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ABSTRACT  
 
The vibrational energy levels of two C78 fullerene isomers, having 2vC  symmetry are calculated 

considering the local Hamiltonian of Morse potential using the U(2) Lie algebra. Here each 
bond of the molecule is replaced by a corresponding Lie algebra and finally the Hamiltonian is 
constructed considering the interacting Casimir and Majorana invariant operators. The normal 
IR active stretching modes of vibration of isomers of C78 are then calculated using this 
Hamiltonian to fit the experimental results.  
 
Keywords: Lie algebra; Vibrational spectra; fullerene; C78. 
______________________________________________________________________________ 

 
INTRODUCTION 

 
Molecular spectroscopy is undergoing an essential change due to the rapid development of 
sophisticated experimental approaches, at present, molecular spectroscopy is going through an 
exciting time of renewed interest. Due to its numerous connections with other scientific areas, 
this branch of modern physics is playing an essential role in both experimental and theoretical 
approaches to understanding a huge number of important problems. In recent years the algebraic 
model attracted a wider scientific community for the analysis and interpretation of experimental 
rovibrational spectra of small and medium-sized molecules [1]. The proposed model is based on 
the idea of dynamic symmetry, which in turn, is expressed through the language of Lie algebras. 
By applying algebraic techniques, one obtains an effective Hamiltonian operator that 
conveniently describes the rovibrational degrees of freedom of the physical system. With this 
framework, any specific mechanism relevant for the correct characterization of the molecular 
dynamics and spectroscopy can be accounted. Algebraic models are formulated such that they 
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contain the same physical information for both ab initio theories (based on the solution of the 
Schrödinger equation) and semi empirical approaches (making use of phenomenological 
expansions in powers of appropriate quantum numbers). 
 
The new theoretical concept- Vibron model (based on Lie algebra) to study molecular spectra 
was built in the last part of the 20th century [1, 2]. This new model seems to offer a concrete and 
complementary technique to the traditional approaches used in molecular spectroscopy. The 
algebraic model (Vibron model) was originally developed for diatomic and tri-atomic molecules 
[3,4]. U(4) and U(2) algebraic model been used so far in the analysis of experimental data. It is 
to be pointed out that the U(4) model becomes complicated when the number of atoms in a 
molecule increases more than four. The Vibron model was applied successfully in describing the 
overtone frequencies of linear and bent molecules [5]. The main features and basic applications 
of these methods have been described by Iachello and Levine and Oss. The brief review of the 
research work done in this field up to 2000 and its perspectives in the first part of 21st century 
was presented by Iachello and Oss [6]. 
 
Both the isomers of C78 considered in this theoretical work have the same symmetry ( 2vC ). The 

symmetry is an extremely important concept in the development of scientific knowledge. The 
beauty of symmetry rests in its connection to a possible invariance in a physical system. Such 
invariance leads directly to conserved quantities, which in a quantum mechanical framework 
allow one to observe specific degeneracy in the energy spectrum and to introduce a meaningful 
labeling scheme for the corresponding eigenstates. 
 
In this paper, U(2) Lie Algebraic theory is used, which is an excellent alternative mathematical 
treatment with less number of algebraic parameters to calculate more precisely the stretching 
vibrational IR active frequencies of two isomers of fullerene C78 , which shows a good agreement 
with respect to experimental values [ 7 ]. The algebraic approach may help us to determine the 
different energy bands other than the IR active range of isomers of fullerene C78. 

 
2. Review of U(2) Algebraic Theory: 
One of the most interesting areas of current research in molecular physics is the study of the 
vibrational excited states of medium and large molecules. In view of the considerable amount of 
experimental activity in this area, one need the necessity of the theoretical models by which the 
interpretation of the experiential data can fit with desired degree of accuracy. For medium – size 
and large molecules , models based directly on the solution of the many body differential 
Schrödinger  equation with interatomic potentials become rather awkward and difficult to apply. 
Similarly, straight forward Dunham like expansions contain a large number of parameters which 
can not be determined from the few available data.  
  
Now, consider a model [8, 9] of n coupled anharmonic oscillators, which appear to describe IR 
active vibrational stretching energies with desired degree of accuracy in terms of less number of 
parameters. In constructing this model, we use the isomorphism of the Lie algebra of U(2) with 
that of one dimensional Morse oscillator. The eigenstates of the one dimensional Schrödinger 
equation, hψ εψ=  with a Morse potential [10]  
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2 2( . ) / 2 [1 exp( )]h p x p D xµ α= + − −         (1) 
 
which can be put into one to one correspondence with the representations of  (2) (2)U O⊃  , 

characterized by the quantum numbers ,N m  with the provision that one takes only the positive 

branch of m, i.e. m = N, N - 2, . . .. . .,1 or 0 for N = odd or even (N = integer). The Morse 
Hamiltonian corresponds in the U(2) basis to a simple Hamiltonian, 0h ACε= + , where C is the 

invariant operator of (2)O . 
 
