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ABSTRACT

The vibrational energy levels of two Crg fullerene isomers, having C,, symmetry are calculated

considering the local Hamiltonian of Morse potential using the U(2) Lie algebra. Here each
bond of the molecule is replaced by a corresponding Lie algebra and finally the Hamiltonian is
constructed considering the interacting Casimir and Majorana invariant operators. The normal
IR active stretching modes of vibration of isomers of C;s are then calculated using this
Hamiltonian to fit the experimental results.
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INTRODUCTION

Molecular spectroscopy is undergoing an essenhahge due to the rapid development of
sophisticated experimental approaches, at presesiecular spectroscopy is going through an
exciting time of renewed interest. Due to its numaer connections with other scientific areas,
this branch of modern physics is playing an esakntie in both experimental and theoretical
approaches to understanding a huge number of iamggptoblems. In recent years the algebraic
model attracted a wider scientific community foe #mnalysis and interpretation of experimental
rovibrational spectra of small and medium-sizedenoles [1]. The proposed model is based on
the idea of dynamic symmetry, which in turn, is gsed through the language of Lie algebras.
By applying algebraic techniques, one obtains afectfe Hamiltonian operator that
conveniently describes the rovibrational degreefreddom of the physical system. With this
framework, any specific mechanism relevant for ¢toerect characterization of the molecular
dynamics and spectroscopy can be accounted. Aligebvadels are formulated such that they
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contain the same physical information for bathinitio theories (based on the solution of the
Schrodinger equation) and semi empirical approadmesking use of phenomenological
expansions in powers of appropriate quantum numbers

The new theoretical concept- Vibron model (based.ienalgebra) to study molecular spectra
was built in the last part of the 20th centuryZlL, This new model seems to offer a concrete and
complementary technique to the traditional appreacused in molecular spectroscopy. The
algebraic model (Vibron model) was originally deod for diatomic and tri-atomic molecules
[3,4]. U(4) and U(2) algebraic model been usedasdrf the analysis of experimental data. It is
to be pointed out that the U(4) model becomes cmatgld when the number of atoms in a
molecule increases more than four. The Vibron meds applied successfully in describing the
overtone frequencies of linear and bent molecugsThe main features and basic applications
of these methods have been described by lachefld_anine and Oss. The brief review of the
research work done in this field up to 2000 andpbésspectives in the first part of 21st century
was presented by lachello and Oss [6].

Both the isomers of £g considered in this theoretical work have the sagmemetry C,, ). The

symmetry is an extremely important concept in tegetbpment of scientific knowledge. The
beauty of symmetry rests in its connection to asjds invariance in a physical system. Such
invariance leads directly to conserved quantitiesich in a quantum mechanical framework
allow one to observe specific degeneracy in theggngpectrum and to introduce a meaningful
labeling scheme for the corresponding eigenstates.

In this paper, U(2) Lie Algebraic theory is usedjieh is an excellent alternative mathematical
treatment with less number of algebraic paramedtersalculate more precisely the stretching

vibrational IR active frequencies of two isomerduferene Gs which shows a good agreement

with respect to experimental values [ 7 ]. The hitgee approach may help us to determine the
different energy bands other than the IR activgeaof isomers of fullerene,g

2. Review of U(2) Algebraic Theory:

One of the most interesting areas of current rekear molecular physics is the study of the
vibrational excited states of medium and large k. In view of the considerable amount of
experimental activity in this area, one need theessity of the theoretical models by which the
interpretation of the experiential data can fithwitesired degree of accuracy. For medium — size
and large molecules , models based directly onstilation of the many body differential
Schrodinger equation with interatomic potentisdsdime rather awkward and difficult to apply.
Similarly, straight forward Dunham like expansiamtain a large number of parameters which
can not be determined from the few available data.

