Isothiocyanates, sterol and triglycerides from *Raphanus sativus*

Consolacion Y. Ragasa\(^{a,b,*}\), Ma. Carmen S. Tan\(^{b}\), Marissa G. Noel\(^{b}\), and Chien-Chang Shen\(^{c}\)

\(^{a}\)Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila1004, Philippines

\(^{b}\)Chemistry Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna, Philippines

\(^{c}\)National Research Institute of Chinese Medicine, 155-1, Li-Nong St., Sec. 2, Taipei, Taiwan

ABSTRACT

Chemical investigation of the dichloromethane extract of freeze-dried *Raphanus sativus* roots led to the isolation of 4-methylthio-3-butenyl isothiocyanate or raphasatin (1\(^{a}\)), 4-(methylthio)butyl isothiocyanate or erucin (1\(^{b}\)), \(\beta\)-sitosterol (2) and unsaturated triglycerides (3). The structures of 1\(^{a}\) and 1\(^{b}\) were elucidated by extensive 1D and 2D NMR spectroscopy, while those of 2 and 3 were identified by comparison of their NMR data with those reported in the literature.

Keywords: *Raphanus sativus*, Brassicaceae, 4-methylthio-3-butenyl isothiocyanate, 4-(methylthio)butyl isothiocyanate, \(\beta\)-sitosterol, triglycerides

INTRODUCTION

Raphanus sativus (radish), locally known as labanos is used as vegetable and reputed to possess diverse medicinal properties. It is used as anthelmintic, antifungal, antibacterial, antiscorbutic, diuretic, laxative, tonic, carminative, antiscorbutic, stimulant, stomachic, chologogue, lithotriptic, emmenagogue [1]. The aqueous extract of the bark of *R. Sativus* significantly decreased the weight of kidney stones and showed an increase in the 24 h urine volume of rats [2]. The fresh juice of radish exhibited gastro protective potential [3]. Another study reported that Japanese radish sprout exhibited hypoglycemic activity in both the normal and diabetic rats and partly improved lipid metabolism in the normal rats [4]. Furthermore, radish sprouts extracts exhibited antioxidant properties and significantly induced bile flow in rats [5]. The methanolic and water extracts of radish reduced the carbon tetrachloride induced hepatotoxicity in albino rats [6]. The aqueous extract of radish seeds exhibited antibacterial properties attributed to the active principle, raphanin [7]. Radish sprouts and mature taproot contain glucosinolates, isothiocyanates, phenolics and anthocyanins [8]. 4-Methylthio-3-butenyl isothiocyanate was reported as a principal antimitagen in radish [9]. It induces detoxification enzymes in HepG2 human hepatoma cell line [10]. It reduces cell proliferation in a dose-dependent manner and apoptosis in colon carcinoma cell lines [11]. Another constituent of radish is 4-(methylthio)butylisothiocyanate which increases significantly the p21 protein expression and ERK1/2 phosphorylation in a dose-dependent manner to inhibit PC3 cell proliferation(P<0.01) [12]. It was also reported to selectively affect cell-cycle progression and apoptosis induction of human leukemia cells [13]. Another study reported that the major fatty acids in seed lipids of radish were erucic, oleic, linoleic, and linolenic acids, while the major fatty acids in radish family lipids were linolenic acid (52–55%), erucic acid (30–33%), and palmitic acid (20–22%) [14].
We earlier reported the isolation of β-sitosterol, unsaturated triglycerides and the essential fatty acids, linoleic acid and α-linolenic acid [15]. We report herein the isolation and identification of 4-methylthio-3-butenyl isothiocyanate (1a), 4-(methylthio)butyl isothiocyanate (1b), β-sitosterol (2) and unsaturated triglycerides (3) from a local collection of Raphanus sativus roots.

4-Methylthio-3-butenyl isothiocyanate (1a): colorless oil. 1H NMR (CDCl$_3$, 600 MHz): δ 2.25 (s, Me), 3.53 (t, J = 6.6 Hz, H$_2$-1), 2.50 (dt, J = 7.2, 6.6 Hz, H$_2$-2), 5.32 (dt, J = 15.0, 7.2 Hz, H-3), and 6.18 (d, J = 15.0 Hz, H-4); 13C NMR (CDCl$_3$, 150 MHz): δ 14.73 (Me), 45.13 (C-1), 33.88 (C-2), 120.04 (C-3), 129.15 (C-4), 131.39 (SCN).

4-(Methylthio)butyl isothiocyanate (1b): colorless oil. 1H NMR (CDCl$_3$, 600 MHz): δ 2.09 (s, Me), 3.56 (t, J = 6.6 Hz, H$_2$-1), 2.52 (t, J = 7.2 Hz, H$_2$-2), 1.72 (m, H$_2$-3), 1.80 (m, H$_2$-4); 13C NMR (CDCl$_3$, 150 MHz): δ 15.43 (Me), 44.71 (C-1), 33.29 (C-2), 25.82 (C-3), 28.84 (C-4), 131.39 (SCN).

MATERIALS AND METHODS

General Experimental Procedures
NMR spectra were recorded on a Varian VNMRS spectrometer in CDCl$_3$ at 600 MHz for 1H NMR and 150 MHz for 13C NMR spectra. Column chromatography was performed with silica gel 60 (70-230 mesh). Thin layer chromatography was performed with plastic backed plates coated with silica gel F$_{254}$ and the plates were visualized by spraying with vanillin/H$_2$SO$_4$ solution followed by warming.

