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ABSTRACT 
 
PM3 semi-empirical method was used to develop the quantitative structure-activity relationship (QSAR) for 
predicting the anticonvulsant activity of some acetamido-N-benzylacetamide derivative. In order to to find the 
optimized geometry of the studied molecules, three types of molecular descriptors were used in deriving quantitative 
relation between anticonvulsant activity and structural properties. The relevant molecular descriptors were selected 
by Genetic Function Algorithm (GFA). The optimum model has squared correlation coefficient ( R)2 value of 0.98, 
adjusted squared correlation coefficient (R 2adj ) value of 0.98, Leave one out (LOO) cross validation coefficient (Q2) 
value of 0.96. The external set used for confirming the predictive power of the model has its R2

pred = 0.89.  These 
confirm the stability, robustness and predictability of the model.  
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INTRODUCTION 
 

Epilepsy is generally coursed by neurological issue and is influencing around 1% of the world's population [1]. At 
present the accessible anticonvulsants are valuable in diminishing the seriousness and repetitive unconstrained 
seizures in fewer than 70% of patients. Moreover, their treatment is connected with unfavorable symptoms. 
Therefore, the quest for sheltered and more intense anticonvulsant pharmaceuticals remains the need of medication 
configuration and the proceeded with quest for the more secure and more successful antiepileptic medications is 
desperately important [2, 3]. Antiepileptic medications apply their activity by distinctive systems. For example, 
upgrade of the GABA-ergic neurotransmission, consequences for neuronal voltage-gated sodium and/or calcium 
channels [4]. Past correlations of the basic attributes of anticonvulsant medication have recognized a typical 
example characterized by a nitrogen heteroatom framework, no less than one carbonyl gathering, together with two 
or one phenyl bunch [5-7]. Quantitative structure-action connections (QSAR), as a main consideration in medication 
outline, are scientific mathematical statements relating concoction structure to their natural movement [8]. Amid the 
most recent two decade, QSAR models have picked up a broad acknowledgment in sciences [9-12]. Moreover, 
anticonvulsant specialists have been the point of numerous QSAR studies [13-16]. The reason for this examination 
is to perform a quantum compound QSAR study on fifteen acetamido-N-benzylacetamide subordinates which were 
tentatively accepts to had anticonvulsant movement and to get a straight model by utilizing Genetic Function 
Approximation (GFA) system. 
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MATERIALS AND METHODS 
 

Data collection 
15 molecules of acetamido-N-benzylacetamide derivatives were used as anticonvulsant activity were selected from 
the literature and used for the present study [17]. The observed structures and the biological activities of these 
compounds are presented in Fig.1 and Table.1, respectively. 
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Figure 1: General structure of �_substituted acetamido-N-benzylacetamide derivatives 

 
Table 1: Biological activities of training and test set derivatives 

 
S.NO R1 R2 ���� Pred.IC50 
1� CH� CH�-Ph 1.88 1.55 
2� 2-Furanyl CH�-Ph-o-F 1.60 1.10 
3� 2-Furanyl CH�-Ph-m-F 1.12 1.85 
4� 2-Furanyl CH�-2,5-C�H� 1.38 1.51 
5� 2-Furanyl CH�-2,5-C�H� 1.80 1.75 
6� 3-Allyl CH�-Ph 1.53 1.05 
7� 2-tetrahydrofuranyl CH�-Ph 1.71 1.31 
8� Ph CH�-Ph 1.31 1.55 
9� 2-Furanyl CH�-Ph 1.01 1.15 
10� 2-Furanyl-5-CH� CH�-Ph 1.28 1.05 
11� 2-Pyrrolyl-5-CH� CH�-Ph 1.56 1.89 
12� 3-Thienyl CH�-Ph 1.94 1.52 
13� 1-Pyrazole CH�-Ph 1.22 1.54 
14� 2-Pyridyl CH�-Ph 1.03 1.00 
15� C(S)NH� CH�-Ph 1.94 1.07 

Training set; b Test set; a 
 
Biological activity 
The logarithm of measured IC50 (µM) against anticonvulsant activity as pIC50 (pIC50 = log 1/IC50) was used as 
dependent variable, consequently correlating the data linearly to the independent variable/descriptors. 
 
Molecular Modeling 
All molecular modeling studies were carried out using Spartan’14 version 1.1.2 [18] and PaDEL-Descriptor version 
2.18 [19] running on Toshiba Satellite, Dual-core processor window eight (8) operating system. The molecular 
structures of the compounds in the selected series were drawn in the graphic user interface of the software. 2D 
application tool was used to build the structures and exported in 3D format. All 3D structures were geometrically 
optimized by minimizing energy. Calculation of the structural electronic and other descriptors of all the 15 
acetamido-N-benzylacetamide derivatives was conducted by means of Semi- Empirical using the PM3 method. The 
lowest energy structure was used for each molecule to calculate their physicochemical properties (molecular 
descriptor). 
 
The semi-empirically optimized structures from the Spartan’14 version 1.1.2 [18] Quantum chemistry package were 
saved in sdf format, and all the 1D, 2D and 3D descriptors were calculated using PaDEL-Descriptor version 2.18 
tool kit [19].  
 