Now, consider a model [8, 9] of coupled anharmonic oscillators, which appear &cdee IR
active vibrational stretching energies with desidegree of accuracy in terms of less number of
parameters. In constructing this model, we usasbmorphism of the Lie algebra of U(2) with
that of one dimensional Morse oscillator. The egjates of the one dimensional Schrddinger
equation,hy = gy with a Morse potential [10]
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h(p.x) = p?/ 2u+ D[1- expt-ax)f @y

which can be put into one to one correspondenck thig representations ofJ (2) 1 O(2) ,
characterized by the quantum numb|eN$m> with the provision that one takes only the positiv

branch of m, iem= N, N-2, ... .. 1 or O forN = odd or evenN = integer). The Morse
Hamiltonian corresponds in the U(2) basis to a &nkfamiltonianh =&, + AC, where C is the

invariant operator oD(2).
The eigenvalues ofi are

£=¢g,+A(M -N?) (2)
where m=N,N-2,..........or 0 (N =Integer) andA is the normalization constant,.

Introducing the vibrational quantum numhee (N -m)/2 , Eq.(2) can be rewritten as,
£=¢g,-4A(Nv-V*) , wherey =0,1,....... N /zor I\IT_l(WhereN =evenorodd (3)

The value ofg,, A and N are given in terms @f, D anda by using the following relations

g =-D, —-4AN =ha (2D /u)'?, 4A=-Wa?|2u
where Dis the dissociation energy andis the reduced mass. Now, one can easily verify tha
these are the eigenvalues of the Morse oscillator.

Now consider a molecule with bonds. In the algebraic model, each banid replaced by an
algebra with Hamiltonian h =&, + A,C.  [11,12] where C, s the invariant operator with

eigenvalues —-4(N,v; -v?). The bonds interact with a bond—bond interactibwo types of
interaction are usually considered in term of twgerators C; andM;, called Casimir and

Majorana operators respectively, where the Caswoperator has only the diagonal matrix
element, where as the Majorana operators havedmgional and off-diagonal matrix elements.

They are invariant operators of the combined alagfy (2)and U, (2) in the group lattice [12].

0(2)00,(2)
uEOU,E ™~ 9@ )

\ U, (2) /

Their physical meaning can be seen from the matements given by Eq. (6) and Eq. (7).

The algebraic model Hamiltonian we consider thisstha following form [12]
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H = Eo"'zn: AC, +Zn:AjC|j +Zn:/]ijMij 5)

i(] i(]

The matrix elements with the invariant Casimir Majorana operators are as follows

(N, VNV, ‘Cij IN; VSN VD) = 4@, +v P =@ +v (N +N,)] (6)
(NLVNGY MG NG NG = (N +Nw = 200 )
<Ni’Vi +1;Nj WV _]"Mij |Ni Vi ;Nj ’VJ-> :_E/j q/i +1)(Ni -V )(I\lj —V; + 1)}/2 (7)

(N;,v; =N j+1‘Mij ‘Ni VN v == v, + DN —v )N, -y, + nt*

Eq.(7) is a generalization to n bonds of the twaébanodel. In Eq.(6), the operators
C, describes anharmonic terms of the type,, while in Eq.(7) the operator; describes

interbond couplings which in configuration spaces af the typerr,, wherer, and r;are the
displacement vectors of bondsand j from their equilibrium values.

In this study, we able to show that the model Hamian (Eq. (5)) provides a complete
description of stretching modes of polyatomic moales whose precision is optimum
satisfactory as that of any previously consideremtieh In addition, we derive an important
result on the theory of discrete groups which opgbéesway for applications to molecules of any
symmetry.

Now, the quantum numbeis correspond to the number of quanta in each osmillahile V is
the total vibrational quantum number given by

V=3 ®)

For a particular polyad, the total vibrational qusn number is always conserved. The inclusion
of M, in the local Hamiltonian operator cannot affe@ tdonservation rule.

RESULTS AND DISCUSSION

In this study, we use the algebraic parameiers, A',4,A" & N, to study the vibrational spectra
of two Ggisomers whereN is the vibron number. After considering the comneonipled and
uncoupled bond-bond interaction in the molecularfigoration in case of two fgisomers and
also considering the Majorana couplings, on thasbasthe symmetry of the molecules, the
numbers of algebraic parameters are reduced to liodhis regard, one should note that this is
the unique beauty of the algebraic model wherergrezls only a fewer parameters to describe
the vibrational spectra of a molecule with a goocuaacy.
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The values of Vibron numbeiN) can be determined by the relation [12],
N=-% -1 (i=12...) @)

e

wherew, and a),x, are the spectroscopic constants .

