Available online at www.scholar sresear chlibrary.com

Scholars Research Library & P ey
] []
Scholars Research §’ %
Archives of Physics Resear ch, 2013, 4 (6):41-49 % o 9 9
(http://scholarsresearchlibrary.com/archive.html) % Y
Library

ISSN : 0976-0970
CODEN (USA): APRRC7

Method of Hermite series expansion for solving the relativistic linear
guantum simple harmonic oscillator problems

K offa, D.J%, J.F Omonil€®' S.X.K Howusu?

Department of Physics, Federal University Lokojakdja
“Department of Physics, Kogi State university, Angig

ABSTRACT

In this paper, the relativistic linear quantum siemarmonic oscillator problem is solved by the moekt of Fourier
Hermite series to derive the exact analytical sohs of the relativistic linear quantum simple hamrc oscillator.
The first profound physical result of this worktlie discovery of indefinitely fine corrections tw twell known
sequence of Schrodinger's quantum mechanical eigegies which become significant as the oscillatwves
faster and faster compared to the speed of lightaauo, especially the subatomic and elementaryighes. the
result implies corresponding hitherto unknown résuh the areas of theoretical and experimental Si¢g/ of
oscillations and vibrations, such as Solid Statgg$#ts, Statistical and Thermal Physics and Partiigysics.

Keywords. Relativistic linear quantum Simple Harmonic Oscillator, relatid Eigen energies, Hermite Series
Expansion, relativistic wave functions,

INTRODUCTION

Two important facts were established before theadisry of quantum mechanics. The first fact wastam the
realization that the allowed values of energy betwsub-atomic bodies are discrete- they involventyma jumps.
This tract began with Max Planck’s work on blacldpaadiation, and was greatly supported by NielkBotheory
of the hydrogen atom and was carried to fruition Werner Heisenberg's discovery of the matrix varsad
guantum mechanics.

The second fact began with the discovery of wavéigda duality of matter by Albert Einstein. Wavquation was
discovered by Erwin Schrodinger, and de BroglierS8dimger waves were interpreted as waves of préibaby
Max Born. This was the waves mechanics versioruahtym mechanics [1].

Schrodinger decided to find a wave equation fortenghat would give particle-like propagation whibie wave-
length becomes comparatively small. Paul A.M. Dipgoduced a wave equation for the electron thatbioed
relativity with quantum mechanics in 1928. In Sumlinger's wave equation, the kinetic energy usedds-
relativistic and hence does not satisfy the requingts of the special theory of relativity. Diragrmstrated that an
electron has additional quantum numbets,which is not a whole integer and can have onlyvidlees +1/2 and -
1/2. It corresponds to an additional form of angul@mentum ascribed to spinning motion.

The principles of correspondence and complementarithe old quantum theory, which also precededntum
mechanics was developed by Neil Bohr in 1923. Heliegh the principle to the problem of atomic emissand
absorption spectra. Subsequently, after a consigfgantum mechanics had been created, the chasticterof
atomic spectra were explained on a deeper foundatiith the essential features of the mathematpgaratus
being determined by the correspondence principle.
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The importance of this principle is not limited ieechanics alone. The principle is largely usedtirepareas like
guantum electrodynamics and elementary particlertheand undoubtedly will be an integral part of amgw
theoretical scheme. This study is centered in sglthe relativistic linear quantum simple harmoaogzillator
problem. It aims to achieve the following objectve

» Derive the exact analytical solutions of the reiatic linear quantum simple harmonic oscillat@ing the
method of fourier hermite series solutions

» Derive the relativistic Eigen energies of the iglatic linear quantum simple harmonic oscillataing the
method of fourier hermite series solutions

» Derive the relativistic wave functions of the raelatic linear quantum simple harmonic oscillatsing the
method of fourier hermite series solutions

* To investigate the physical consequences and applis of the wave functions and the energies agh
application in quantum statistical mechanics.

« Application of the 4 order energy to generalization of the quantumitp@mtfunctions of the thermodynamic
system and the corresponding generalization ofttie@modynamic potential of thermodynamic system

THEORY AND APPLICATIONS
For linear simple harmonic oscillator, the quantmechanical energy wave equation is given as:

_hZ 62

., @ 1
ih—- = {Zmo =t Emongz} P (1.1)

wherey is the quantum mechanical wave function for thedr simple harmonic oscillator, which is subjecthe
conditions of uniqueness and regularity everywlagre continuity across all boundaries and normadinat

The relativistic linear momentut and “kinetic energyT of a relativistic linear simple harmonic oscillataf non
rest massn, are given by Rosser (1964).