The eigenvalues of h  are  

 
2 2

0 ( )A m Nε ε= + −           (2) 

 
where  , 2,.............1m N N= −  or 0  (N = Integer)   and A is the normalization constant,. 
 
Introducing the vibrational quantum number ( ) / 2N mν = −  , Eq.(2) can be rewritten as, 

2
0 4 ( )A Nv vε ε= − −  , where, 0,1,........ / 2Nν =  or 

1

2

N −
(where N = even or odd )    (3) 

The value of 0ε , A and N are given in terms of , Dµ  and α by  using the following relations 

0 Dε = − , 1/ 24 (2 / ) ,AN h Dα µ− =  2 24 / 2A h α µ= −  

where D is the dissociation energy and µ is the reduced mass. Now, one can easily verify that 
these are the eigenvalues of the Morse oscillator. 
 
Now consider a molecule with n bonds. In the algebraic model, each bond i  is replaced by an 
algebra with Hamiltonian   0i i i ih A Cε= +    [11,12] where   iC     is the invariant operator with 

eigenvalues   24( )i i iNν ν− − . The bonds interact with a bond–bond interaction. Two types of 

interaction are usually considered in term of two operators ijC and ijM , called Casimir and 

Majorana operators respectively, where the Casimir operator has only the diagonal matrix 
element, where as the Majorana operators have both diagonal and off-diagonal matrix elements.  
 
They are invariant operators of the combined algebras (2)ijO and (2)ijU  in the group lattice [12].  

 
(2) (2)i jO O⊗  

                     (2) (2)i jU U⊗       (2)ijO    (4) 

(2)ijU  

 
Their physical meaning can be seen from the matrix elements given by Eq. (6) and Eq. (7). 
 
The algebraic model Hamiltonian we consider thus has the following form [12] 
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0
1

n n n

i i ij ij ij ij
i i j i j

H E AC A C Mλ
= 〈 〈

= + + +∑ ∑ ∑        (5) 

 
The matrix elements with the invariant Casimir and Majorana operators are as follows  

 
2, ; , , ; , 4[( ) ( )( )]i i j j ij i i j j i j i j i jN N C N N N Nν ν ν ν ν ν ν ν〈 〉 = + − + +     (6) 

1/2

1/2

, ; , , ; , ( 2 )

, 1; , 1 , ; , [ ( 1)( )( 1)]

, 1; 1 , ; , [ ( 1)( )( 1)]

i i j j ij i i j j i j j i i j

i i j j ij i i j j j i i i j j

i i j ij i i j j i j j i i

N N M N N N N

N N M N N N N

N N M N N Nj N

ν ν ν ν ν ν ν ν

ν ν ν ν ν ν ν ν

ν ν ν ν ν ν ν

〈 〉 = + −

〈 + − 〉 = − + − − +

〈 − + 〉 = − + − − +

     (7) 

 
Eq.(7) is a generalization to n bonds of the two-bond model.  In Eq.(6), the operators 

ijC describes anharmonic terms of the type i jν ν , while in Eq.(7) the operators ijM describes 

interbond couplings which in configuration space, are of the type i jrr , where ir  and jr are the 

displacement vectors of bonds i  and j  from their equilibrium values. 
 
In this study, we able to show that the model Hamiltonian (Eq. (5)) provides a complete 
description of stretching modes of polyatomic  molecules whose precision is optimum  
satisfactory as that of any previously considered model. In addition, we derive an important 
result on the theory of discrete groups which opens the way for applications to molecules of any 
symmetry. 
 
Now, the quantum numbers iν correspond to the number of quanta in each oscillator while V is 

the total vibrational quantum number given by 
 

V =
1

n

i
i

ν
=
∑            (8) 

 
For a particular polyad, the total vibrational quantum number is always conserved. The inclusion 
of 

ijM  in the local Hamiltonian operator cannot affect the conservation rule.  