For two Ggisomers in normal mode, we can have the valueg,olnd «,x,for the C-C bond
from the study of Nakamoto [13] and that of Hubed dlerzberg [14].Using the values of
aw,and w.x for the bond C-C we can have the initial guesstlier value of the vibron number

N . It may be noted here that in the algebraic apgprothere is provision to change (not more
than £20%) the value oN to get better results. This is equivalent to cleatige single-bond
anharmonicity according to the specific moleculavinment, in which it can be slightly
different.

To obtain a starting guess for the paramétave use the expression for the single-oscillator
fundamental mode which is given as,

E(v=1)=-4A(N - 1) (10)

Using the Eq. (10)A can be obtained as,
E

4(1-N)

A=

(11)

where Aand E are the average values of the algebraic param&teend E's.

To obtain the initial guess fdr, whose role is to split the initially degenerabedl modes,

placed here at the common valieused in Eq.(11). Such an estimate is obtained hgidering
the following simple Hamiltonian matrix structure

-4A(N -1)- 4A' (2N - 1+ AN -AN (12)
-AN -4A(N -1)- 4A' (2N — 1+ AN
We easily find that
-E
2N
-E
and A= E-E (14)
6N

To have better results a numerical fitting procedim a least-square sense) is required to obtain
the parameterd, A A and A’ starting from the values as given by (Eq. 11), (E?). and (Eq.
14). Initial guess forA" may be taken as zero.
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The fitting parameters along with the results basedxperimental and calculated energies of
distinct normal IR active modes of vibration of tWhs isomers, numbered according to their
observed frequencies.

Table: 1 shows the fitting algebraic parametersttaly the normal IR active modes of vibration
of Czgisomers where as the data of the Table: 2 and Taldee taken from experimental
observations [7], which show a good agreement thighalgebraic calculations by Lie algebra.

Table 1: Fitting algebraic parameters of Isomer 2 ad 3 of G5 (A, A, A" are in cm* where asN is dimensionless)

Molecules Vibron number Stretching algebraic paranse

N A A A
Isomer 2 of Gg 140 -0.750 0.090 -0.020
Isomer 3 of Gg 140 -0.785 0.075 -0.007

Table 2: The values (in critt) for the 37 distinct normal IR active modes of frguencies of Isomer 2 of G molecule

Normal level Exp. [7] Cal. Deviation Percentage of error
A(Exp.—Cal.) Al|Exp.—Cal.
A[EX=Cal] ) 00
Exp.

v, 419 417.0 2.0 0.48%
v, 435 433.8 1.2 0.28%
V, 444 442.2 1.8 0.41%
v 461 459.0 2.0 0.43%

4
Vs 467 467.4 -0.4 0.09%
Ve 482 483.4 -1.4 0.29%
v, 488 484.2 3.8 0.78%
Vs 494 492.6 14 0.28%
v 505 501.0 4.0 0.79%

9
519 517.8 12 0.23%

VlO
524 526.2 -2.2 0.42%

Vll
532 534.6 -2.6 0.49%

V12
538 543.0 -5.0 0.93%

V13
545 551.4 -6.4 1.17%

V14
554 553.3 0.7 0.13%

V15
v 559 559.8 -0.8 0.14%

16
v 565 568.2 -3.2 0.57%

17
616 618.6 -2.6 0.42%

l/:L8
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Vg 621  627.0 -6.0 0.97%
Y 631 6354 -4.4 0.69%

