population of equations is generated by random choice of descriptors. The fitness of each equation is 
scored by Lack- of- Fit (LOF) measure,  
 

��� = ���

�	
��
�∗�� ��
�          (1) 

 
Where LSE is least square error, c is the number of basic functions in the model, d is the smoothing parameter which 
controls the number of terms in the equations and p is the number of features contained in all terms of the models, 
and m is the number of compounds in the training set. 
 
(ii)  Pair’s form the population of equations are chosen at random and “crossovers” are performed and progeny 
equations are generated. 
(iii)  The fitness of each progeny equation is assessed by LOF measure.  
 
If the fitness of new progeny equation is better, then it is preserved. The model with proper balance of all statistical 
terms will be used to explain variance in the biological activity. A distinctive feature of GFA is that it produces a 
population of models (e.g. 100), instead of generating a single model, as do most other statistical methods. The 
range of variations in this population gives added information on the quality fit and importance of the descriptors. 
By examining these models, additional information can be obtained. For example, the frequency of use of a 
particular descriptor in the population of equations may indicate how relevant the descriptor is to the prediction of 
activity. Combination of robust statistical technique GFA coupled with the use of different types of descriptors 
would result in better prediction of biological activity for anti-HIV-1 protease inhibitors. The number of terms in the 
equation was fixed to one, two, three and four including constant in the training set. The set of equations generated 
were evaluated on the following basis: (a) LOF measure; (b) Variable terms in the equations; (c) Cross validated and 
non-cross validated R2; (d) Randomized cross validated R2; (e) Predictive ability of equation. Cross validated R2 

(Q2cv), Randomized cross validated R2, were calculated using cross validated test option in the statistical tools 
supported in material studio version 7.0. 
 
All possible combination of descriptors was considered to find the best regression model. The multi-collinearity 
among variables was identified using variance inflation factor (VIF) [23]. The VIF for the ith regression coefficient 
is expressed as: 
 

��� = 	
	
���

           (2) 

 
��	represents the coefficient produced by regressing the descriptor xi against the other descriptors, �� 	(� ≠ !) If VIF 
was greater than 10, it was not considered as a model. The predictive activity of the model is quantitated in terms of 
R2 which is defined as: 
 

�# = 1 − ∑'(�)*�
(+�,-+./
�

∑((+�,-+.
(�*+0)�
         (3) 

 
In this equation,	12345 , 1789:7; 	<=>	1?47@ are the predicted, actual, and mean values of the target property, 
respectively. We have used leave-one-out cross-validation to verify the performance of a trained model. If the cross-
validation criteria were less than 0.5, then they were not considered as models. 
 
The predictive R2 was based only molecules not included in the training set and is defined as: 
 

�2345# = 1 − ∑'A�)*�(B*C,)
AB*C,/
�

∑'A(B*C,)
AD,)+�0�0E/
�        (4) 
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Where,F2345(G4H9), and F(94H9)   indicate predicted, observed  and activity values respectively of the test set 
compounds and FD937�@�@I indicates mean of observed activity values of the training set. For a predictive QSAR 
model, the value of �2345#  should be more than 0.5 [20, 24-26]. 
 
Like R2cv the predictive R2 can assume a negative value reflecting a complete lack of predictive ability of the 
training set for the molecules included in the test set [27,28].  
Q is the quality factor [29,30]. The quality factor Q is used to decide the predictive potential of the models. The 
quality factor Q is defined as the ratio of correlation coefficient to the standard error of estimation. We found it to be 
a good parameter to explain the predictive potential of the models proposed by us. The higher the value of Q the 
better is the predictive potential of the models [29-31]. 
 

J = �
��            (5) 

 
To check the external predictability of the selected model is r2m which was proposed by Roy and Paul, 2008 [32] 
and it was calculated by the following formula: 
  

K?# = K#(1 − LK# − KM#)         (6) 
 
Where r2 is squared correlation coefficient between observed and predicted values and r2

o is squared correlation 
coefficient between observed and predicted values with intercept value set to zero. A value of r2

m is greater than 0.5 
may be taken as an indicator of good external predictability. 
 
According to Roy, 2007 [33] R2

p is used to check the acceptability of the selected model. The parameter R2
p which 

penalized the model R2 for the difference between squared mean correlation coefficient (R2
r) of the randomized 

models and squared correlation coefficient (R2) of the non-randomized model. A value of R2p should be greater than 
0.5 may be taken as an indication of model acceptability and can be calculated by the following formula: 
 

�2# = �#(1 − L�# − �3#)         (7) 
 
Both the models have one outlier’s compound 15, because its residual values exceeded twice the standard error of 
estimate. When these outliers have been removed from the data set, we have got highly significant model. 
 