 
RESULTS AND DISCUSSION 

 
In this study, we use the algebraic parameters . . , , , &i e A A Nλ λ′ ′ , to study the vibrational spectra 
of two C78 isomers where N  is the vibron number. After considering the common coupled and 
uncoupled bond-bond interaction in the molecular configuration in case of two C78 isomers and 
also considering the Majorana couplings, on the basis of the symmetry of the molecules, the 
numbers of algebraic parameters are reduced to four. In this regard, one should note that this is 
the unique beauty of the algebraic model where one needs only a fewer parameters to describe 
the vibrational spectra of a molecule with a good accuracy. 
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The values of Vibron number (N ) can be determined by the relation [12], 

1e
i

e e

N
x

ω
ω

= −   ( 1,2.......i = )            (9) 

 
where eω and e exω are the spectroscopic constants . 

 
For two C78 isomers in normal mode, we can have the values of eω  and e exω for the C-C bond 

from the study of Nakamoto [13] and that of Huber and Herzberg [14].Using the values of 

eω and e exω for the bond C-C we can have the initial guess for the value of the vibron number 

N . It may be noted here that in the algebraic approach, there is provision to change (not more 
than ±20%) the value of N  to get better results. This is equivalent to change the single-bond 
anharmonicity according to the specific molecular environment, in which it can be slightly 
different. 
 
To obtain a starting guess for the parameter A we use the expression for the single-oscillator 
fundamental mode which is given as, 
 

( 1) 4 ( 1)E A Nν = = − −          (10) 
 
Using the Eq. (10), A  can be obtained as, 

4(1 )

E
A

N
=

−
           (11) 

 
where A and E are the average values of the algebraic parameters'A s and 'E s . 
 
To obtain the initial guess forλ , whose role is to split the initially degenerate local modes, 
placed here at the common valueE , used in Eq.(11). Such an estimate is obtained by considering 
the following simple Hamiltonian matrix structure 
 

4 ( 1) 4 (2 1)

4 ( 1) 4 (2 1)

A N A N N N

N A N A N N

λ λ
λ λ

′− − − − + − 
 ′− − − − − + 

    (12) 

 
We easily find that 
 

1 2

2

E E

N
λ

−
=          (13) 

and   1 2

6

E E

N
λ

−
′ =          (14) 

 
To have better results a numerical fitting procedure (in a least-square sense) is required to obtain 
the parameters A, A′  λ  and λ′ starting from the values as given by (Eq. 11), (Eq. 13) and (Eq. 
14). Initial guess for A′  may be taken as zero. 
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The fitting parameters along with the results based on experimental and calculated energies of 
distinct normal IR active modes of vibration of two C78 isomers, numbered according to their 
observed frequencies.  
 
Table: 1 shows the fitting algebraic parameters to study the normal IR active modes of vibration 
of C78 isomers where as the data of the Table: 2 and Table 3 are taken from experimental 
observations [7], which show a good agreement with the algebraic calculations by Lie algebra. 
 

Table 1: Fitting algebraic parameters of Isomer 2 and 3 of C78 ( A, λ , λ′  are in cm-1 where as N  is dimensionless) 
 

Molecules Vibron number Stretching algebraic parameters 
  N  A λ  λ′  
Isomer 2 of C78     140 -0.750 0.090 -0.020 
Isomer 3 of C78     140 -0.785 0.075 -0.007 

 
Table 2: The values (in cm−1) for the 37 distinct normal IR active modes of frequencies of Isomer 2 of C78 molecule 

 
 

Normal level .Exp  [7 ] 

 

.Cal  Deviation 
( . .)Exp Cal∆ −  

Percentage of error 

. .
100%

.

Exp Cal

Exp

∆ −
×  

1ν  419 417.0 2.0 0.48% 

2ν  435 433.8 1.2 0.28% 

3ν  444 442.2 1.8 0.41% 

4ν  461 459.0 2.0 0.43% 

5ν  467 467.4 -0.4 0.09% 

6ν  482 483.4 -1.4 0.29% 

7ν  488 484.2 3.8 0.78% 

8ν  494 492.6 1.4 0.28% 

9v  505 501.0 4.0 0.79% 

10v  519 517.8 1.2 0.23% 

11v  524 526.2 -2.2 0.42% 

12v  532 534.6 -2.6 0.49% 

13v  538 543.0 -5.0 0.93% 

14v  545 551.4 -6.4 1.17% 

15v  554 553.3 0.7 0.13% 

16ν  559 559.8 -0.8 0.14% 

17ν  565 568.2 -3.2 0.57% 

18ν  616 618.6 -2.6 0.42% 
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19ν  621 627.0 -6.0 0.97% 