-1
- 2172 =
P = [1 - Z—z] : myu (1.2)
and
Pt
. 2
T= [1 - 1:—2] m,c? (1.3)
From (1.2) and (1.3), the kinetic energy operdtoff the relativistic linear simple harmonic osditiais given by

T =myct ——2 — et (1.4)

Replacing the kinetic energy in (1.1) with theffiasd the second terms of the right hand side .dj (it becomes

h 2, = 2 0% L w2x?

ih o Y, = {moc e o2 + Smewox } Y, (1.5)
wherey, is the second order quantum mechanical wave famétir the relativistic quantum linear simple harito
oscillator. This is the second order quantum meicia& wave equation for the relativistic linear gtiam simple
harmonic oscillator.

Similarly, replacing the kinetic energy operator(inl) with the first, second and the third ternmighe@ right hand
side of (1.4) it becomes

a 1
: — 2 2,2
lhalpz; = |myc” — Zmoﬁ_ 8m362m+§m0w0x l,l)4 (16)

wherey, is the fourth order quantum mechanical wave fumctar the relativistic linear quantum simple harrzon
oscillator.

Scholars Research Library

42



Koffa, D.J et al Arch. Phy. Res,, 2013, 4 (6):41-49

MATERIALSAND METHODS
In this study, Hermite series expansion of the tfowrder was applied to quantum quantum mechanieale

equation for the relativistic linear quantum simglarmonic oscillator. Consider the relativisticdar simple
harmonic oscillator quantum mechanical wave equaifahe fourth order given by

0= F41111(S() - 814S(F4111(S() + [(_12/14 +a,) + 2414252]}7411(5) + [(48142 - 4“414)5 - 32/14353]1741(5)

(12407 = 24y + ———=— | +164,7¢ F,(§) 1.7)
4 Uy
where
Ay = i§ (1.8)
€
@y =—s (1.9)
€4 ay
1
m /
%z(fﬁz (1.10)
h4
€= s (1.11)
and
€= (1.12)

Towards the solution of equation (1.7) it shoutdrinted that the state of the relativistic lineaamfum simple
harmonic oscillator is contained within the spatg—«,©) of all square integrable functions over the
interval (—e, o). Also, the Hermite polynomials constitute a seqeenf complete orthogonal functions in the
space. It therefore follows that there exist camtsta,, such that

CEDWWAGQ (1.13)
n=0

Hence simplifying using the well known recurrenceperties of the Hermite polynomials we obtain
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= D 2 A DO+ D+ D+ DAy Ha () = ) 2+ D+ Dz Hy(®
n=0 n=1
- Z 25(n+ 1)(n +2)(n + 3)(n + A, , H, (&)
n=0
(=64 ) ) 220+ D+ 2DAnes Ha(® + ) 6101 = 1) AHa(©)
+ Z 12(n + 1)2(n + 2) A, H, (&) + Z 12n(n + 1)(n + 2)A,, H, (&)
+ 24(n+ 1D+ 2)(n+3)(n + 4) A, Hy(6) + (12 — 2a,) ) nA, H, (&)
; ) 4 ) 4 nZl
+(12-200) ) 200+ D+ DAnaz Hy@ = ) (1= 2) An oo
n=0 n=3
- 2n(n+ 1)Aan (&) - 2n? Ay H, (&) - 4(n + 1)(11 + 2)2 Any Hn(é)

=D 20— D ApHa@ = ) 40+ DX+ 2) Ania

- Z an(n + 1)(n + 2) A, ,H,, (&) — Z 8(n+ 1)(n+2)(n +3)(n + 4) A, H, (©)

n=1

o 1
+(3—a4 )ZA H (e+216 nesHn (O + D 2+ DA oHa(©)
n=2

['e]

- Z S o H (O + Z 0+ D+ 2 + ) § (1= DA, @

+ Z (n+1)?A,H, (é_) + i %n(n + 1A, H, (&) + i%(n + 1D+ 2)(n + 3)4,,.H,(8)
+ Z £ (0= 2y o Ha (@ + i%n(n + 1) A, Hy (©)

+ Z 2 AnH (©)

+ Z (n+ D0+ 2,01, (0) + Z} (= DAH© + Z%(n + D

+ Dl Ha(® + Z S0+ D0+ DAz (@

£ 1) 1+ 2D+ )0+ DAy Ha (D (1.14)