Procedures 
The generated descriptors (1D-3D) of the 15 data sets from the PaDEL version 2.18 tool kit [19] were divided into 
training and test sets. The training set was used to generate the model, while the test set were used for the external 
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validation of the model. The correlation between activity values of the molecules against neurotransmitter and the 
calculated descriptors were obtained through correlation analysis using the Material studio software version 8. 
Pearson's correlation matrix was used as a qualitative model, in order to select the suitable descriptors for regression 
analysis. The generated descriptors from the PaDEL version 2.18 tool kit [19] were subjected to regression analysis 
with the experimentally determined activities as the dependent variable and the selected descriptors as the 
independent variables using Genetic Function Approximation (GFA) method in material studio software version. 
The number of descriptors in the regression equation was 3, and Population and Generation were set to 500 and 500, 
respectively.  
 
The number of top equations returned was 4. Mutation probability was 0.1, and the smoothing parameter was 0.5. 
The models were scored based on Friedman’s LOF. In GFA algorithm, an individual or model was represented as 
one-dimensional string of bits. It was a distinctive characteristic of GFA that it could create a population of models 
rather than a single model. GFA algorithm, selecting the basic functions genetically, developed better models than 
those made using stepwise regression methods. And then, the models were estimated using the LOF, which was 
measured using a slight variation of the original Friedman formula, so that the best fitness score can be received. 
In materials studio version 8, LOF is measured using a slight variation of the original Friedman formula [20].  The 
revised formula is: 
 

LOF = SSE / (1 −
����

�
)2            (1) 

 
where: 
 
SSE is the sum of squares of errors, c is the number of terms in the model, other than the constant term, d is a user-
defined smoothing parameter, p is the total number of descriptors contained in all model terms (ignoring the 
constant term) and M is the number of samples in the training set. 
 
Unlike the commonly used least squares measure, the LOF measure cannot always be reduced by adding more terms 
to the regression model. While the new term may reduce the SSE, it also increases the values of c and p, which tends 
to increase the LOF score. Thus, adding a new term may reduce the SSE, but actually increases the LOF score. By 
limiting the tendency to simply add more terms, the LOF measure resists over fitting better than the SSE measure 
(Materials Studio 8.0 Manual).The significant regression is given by F-test, and the higher the value, the better the 
model [21] is, as showed in Table 2. 
 
Quality Assurance of the model 
The fitting ability, stability, reliability and predictive ability of the developed models were evaluated by internal and 
external validation parameters. The validation parameters were compared with the minimum recommended value 
for a generally acceptable QSAR model [22] showed in Table 2. 
 

Table 2: Minimum recommended value of Validation Parameters for a generally acceptable QSAR model 
 

  Symbol                      Name Value 
R2 Coefficient of determination ≥ 0.6 
P (95%) Confidence interval at 95% confidence level < 0.05 
Q2 Cross validation coefficient ˂ 0.5 
R2 - Q2 Difference between R2 and Q2 ≤ 0.3 
Next. test set Minimum number of external test set ≥ 5 
R2

ext Coefficient of determination for external test set ≥ 0.6 
 
The square of the correlation coefficient (R2) describes the fraction of the total variation attributed to the model. The 
closer the value of R2 is to 1.0, the better the regression equation explains the Y variable. R2 is the most commonly 
used internal validation indicator and is expressed as follows: 
 

R2 = 1 - 
∑(!"�#	%!�&'�	)�

∑(!"�#	%!)&�*+*+,)�
                  (2) 

 
Where, Yobs; Ypred; Ytraining are the experimental property, the predicted property and the mean experimental 
property of the samples in the training set, respectively [23]. Adjusted R2 (R2

adj) value varies directly with the 
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increase in number of repressors i.e. descriptors, thus, R2 cannot be a useful measure for the goodness of model 
fitness. Therefore, R2 is adjusted for the number of explanatory variables in the model. The adjusted R2 is defined 
as: 
 

R2
adj = 1- (1 − R�)

+%.

+%�%.
 = 

(+%.)/0%1

+%��.
              (3) 

 
Where p = number of independent variables in the model (23). 
The leave one out cross validation coefficient (Q2) is given by; 
 

Q2 = 1 - 
∑(!�%!)0

∑(!%!2)0
                  (4) 

 
Where Yp and Y represent the predicted and observed activity, respectively, of the training set and Ym  is the mean 
activity value of the training set [24]. 
 