20ν  631 635.4 -4.4 0.69% 

21ν  636 636.5 -0.5 0.08% 

22ν  644 643.8 0.2 0.03% 

23ν  652 652.2 -0.2 0.03% 

24ν  659 660.6 -1.6 0.24% 

25ν  679 677.4 1.6 0.24% 

26ν  687 685.8 1.2 0.17% 

27ν  692 694.2 -2.2 0.32% 

28ν  698 702.6 -4.6 0.66% 

29ν  705 711.0 -6.0 0.85% 

30ν  717 719.4 -2.4 0.33% 

31ν  725 727.8 -2.8 0.39% 

32ν  741 744.6 -3.6 0.49% 

33ν  768 769.8 -1.8 0.23% 

34ν  781 778.2 2.8 0.36% 

35ν  792 795.0 -3.0 0.38% 

36ν  800 803.4 -3.4 0.43% 

37ν  808 811.8 -3.8 0.47% 

( . . .) 3.036r m s∆ = cm-1 

 
Table 3 : The values (in cm−1) for the 34 distinct normal IR active modes of frequencies of Isomer 3 of C78 molecule 

 
Normal level .Exp  [7 ] 

 
.Cal  Deviation 

( . .)Exp Cal∆ −  
Percentage of error 

. .
100%

.

Exp Cal

Exp

∆ −
×  

1ν  436 436.5 -0.5 0.11% 

2ν  442 442.4 -0.4 0.09% 

3ν  457 457.5 -0.5 0.11% 

4ν  463 464.2 0.8 0.17% 

5ν  473 472.6 0.4 0.08% 

6ν  480 479.4 0.6 0.13% 

7ν  486 485.2 0.8 0.16% 

8ν  491 491.1 -0.1 0.02% 

9v  498 496.9 1.1 0.22% 

10v  503 502.8 0.2 0.04% 
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11v  507 506.2 0.8 0.16% 

12v  528 527.2 0.8 0.15% 

13v  544 544.8 -0.8 0.15% 

14v  552 550.7 1.3 0.24% 

15v  582 581.0 1.0 0.17% 

16ν  621 623.0 -2.0 0.32% 

17ν  629 628.9 0.1 0.02% 

18ν  635 634.7 0.3 0.05% 

19ν  640 641.5 -1.5 0.23% 

20ν  646 647.3 -1.3 0.20% 

21ν  652 653.2 -1.2 0.18% 

22ν  658 659.1 -1.1 0.17% 

23ν  678 676.7 1.3 0.19% 

24ν  683 682.6 0.4 0.06% 

25ν  690 689.3 0.7 0.10% 

26ν  696 695.2 0.8 0.11% 

27ν  708 707.0 1.0 0.14% 

28ν  725 724.6 0.4 0.06% 

29ν  767 766.6 0.4 0.05% 

30ν  777 775.9 1.1 0.14% 

31ν  781 781.7 -0.7 0.09% 

32ν  787 787.6 -0.6 0.07% 

33ν  793 791.0 2.0 0.25% 

34ν  798 796.7 1.3 0.16% 

( . . .) 0.95r m s∆ = cm-1 

 
CONCLUSION 

 
We have presented here an algebraic model of coupled one-dimensional Morse oscillators which 
can be used to describe C-C stretching IR active vibrations of any polyatomic molecule. This 
model is the algebraic analogue of the model of proposed by Child [5] By making use of 
algebraic methods we avoid complications due to the convergence of integration in the solution 
of coupled differential Schrödinger equations. The algebraic equation (Eq.5) can be solved easily 
even for large n and thus one can use it to study C-C stretches of small, intermediate and large 
molecules. The only limitation is the size of the matrices to diagonalize. However, we think that 
the most important (and novel) result is that, by making use of inter-bond interactions, one is 
able to impose the point symmetry of the molecule in a simple and straightforward way, thus 
bypassing the difficulty associated with the construction of symmetry adapted states. In view of 
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this result, we think that simple and yet reliable calculations of C-C stretches of molecules of any 
geometry can now be done in terms of few parameters representing the inter-bond interactions. 
Moreover by this method the hitherto unknown states can also be predicted which help 
enormously to detect the state experimentally. 
 
In this paper we presented only IR active modes of vibrations of two isomers of C78

 which are in 
good agreement with other experimental result. Above all, the r.m.s. deviation values suggests 
the precision of the calculation. Since the approach is very much successful in explaining the IR 
active vibrational frequencies of isomers of fullerene C78, so it is hoped that with the further 
advancement of this U(2) model, the Raman active modes of vibrations  of isomers of fullerene 
C78 can also be explained.   
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