Regression analysis 
The regression analysis is done using Material Studio version 7.0 software. 

 
Model Validation 
The reliability of the models was indicated by cross-validation experiments quantified with predictive Q2cv. For 
leave one out (LOO) cross-validation a data point is removed (left-out) from the set, and the model refitted; the 
predicted value for that point is then compared to its actual value. This is repeated until each datum has been omitted 
once; the sum of squares of these deletion residuals can then be used to calculate Q2, an equivalent statistic to R2. 
 

J8N# = 1 −
∑'A�)*�
A*O�/

�

∑'A�)*�
AD+P/
�          (8) 

 
Where Ypred and Yexp are the predicted and experimental biological activities of the left out compound, respectively, 
and Yav is the average experimental activity of left-in compounds. In addition to the traditional LOO cross-
validation. The Q2 values can be considered a measure of the predictive power of a model: whereas R2 can always 
be increased artificially by adding more parameters or descriptors, Q2 decreases if a model is over parameterized 
[27,34] and is therefore a more meaningful summary statistic for predictive models [35]. 
 
Y-Randomization Test 
The statistical significance of the relationship between the anti-HIV activity and chemical structure descriptors was 
further demonstrated by randomization procedure. Y-randomization is the most popular and probably the most 
powerful technique for the validation of a given QSAR model [36, 37]. In this approach, dependent variable vector 
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(anti-HIV activity in this study) is randomly shuffled and a new QSAR model is built using the original independent 
variables. The procedure is repeated number of times. If the new QSAR models have lower R2 and Q2 values for 
several trials (100 times in this study), then the given QSAR model is thought to be robust. Therefore, Y-
randomization is useful to avoid any chance-comer correlation between dependent variable vector and independent 
variables. This Y-randomization was tested for model and low values of R2 and Q2 were observed (see Table 5). 
 
Estimation of the Predictive Ability of a QSAR Model 
According to Golbraikh and Tropsha group [38, 39] a QSAR model is considered predictive, if the following 
conditions are satisfied: 
 
R ≥ 0.8           (9) 
R2 ≥ 0.6           (10) 
If cross-validated R2 (Q2) ≥ 0.5        (11) 
If R2 for external test set, R2pred ≥ 0.6       (12) 
Randomized R2 value should be as low as to R2      (13) 
Randomized Q2 value should be as low as to Q2      (14) 
(K# − KM#) K#⁄ < 0.1	<=>	0.85 ≤ Y ≤ 1.15       (15) 
(K# − KMZ#) K#⁄ < 0.1	<=>	0.85 ≤ YZ ≤ 1.15        (16) 
K?([N437;;)#  And �2# are ≥ 0.5 (or at least near 0.5)      (17) 
If the standard deviation SEE is not much larger than standard deviation of the biological data. 
If its F value indicate that overall significance level is better than 95%. 
 
If its confidence interval of all individual regression coefficients proves that they are justified at the 95% 
significance level. Equation has to be rejected, if the above mentioned statistical measures are not satisfied, the 
number of the variables in the regression equation is unreasonably large and standard deviation is smaller than error 
in the biological data [25]. 
 

RESULTS AND DISCUSSION 
 

The statistical quality of the developed equations was judged by the parameters such as standard error of estimate 
(SE), Fisher ratio (F test), Root mean square error of cross validation (RMSECV), Root mean square error of 
prediction (RMSEP), Quality factor (Q) and predicted  correlation coefficient of multiple determination (�2345# ).   
 