Sample Collection
Three (3) kg of radish roots was bought from Arranque market, Manila, Philippines in January 2014. It was identified as Raphanus sativus at the Botany Division, Philippine National Museum.

Extraction and Isolation
Fresh radish roots (three kilos) were peeled and cubed in one inch dimensions before lyophilization. The resultant dried samples (294.6732 g) were ground fine and incubated with freshly grated radish and two liters of distilled water for three hours. One liter of CH$_2$Cl$_2$ was added to the mixture which was then left in a closed vessel for three days. The mixture was filtered to separate the CH$_2$Cl$_2$ extract which was then concentrated using a rotary evaporator. Subsequent drying over N$_2$ gas afforded 0.7602 g of crude extract.

A glass column 18 inches in height and 1.0 inch internal diameter was used for the fractionation of the crude extracts. Ten milliliter fractions were collected. Fractions with spots of the same R_f values were combined and rechromatographed in appropriate solvent systems until TLC pure isolates were obtained. A glass column 12 inches in height and 0.5 inch internal diameter was used for the rechromatography. Five milliliter fractions were collected. Final purifications were conducted using Pasteur pipettes as columns. One milliliter fractions were collected.

The crude extract (0.7602 g) was chromatographed by gradient elution using increasing proportions of acetone in CH$_2$Cl$_2$ (10% increments) as eluents. The 10% to 20% acetone in CH$_2$Cl$_2$ fraction was rechromatographed in appropriate solvent systems until TLC pure isolates were obtained. A glass column 12 inches in height and 0.5 inch internal diameter was used for the rechromatography. Five milliliter fractions were collected. Final purifications were conducted using Pasteur pipettes as columns. One milliliter fractions were collected.

4-Methylthio-3-butenyl isothiocyanate (1a): colorless oil. 1H NMR (CDCl$_3$, 600 MHz): δ 2.25 (s, Me), 3.53 (t, J = 6.6 Hz, H$_2$-1), 2.50 (dt, J = 7.2, 6.6 Hz, H$_2$-2), 5.32 (dt, J = 15.0, 7.2 Hz, H-3), and 6.18 (d, J = 15.0 Hz, H-4); 13C NMR (CDCl$_3$, 150 MHz): δ 14.73 (Me), 45.13 (C-1), 33.88 (C-2), 120.04 (C-3), 129.15 (C-4), 131.39 (SCN).

4-(Methylthio)butyl isothiocyanate (1b): colorless oil. 1H NMR (CDCl$_3$, 600 MHz): δ 2.09 (s, Me), 3.56 (t, J = 6.6 Hz, H$_2$-1), 2.52 (t, J = 7.2 Hz, H$_2$-2), 1.72 (m, H$_2$-3), 1.80 (m, H$_2$-4); 13C NMR (CDCl$_3$, 150 MHz): δ 15.43 (Me), 44.71 (C-1), 33.29 (C-2), 25.82 (C-3), 28.84 (C-4), 131.39 (SCN).
RESULTS AND DISCUSSION

Silica gel chromatography of the dichloromethane extract of freeze-dried Raphanus sativus roots afforded a mixture of 4-methylthio-3-butenyl isothiocyanate (1a) and 4-(methylthio)butyl isothiocyanate (1b), β-sitosterol (2) and unsaturated triglycerides (3). The structures of 1a and 1b were elucidated by extensive 1D and 2D NMR spectroscopy and confirmed by comparison of their 13C NMR spectroscopy with those of 4-methylthio-3-butenyl isothiocyanate [16,17] and 4-(methylthio)butyl isothiocyanate [18], respectively.

The structures of 2 and 3 were confirmed by comparison of their 13C NMR data with those reported in the literature for β-sitosterol [19] and unsaturated triglycerides [20], respectively. The presence of α-linolenic acid in the triglycerides (3) was deduced from the methyl triplet at δ 0.96 (t, J = 7.8 Hz), the double allylic methylens at δ 2.78 and the olefinic protons at δ 5.34 (m) [27]. The presence linoleic acid in 3 was deduced from the methyl triplet at δ 0.86 (t, J = 6.6 Hz), the double allylic methylene at δ 2.78 and the olefinic protons at δ 5.34 (m) [28]. Based on integrations of the triglyceride methyls at δ 0.96 (t, J = 7.8 Hz) and δ 0.86 (t, J = 6.6 Hz), the ratio of linolenic acid and linoleic acid in 3 is about 1:1.

4-Methylthio-3-butenyl isothiocyanate (1a) was reported to be the principal antimutagen of radish [21], exhibited chemopreventive effects against pancreatic carcinogenesis in hamster [22], and showed inhibition of genotoxicity in in $vivo$ and in $vitro$ assay systems [21, 23]. It was also reported to possess antimicrobial activity [24], exert free radical scavenging effects [25, 26], inhibit cell proliferation [23, 27, 28] and induce apoptosis in human cancer cells [24, 29].

4-(Methylthio)butyl isothiocyanate (1b) exhibited in $vitro$ antineoplastic activity and selectivity toward leukemia cells [30], increased in a dose-dependent manner p21 protein expression and ERK1/2 phosphorylation to inhibit prostate adenocarcinoma cells (PC3) cell proliferation [31], demonstrated anti-cancer effects [32-35], selectively affected cancer cell growth [36], and showed potential anti proliferative activity in several cultured cancer cell lines [32, 36-38].

Acknowledgment

A research grant from the De La Salle University Science Foundation through the University Research Coordination Office is gratefully acknowledged.

REFERENCES