20
Y 636  636.5 -0.5 0.08%

21
Y 644  643.8 0.2 0.03%

22
Y 652  652.2 -0.2 0.03%

23
659  660.6 -1.6 0.24%

Vou
679  677.4 1.6 0.24%

I/25
687  685.8 1.2 0.17%

V26
692  694.2 2.2 0.32%

I/27
698  702.6 -4.6 0.66%

I/28
705  711.0 -6.0 0.85%

V29
Y 717 7194 2.4 0.33%

30
Y 725  727.8 -2.8 0.39%

31
Y 741 744.6 -3.6 0.49%

32
Y 768  769.8 -1.8 0.23%

33
Y 781 7782 2.8 0.36%

34
Y 792 795.0 -3.0 0.38%

35
800  803.4 -3.4 0.43%

I/36
808  811.8 -3.8 0.47%

I/37

A(r.ms.) = 3.03€cm™

Table 3 : The values (in crit) for the 34 distinct normal IR active modes of frgquencies of Isomer 3 of G molecule

Normal level Exp. [7] Cal. Deviation Percentage of error
A(Exp.—Cal.) A|Exp.—Cal|
AlExp.—Cal] ) o
Exp.
v, 436 436.5 -0.5 0.11%
v, 442 442.4 -0.4 0.09%
V, 457 457.5 -0.5 0.11%
v 463 464.2 0.8 0.17%
4
Ve 473 472.6 0.4 0.08%
Vs 480 479.4 0.6 0.13%
v, 486 485.2 0.8 0.16%
vV 491 491.1 -0.1 0.02%
8
v 498 496.9 11 0.22%
9
503 502.8 0.2 0.04%
VlO
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vy, 507 506.2 0.8 0.16%
528 527.2 0.8 0.15%
Vio
544 544.8 -0.8 0.15%
Vis
552 550.7 1.3 0.24%
Vi
582 581.0 1.0 0.17%
Vis
v 621 623.0 -2.0 0.32%
16
v 629 628.9 0.1 0.02%
17
v 635 634.7 0.3 0.05%
18
v 640 641.5 -1.5 0.23%
19
v 646 647.3 -1.3 0.20%
20
v 652 653.2 -1.2 0.18%
21
v 658 659.1 -1.1 0.17%
22
v 678 676.7 1.3 0.19%
23
v 683 682.6 0.4 0.06%
24
v 690 689.3 0.7 0.10%
25
v 696 695.2 0.8 0.11%
26
v 708 707.0 1.0 0.14%
27
v 725 724.6 0.4 0.06%
28
v 767 766.6 0.4 0.05%
29
v 777 775.9 1.1 0.14%
30
v 781 781.7 -0.7 0.09%
31
v 787 787.6 -0.6 0.07%
32
v 793 791.0 2.0 0.25%
33
v 798 796.7 1.3 0.16%

w
N

A(r.ms.) = 0.95cm*
CONCLUSION

We have presented here an algebraic model of cduple-dimensional Morse oscillators which
can be used to describe C-C stretching IR actibeations of any polyatomic molecule. This
model is the algebraic analogue of the model ofppsed by Child [5] By making use of
algebraic methods we avoid complications due toctiverergence of integration in the solution
of coupled differential Schrédinger equations. algebraic equation (Eg.5) can be solved easily
even for largen and thus one can use it to study C-C stretchesnall, intermediate and large
molecules. The only limitation is the size of thatrices to diagonalize. However, we think that
the most important (and novel) result is that, bgkimg use of inter-bond interactions, one is
able to impose the point symmetry of the molecuala isimple and straightforward way, thus
bypassing the difficulty associated with the camgipon of symmetry adapted states. In view of
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this result, we think that simple and yet reliatddculations of C-C stretches of molecules of any
geometry can now be done in terms of few paramegmesenting the inter-bond interactions.
Moreover by this method the hitherto unknown states also be predicted which help

enormously to detect the state experimentally.

In this paper we presented only IR active modeghohtions of two isomers of gwhich are in
good agreement with other experimental result. &baWN, the r.m.s. deviation values suggests
the precision of the calculation. Since the appndacsery much successful in explaining the IR
active vibrational frequencies of isomers of fudlee Gg, so it is hoped that with the further
advancement of this U(2) model, the Raman activdes®f vibrations of isomers of fullerene
Crgcan also be explained.
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