Model 1. One-variable mode. Successive regression analysis indicated that one-variable model Sum of E-State 
descriptors of strength for potential Hydrogen Bonds of path length 6 (SHBint6) as correlating descriptor is the best 
modelling the pIC50. This model is as follows: 
 

\�]^_ = 0.3400(bcd!=e6) + 1.0098 
 
i = 18, � = 0.7735, �# = 0.5984, �7 = 0.5733, J8N# = 0.2681, ��� = 0.3654, � = 23.8367, bl = 0.3062, J =
2.5261, bbF = 1.4998, �mbl]� = 0.2887, n�lbb = 0.6898, �mbln = 0.3714, �2345# = 0.5553  
     (18) 
      
One-parametric equation modeled for HIV-1 Protease inhibitory activity and has good correlation between 
biological activity and descriptor as indicated by R = 0.7735 and explains 57.33% variance in inhibition. Low 
standard deviation of the model demonstrates accuracy of the model. The model showed overall significance level 
better than 95%, with the F = 23.8367. The positive coefficient of SHBint6 indicates that the increase in its 
magnitude will enhance the activity (pIC50). Cross validated value (Q2 = 0.2681<0.6) reflects the poor predictive 
power of the model. The experimental and predicted values of activity data, correlation matrix are shown in Table 2 
and 4, respectively, the plot of experimental vs. predicted property/ external test plot are shown in Figure 2a and 3a, 
respectively. 
 
Model 2. Two-variable model. When (SHBint8) Sum of E-State descriptors of strength for potential Hydrogen 
Bonds of path length 8 and (Wlambda3.mass) Directional WHIM, weighted by atomic masses where added 
together, the model shows significant improvement all the parameters. The improved model is as follows: 
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\�]^_ = 0.0613(bcd!=e8) − 0.0621(op<qr><3.q<ss) + 1.8561 

 
i = 18, � = 0.8534, �# = 0.7284, �7 = 0.6921, J8N# = 0.6071, ��� = 0.2783, � = 20.1095, bl = 0.2601, J =
3.2810, bbF = 1.0144, �mbl]� = 0.2374, n�lbb = 1.3689, �mbln = 0.5232, �2345# = 0.1175  
     (19) 
Model 2 is a two parametric equation modeled and was considered to be a poor predictor of activity because of its 
poor validation (R2

pred = 0.1175<0.6) although the coefficient of determination (R2 = 0.7284) is higher as compared 
with model 1. Further, the descriptors (SHBint8) ) Sum of E-State descriptors of strength for potential Hydrogen 
Bonds of path length 8 and (Wlambda3.mass) Directional WHIM, weighted by atomic mass are found to be highly 
correlated to each other as shown in the correlation matrix (Table 4). The experimental and predicted values of 
activity data is shown in Table 2, the plot of experimental vs. predicted property and external test set are shown in 
Figure 2b and 3b, respectively. The correlation coefficient between SHBint8 and Wlambda3.mass is 0.853 which is 
outside the acceptable range (< 0.8). The above model indicates that decrease in Wlambda3.mass and increase in 
SHBint8 will improve the activity (pIC50) values. However, if the descriptor SHBint8 and Wlambda3.mass is 
replaced by minHBint6 and MLFER_BH is added to model 1, Model 3 is derived. 
 

\�]^_ = 0.5912(bcd!=e6) − 0.4315(q!=cd!=e6) − 1.0201(m���_dc) + 2.7221 
i = 18, � = 0.9417, �# = 0.8869, �7 = 0.8627, J8N# = 0.6210, ��� = 0.1314, � = 36.6071, bl = 0.1767, J =
5.3294, bbF = 0.4222, �mbl]� = 0.1532, n�lbb = 0.1657, �mbln = 0.1820, �2345# = 0.8932  
     (20) 
 
Model 3. When (minHBint6) Minimum E-State descriptors of strength for potential Hydrogen Bonds of path length 
6 and (MLFR_BH) Overall or summation solute hydrogen bond basicity is added to model 1, improves the quality 
of prediction as indicated by much better statistical parameters in Table 6. (R2 = 0.8869, Q2 = 0.6210). A plot of 
experimental vs predicted property and the external test set plot are shown in Figure 2c and 3c, respectively. The 
negative coefficient of minHBint6 and MLFER_BH revealed that the molecular flexibility of 5,6-dihydro-2-pyrones 
is detrimental to the activity. 
 
Model 4  
Addition Solvation energy (Solvation E) to the above three-parametric model yielded a four-parametric model. A 
drastic improvement in variance is observed. 
 