From the coefficients of{, () we obtain the recurrence equation

15 E4 —mOCZ
0 = T - a4 + 64 a44 AO + 6A2 + 24A4 (1.15)

From the coefficients off, (§) we obtain the recurrence equation

51 E, —
= 3+ Ay + 645 + 12045 (1.16)

4 agt
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Generally,

O [(Eq — moc? 3, 15 15 . ; ,
0 =z —— —(@n+Da, +5n* +—n+— )4, + (n* +10n° + 35n° + 50n + 24) 4,44
€, ay 2 2 4

n=2

- 63+232+§ +55) 4,4, + 3 +ZA
n n Zn n+2 8n 4 n-2

1
+ EAn_4] (1.17)

GROUND LEVEL OF THE FOURTH ORDER
For the ground level of the relativistic linear gtiam simple harmonic oscillator of the fourth ordetrus choose
the coefficient of4, in the recurrence equation (1.15) to vanish

5 _ g ¢ amme (1.18)
g % €, at '

15
E4_'0 = m0C2 + ay E4_ a44 - T E4_ a4_4 (1.19)

E,, is the fourth order quantum mechanical energyhefdround level of the relativistic linear quantsimple
harmonic oscillator

or explicitly using (1.9), (1.10), and (1.11)

1 15 A%w,?

E4'0 = mOCZ + EhWO - § m0C2 (1.20)

FIRST LEVEL OF THE FOURTH ORDER
For the first level of the relativistic linear quam simple harmonic oscillator of the fourth ordetrus choose the
coefficient ofA; in the recurrence equation (1.16) to vanish

Sl _3q, 4+ Bmmee 121

4 ay 64 a44 - ( . )
51

E4‘1 = mOCZ + 3“4 64 a44 - T 64 a44 (1.22)

E,; is the fourth order quantum mechanical energyhef first level of the relativistic linear quanturimple
harmonic oscillator

or explicitly using (1.9), (1.10), and (1.11)

3 51 h%w,?
E4_'1 = m0C2 +§hW0 - =

e (1.23)

GENERAL LEVEL OF THE FOURTH ORDER
It is now obvious that for the general level of tledativistic linear quantum simple harmonic ostidlr we choose
the coefficients of,, in the recurrence relatiqii.17) to vanish

0 = Fammoc” @n+ Da, +om? + 2n+ 2 1.24
= erar n 50t +—n+— (1.24)

It follows from (1.24) that the fourth order quamtumechanical eigen energy of thé” level of the relativistic
linear quantum simple harmonic oscillator, dendigd, ,, is given by

R*wy? (3 , 15 15
8m CZ(‘“ +_n+—):n=0.1,2..,.,.(1.25)
0

1
E4’n = mOCZ + (n + E) hWO - 2 2 4
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GROUND LEVEL WAVE FUNCTION
The fourth order quantum mechanical energy of tloeid level of the relativistic linear quantum sisparmonic
oscillator as obtained is

, 1 15 h?w,?
E4o = moc” + Ehwo - EW (1.26)
and from the coefficients df, andH, in (1.14), the first recurrence relations becomes
1 1
Aps = _ZAo,z - EAO,O (1.27)
1 13 1
Aoz = =503~ (g5~ g54) s (1.28)

Substituting (1.27) and (1.28) into (1.13), agtie case of the non-relativistic problem, the gblevel wave
functionF, , of the relativistic linear quantum simple harmooszillator is obtained as thg series obtained from
the recurrence equations and the ground level eigergy

1 1
Fyo0 = AooHo + Ao Hy + Ag2Hy + AgsHz — (ZAO,Z + §A0,0> Hy
1 13 1
~ 55405 + (755~ 55 %) Aoa | s (1.29)

Simplifying equation (1.29), we obtain

1 13 1 1
F4‘0‘0 = AO,O (HO - _H4 e .) + AO,]. [Hl - ( a4> H5 ....] + AO,Z [Hz - ZH4 ....]

32 ) 160 60
+ Ao [H3 - %Hs ] (1.30)
Thus we obtain four linearly independent solutigien by
1
(F4,0.0)0 =4Aoo (Ho - §H4 e e ) (1.31)
B 13 1
(F4,o,o)1 =Ao1 [H1 - Sm - %0.’4) Hy ] (1.32)
(Fio0), = Aoz [Hz s ] (1.33)
1
(F4,o,o)3 =4Ao3 [Hs - %Hs ] (1.34)

The appropriate choice of the ground level wavefion is the first independent solution given by

1
(F4,0.0)0 =4Aoo (Ho - §H4 e ) (1.35)

FIRST LEVEL WAVE FUNCTION
The fourth order quantum mechanical energy of ttet fevel of the relativistic linear quantum siragharmonic
oscillator is

3 51 h%w,?
E4_'1 = m0C2 +§hW0 - =

e (1.36)

Using (1.36) and from the coefficients i andH, in (1.14), the recurrence relations becomes

Ay, = 1+hW° thOzA Ly 1.37)
1w="\331 52 1 A0~z A2 (1.
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1 39 a, Aw hAZw,2
13—( 24— ’ > 1 (1.38)

Ac = —— - 2y
L5 480 60 ' 120 80m,c?