RESULTS AND DISCUSSION 
 

Four QSAR models was built using GFA algorithm, but due to the statistical significance, model 1 was selected, 
reported and its statistical parameters were as well calculated. The name and symbol of the descriptors used in the 
QSAR optimization model and Pearson’s correlation matrix for descriptors used in the model were shown in the 
Tables 3 and 4 respectively. Likewise, Table 5 gives the result of Validation of the Genetic Function Approximation 
(GFA) of model 1 that was generated from material studio; also Table 6 shows the Contributions of the individual 
descriptors in the model 
 

Table 3: List of some descriptors used in this studied 
 

S/NO Discriptors Symbol Names of Discriptor(s) Class 
1 VC-5 Valence cluster, order 5 2D 
2 saaCH Sum of atom-type E-State: :CH: 2D 
3 FNSA-3 PNSA-3 / total molecular surface area 3D 

 
Table 4: Pearson’s correlation matrix for descriptors used in QSAR model for the activities of anticonvulsant molecules 

 

 
IC50 VC-5 SaaCH 

IC50 1   
VC-5 0.718241 1  

SaaCH -0.77979 -0.55967 1 
FNSA-3 -0.12934 -0.61438 0.488442 

 
Table 5: Validation of the genetic function approximation from material studio 

 
S/NO  Equation 1 

1 Friedman LOF 0.01192900 
2 R-squared 0.98255700 
3 Adjusted R� 0.97508100 
4 Cross validated R-squared 0.95827600 
5 Significant Regression Yes 
6 Significance-of-regression F-value 131.43249200 
7 Critical SOR F-value (95%) 4.52386100 
8 Lack-of-fit points 7 
9 Replicate points 0 
10 Min expt. error for non-significant LOF (95%) 0.03560200 

 
Table 6: Contributions of the individual descriptors in the model 

 
  Coefficients Standard Error P-value Lower 95% Upper 95% 

Intercept 3.000523 0.163673 3.56E-0 2.613498 3.387547 
VC-5 14.94449 1.382037 1.27E-0 11.67649 18.21249 
SaaCH -0.08307 0.007443 1.03E-0 -0.10067 -0.06547 
FNSA-3 22.84202 2.241243 1.89E-0 17.54233 28.14172 

 
 



Usman Abdulfatai et al                             J. Comput. Methods Mol. Des., 2015, 5 (4):77-83  
______________________________________________________________________________ 

81 
Available online at www.scholarsresearchlibrary.com 

The result in this study revealed that model 1 was the best model which is as follows: 
 
34567 = 14.94448	 ∗ 	;5 − 5	 − 	0.083068355	 ∗ 	<==5>	 + 	22.842023033	 ∗ 	@A<B − 3		 + 	3.00052. 

	

N = 11,R� =0.98, R� = 0.975, QDE
� =0.9583 and the external validation was found to be 0.89. Model 1 gives the best 

QSAR model among the four models generated based on statistical significance as it has the highest R2, R2adj, and 
Q2. Based on this analysis, Model 1 was selected and reported as the best optimized model. 
 

. 
 

Figure 2: Training and Test Sets plot of model 1 
 

. 
 

Figure 3: Residual plot of model 1 
 

R² = 0.9826
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Figure 2 gives the plot of predicted activities of  both training and test sets against observed activities on Microsoft 
excel package, the R2 value of 0.98 recorded in this study  was in agreement with GFA derived R2 value, this further 
confirms the reliability of the model. Also in Fig. 3, the plot of residual activities versus observed activities indicated 
that there was no systemic error in model development as the spread of residuals was pragmatic on both sides of 
zero [24]. 

 
Table 7: Univariate Analysis of the Inhibition data 

 
Statistical Parameters 

Number of sample points 11 
Range 0.9300 
Maximum 1.9400 
Minimum 1.0100 
Mean 1.4364 
Median 1.5300 
Variance 0.0936 
Standard deviation 0.3209 
Mean absolute deviation 0.2767 
Skewness 0.0363 
Kurtosis -1.6150 

 
A univariate analysis is performed on the inhibition efficiency data in Table 1 as a tool to assess the quality of the 
data available and its suitability for next statistical analysis. Data in Table 1 showed acceptable normal distribution. 
Statistical parameters presented in Table 4 have been discussed in details in our previous study [21]. 
 
Correlation matrix  in Table 4 above, shows clearly that the correlation coefficients between each pair of descriptors 
is very low, thus, it can be inferred that there exist no significant inter-correlation among the descriptors used in 
building the model. Table 2 shows that the parameters are in agreement with the standard as	R� =0.98, R� = 0.98, 
QDE

� =0.96 and R2pred =0.89. These actually  confirmed the robustness of the model.  
 
The presence of the two 2D descriptors in the model (VC-5 and saaCH ) suggests that these types of descriptors are 
able to characterize better anticonvulsant activities of compounds. 
 
Descriptors used in the generated of different QSAR models were classified in Tables 4 and 5. The contributions of 
each descriptor (standardized regression coefficients) in the MLR models were determined, and are provided in 
Table 6.The significance of the descriptors involved in each model decreases in the following order: 
 
FNSA-3 (22.84) > VC-5 (14.94) > saaCH (-0.08) 
 

CONCLUSION 
 

The model with good descriptors presents a satisfactory correlation with the anticonvulsant activity, while the 
models with 2D and 3D descriptors are of higher excellence. The combination of 2D and 3D descriptors produce a 
better model to predict the anticonvulsant activity of these compounds. The QSAR results found were able to 
achieve a higher excellence model when compared to models obtained by other researchers. Also, this study 
provides a valuable approach for pharmaceutical as well as medicinal chemists to design and synthesis new 
anticonvulsant drugs that will be more efficient in inhibiting neurotransmitter. 
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