\�]^_ = 0.6363(bcd!=e6) − 0.5368(q!=bcd!=e6) − 1.9624(m��l�
dc) − 0.0111(bupv<e!u=	l. ) + 3.5827 
i = 18, � = 0.9768, �# = 0.9541, �7 = 0.9400, J8N# = 0.7440, ��� = 0.0610, � = 67.6020, bl = 0.1148, J =
8.5087, bbF = 0.1713, �mbl]� = 0.0976, n�lbb = 0.1139, �mbln = 0.1509, �2345# = 0.9266  
     (21) 
 
Model 4 is the best model since it shows best correlation coefficient R = 0.9768 and explains 95.41% variance in 
inhibition. Further, smaller standard error of estimate, higher F and leave-one-out (LOO) cross validated value (Q2 
= 0.744>0.6) demonstrates satisfactory predictive ability of the model. The statistical parameters of Model 4 are 
shown in Table 6. This model indicates that Solvation energy are highly correlated to the activity. The negative sign 
of the coefficient of minSHBint6, MLFER_BH and Solvation E., indicates that inhibitory activity increases as the 
descriptors decreases. A closed look at model 4 reveals that Solvation energy play dominant role in exhibiting the 
activity. They belong to 2D and 3D autocorrelation category. The brief description of the descriptors is given in 
Table 3. The experimental and predicted values of activity data is shown in Table 2. The plot of experimental vs. 
predicted property and external test set plot are shown in Figure 2d and 3d, respectively. 
 
Cross validation 
The cross validation analysis was performed using leave one out (LOO) method [27, 34] in which one compound is 
removed from the data set and the activity is correlated using the rest of the data set. The cross-validated R2 in each 
case was found to be very close to the value of R2 for the entire data set and hence these models can be termed as 
statistically significant. 
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Cross validation provides the values of PRESS, SSY and R2cv and PSE/RMSEP from which we can test the 
predictive power of the proposed model. It is argued that PRESS, is a good estimate of the real predictive error of 
the model and if it is smaller than SSY the model predicts better than chance and can be considered statistically 
significant. Also, if the PRESS value is transformed into a dimension-less term by relating it to the initial sum of 
squares, we obtain R2cv, i.e., the complement to the traces on of unexplained variance over the total variance. The 
PRESS and R2cv have good properties. Still, for practical purposes of end users the use of the square root of 
PRESS/N, which is called the predictive square error (PSE/RMSEP), is more directly related to the uncertainty of 
the predictions. The PSE/RMSEP values also support our results. The calculated cross-validated parameters confirm 
the validity of the models. All the requirements for an ideal model have been fulfilled by model number 4, which 
made it the best model. R2

a takes into account the adjustment of R2. R2 is a measure of the percentage explained 
variation in the dependent variable that takes into account the relationship between the number of cases and the 
number of independent variables in the regression model, whereas R2 will always increase when an independent 
variable is added. R2a will decrease if the added variable does not reduce the unexplained variable enough to offset 
the loss of decrease of freedom. 
 
Comparison with other QSAR Studies 
Agrawal and coworkers [13] proposed QSAR-based multiple regression analysis method for anti-HIV-1 protease 
inhibitors activity of 24 5,6-dihydro-2-pyrones derivatives. They developed QSAR-based models on the entire data 
set of 22 compounds and found that the best model involves 4 correlating descriptors with statistical quality given 
by R = 0.9513 and 0.9519, F-value of 40.470 and 40.994 respectively. It is interesting to compare our results with 
the results of Agrawal and coworkers. Our model is with four correlating parameters having the R = 0.9768, R2 = 
0.9541 and F-value of 67.602 in the training set and R2

pred = 0.9266 in the test set. GFA technique is better than the 
previously reported one by Agrawal et al.; in addition to that we also applied other statistical parameters which are 
better than the Agrawal and coworkers. 
 

CONCLUSION 
 

This studies obtained a multivariate QSAR model for a set of 5,6-dihydro-2-pyrones that have the capacity of 
inhibiting HIV-1 protease inhibitors. The LOO cross validation method, the Y-randomization technique and the 
external validation indicated that the model is significant, robust and has good internal and external predictability. 
From the results it is concluded that 5,6-dihydro-2-pyrones as anti-HIV-1 protease inhibitors derivatives can be 
modeled using a four-parametric model which contains variety of molecular descriptors including Sum of E-State 
descriptors of strength for potential Hydrogen Bonds of path length 6, Minimum E-State descriptors of strength for 
potential Hydrogen Bonds of path length 6, Overall or summation solute hydrogen bond basicity and Solvation 
Energy. The results obtained is useful for pharmaceutical as well as medicinal chemists to synthesis new drugs 
having still better anti-HIV-1 potential. 
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Table 2. Experimental and Predicted values of activity data 
 

Nam
e 

LogIC5
0 

Eq1: 
predicted 
values 

Eq1: 
residual 
values 

Eq2: predicted 
values 

Eq2: residual 
values 

Eq3: predicted 
values 

Eq3: residual 
values 

Eq4: predicted 
values 

Eq4: residual 
values 

1 1.544 1.00981 0.53419 1.538427 0.005573 1.45518 0.08882 1.586565 -0.04257 
2 1.5185 1.00981 0.50869 1.69202 -0.17352 1.20016 0.31834 1.283918 0.234582 
3 0.8325 1.00981 -0.17731 0.508488 0.324012 0.984922 -0.15242 0.89199 -0.05949 
4 0.8195 0.685429 0.134071 0.744298 0.075202 0.867186 -0.04769 0.850133 -0.03063 
5 1.176 1.00981 0.16619 0.823853 0.352147 1.290947 -0.11495 1.284637 -0.10864 
6 1.0413 1.00981 0.03149 1.060881 -0.01958 1.153236 -0.11194 1.218004 -0.1767 
7 1.3802 1.00981 0.37039 1.032644 0.347556 1.185878 0.194322 1.258113 0.122087 
9 1.5051 2.014505 -0.50941 1.654045 -0.14895 1.657961 -0.15286 1.54014 -0.03504 

10 1.0792 1.00981 0.06939 0.737553 0.341647 0.937999 0.141201 0.931614 0.147586 
12 0.3979 0.679356 -0.28146 0.693084 -0.29518 0.562388 -0.16449 0.486468 -0.08857 
13 0.4913 0.683539 -0.19224 0.861803 -0.3705 0.596996 -0.1057 0.522129 -0.03083 
14 0.602 0.68311 -0.08111 0.696135 -0.09414 0.596794 0.005206 0.553253 0.048747 
16 0.8061 1.00981 -0.20371 0.928993 -0.12289 0.467741 0.338359 0.852914 -0.04681 
18 0.6532 1.00981 -0.35661 0.631527 0.021673 0.726841 -0.07364 0.577896 0.075304 
19 2.0791 1.720489 0.358611 1.759877 0.319223 2.0791 0 2.0791 0 
21 0.5563 0.685845 -0.12955 0.693528 -0.13723 0.596039 -0.03974 0.512763 0.043537 
22 0.6334 0.682861 -0.04946 0.724226 -0.09083 0.612999 0.020401 0.601704 0.031696 
23 0.5051 0.697272 -0.19217 0.839318 -0.33422 0.648333 -0.14323 0.589359 -0.08426 

   
Test Set 

8 1.602 2.0703 -0.4683 1.743631 -0.14163 1.651309 -0.04931 1.492929 0.109071 
11 0.2304 0.680289 -0.44989 0.906479 -0.67608 0.56283 -0.33243 0.502392 -0.27199 
17 0.5682 1.0098 -0.4416 1.447847 -0.87965 0.68292 -0.11472 0.538205 0.029995 
20 0.6127 0.69409 -0.08139 0.852429 -0.23973 0.614197 -0.0015 0.500979 0.111721 
24 0.4313 0.689029 -0.25773 0.677249 -0.24595 0.630182 -0.19888 0.552359 -0.12106 

15 0.1461 
OUTLIE
R        

 
Table 3. List of some descriptors used in this studies 

 
Descriptor Description Class 
ALogP      Ghose-Crippen LogKow 2D 
AMR Molar refractivity 2D 
apol Sum of the atomic polarizabilities (including implicit hydrogens) 2D 
nH Number of hydrogen atoms 2D 
nN Number of nitrogen atoms 2D 
nO Number of oxygen atoms 2D 
ATSc1 ATS autocorrelation descriptor, weighted by charges 2D 
ATSc3 ATS autocorrelation descriptor, weighted by charges 2D 
ATSc5 ATS autocorrelation descriptor, weighted by charges 2D 
ATSm1 ATS autocorrelation descriptor, weighted by scaled atomic mass 2D 
ATSm5 ATS autocorrelation descriptor, weighted by scaled atomic mass 2D 
BCUTw-1l nhigh lowest atom weighted BCUTS  2D 
BCUTc-1l nhigh lowest partial charge weighted BCUTS  2D 
BCUTc-1h nlow highest partial charge weighted BCUTS  2D 
BCUTp-1l nhigh lowest polarizability weighted BCUTS  2D 
BCUTp-1h nlow highest polarizability weighted BCUTS  2D 
SHBint6 Sum of E-State descriptors of strength for potential Hydrogen Bonds of path length 6 2D 
SHBint8 Sum of E-State descriptors of strength for potential Hydrogen Bonds of path length 8 2D 
minHBint6 Minimum E-State descriptors of strength for potential Hydrogen Bonds of path length 6 2D 
MLFER_BH Overall or summation solute hydrogen bond basicity 2D 
Wlambda3.mass Directional WHIM, weighted by atomic masses  3D 
P-Area(75) Polar area corresponding to absolute values of the electrostatic potential greater than 75 3D 
Acc.P-Area(75) Accessible Polar area corresponding to absolute values of the electrostatic potential greater than 75 3D 
MaxEIPot Maximum values of the electrostatics potential  3D 
LogP Partition coefficient 3D 
Solvation.E Solvation Energy 3D 
EHOMO Highest occupied molecular orbital energy 3D 
Dipole M Dipole Moment 3D 
ELUMO Lowest unoccupied molecular orbital energy 3D 
Ovality Ovality 2D 
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Table 4. Correlation matrix showing correlation among various physic-chemical parameters and inhibitory activity 
 

  LogIC50 SHBint6 SHBint8 minHBint6 Wlambda3.mass MLFER_BH Solvation.E 
LogIC50 1 
SHBint6 0.7735 1 
SHBint8 0.6947 0.7115 1 
minHBint6 0.4273 0.7442 0.3082 1 
Wlambda3.mass -0.492 -0.224 0.0046 -0.3122 1 
MLFER_BH -0.353 -0.113 0.0749 -0.4726 0.5711 1 
Solvation.E 0.2172 0.0175 -0.039 0.23717 -0.2523 -0.8553 1 

 
Table 5. Y-randomization tested for the model 

 
Model R R2

yrand Q2
yrand 

1 0.2018 0.0608 -0.2517 
2 0.3514 0.1478 -0.3400 
3 0.3988 0.1806 -0.5794 
4 0.4355 0.2097 -1.7048 

 
Figure 2a. Correlation between the predicted pIC50 and the Observed PIC50 by Eq (1) 

 

. 
 

Figure 2. Correlation between the predicted pIC50 and the Observed PIC50 by Eq (2) 
 

. 
 

y = 0.5984x + 0.3932

R² = 0.5984

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-2 -1 0 1 2 3 4 5

P
re

d
ic

te
d

 I
C

5
0

Observed IC50

Training Set plot for Equation 1

y = 0.7284x + 0.2659

R² = 0.7284

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

-2 -1 0 1 2 3 4 5

P
re

d
ic

te
d

 I
C

5
0

Observed IC50

Training Set plot for Equation 2



Emmanuel Israel Edache et al                    J. Comput. Methods Mol. Des., 2015, 5 (3):135-149  
______________________________________________________________________________ 

145 
Available online at www.scholarsresearchlibrary.com 

 
Figure 2c. Correlation between the predicted pIC50 and Observed pIC50 by Eq (3) 
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Figure 2d. Correlation between the predicted pIC50 and the Observed PIC50 by Eq (4) 
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Figure 3a. Correlation (external set) between the predicted pIC50 and Observed pIC50 by Eq (1) 
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Figure 3b. Correlation (external set) between the predicted pIC50 and Observed pIC50 by Eq (2) 
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Figure 3c. Correlation (external set) between the predicted pIC50 and Observed pIC50 by Eq (3) 

 

. 
 

Figure 3d. Correlation (external set) between the predicted pIC50 and Observed pIC50 by Eq (4) 
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Table 6. Predicted values of the test set (external cross-validation) and results of statistical parameters 
 

 K K’ /wxy − wx;y/ wy − wxy
wy  

wy − wxZy
wy  

w|(}~�})y  ��y w|(x�~w���y ) 

Threshold values �. �� ≤ � ≤ �. �� �. �� ≤ �′ ≤ �.�� < 0.3 < 0.1 < 0.1 ≥ �. � ≥ �. � ≥ �. � 
Model 1 0.7092 1.3613 0.5502 0.0963 0.0370 0.65 0.5776 0.335 
Model 2 0.6494 1.3241 0.8 0.108 1.3723 0.080 0.6638 0.296 
Model 3 0.8896 1.0878 0.0620 0.1 0.053 0.631 0.8035 0.737 
Model 4 0.9599 1.0078 0.0435 0.074 0.027 0.685 0.8541 0.863 
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