Substituting (1.37) and (1.38) into (1.13), ashia tase of the non-relativistic problem the fiestel wave function
F, . of the relativistic linear quantum simple harmoogcillator is obtained as th, series obtained from the
recurrence equations and the first level eigenggngiven

1 hAw, h%w,? 1
Fur0 = A oHo + A1 Hy + Ay oHy + Ay 3Hs — BV + >4 " 16 Ao + 7 Aiz|Hy

L (B I fow, AL |H 1.39
207 7 \480 60 120 80mgcz) M| TC (139

Simplifying, equation (1.39) becomes

e = |y 1+hw0 h%w? u v lu 39 a4+hw0 h2wy? u
L0 IL0NT0 32 7 24 16 e LHIT1\480 60 120 80mge2) 7

1 1
+ A1,2 [HZ _ZH4 e .] + A1'3 [H3 - %HS ....] (1.4’0)
We also obtain four linearly independent solutierpressed as:
[ 1 Aw, h%wy?
(F4’1’0)0 = Al,O -HO - 5 + W - 16 H4 e s (1.41)
(Fyro). = 4 = (32 e o HIwe" ) (1.42)
4107y LT 480 60 1 120 80mgc2) '
[ 1
(F4’1‘0)2 = Al,Z HZ - ZH4 . .] (1.4‘3)
[ 1
(F4’1’0)3 = A1’3 -H3 - %HS aee .] (1.44)
The appropriate choice of the first level wave fimtis the second independent solution given by
(Fyro). = 4 (30 hwo  Rhwo (1.45)
4107y LT 480 60 1 120 80mgc2) '

RESULTSAND DISCUSSION

The fourth order relativistic quantum mechanical/@aquation for the relativistic linear quantum gienharmonic
oscillator is given as

a 1
jh — = 2 _ - - 2.2
ih T Y, (x, t) [moc 2m. 9x%  BmicZ oxt + 2mowox ]1/J4(x, t) (1.46)

Equation (1.46) is then reduced by separation oalkes to give

0= F," (&) = 8A,8F, M (€) + [(—12244 + ay) + 244,°E2]F, 1 (©) + [(484,° — 4a,1,)E — 324,°E%]F,1(§)
5 E, — myc? .
+ {(12/14 —2a4l, + —4> + 164, 54} F,. (&) (1.47)

4 Q4

We then seek the solution of (1.47) as a Hermitesef the form

@ =) An@ (148)
n=0
Hence the relativistic Eigen energies are obtaased
, 1 15 h2w,?
E4_'0 = moc + EhWO - ﬁ mOCZ (1.4’9)
, . 3 51 h%w,?
E4_'1 = m0C + EhWO - ﬁ m0C2 (1.50)

47
Scholars Research Library



Koffa, D.J et al Arch. Phy. Res,, 2013, 4 (6):41-49

h2wy?

3, 15 15
8m CZ(‘“ +_n+—):n=0.1,2..,.,.(1.51)
0

1
E4’n = mOCZ + (n + _> hWO - 2 2 4

2

from this method we obtain the wavefuctions

1
(F4,o.0)0 =Agp (Ho - §H4 e ) (1.52)

for the ground level and

~ 39 a, hw, h2w,?
(Fa10)y = Ava [Hi = 180 60 120 80myc2) °"
for the first level

(1.53)

Carefully observing each level of the fourth ordgrantum mechanical eigen energies of the relatvistiear
quantum simple harmonic oscillator, it may be ndtetE, , is a unique (hitherto unknown in any previous tigeo
of quantum mechanics) and physically most elegaat iateresting and natural (based upon the expetahe
physical facts available) generalization or extenf the second order quantum mechanical eigerggrad the
relativistic linear quantum simple harmonic ostileE, ,,. Herein lie profound physical and experimentatiast.

The first notable physical result of our work irtlie discovery of the indefinitely fine revisionsamrrections of the
well known sequence of Schrodinger’'s quantum mechbrigen energies or the linear quantum simplenbaic

oscillator which are more significant as the restsmmof the oscillator becomes smaller (or equitbleas the
oscillator moves faster and faster compared with $peed of light in vacuo)-especially the subatoamcl

elementary particles.

It is most interesting and instructive to note tiegt smaller the rest mass of the oscillator (aivexdently, the faster
it moves compared with the speed of light in vadhe) more significant are the fourth order corttierms to the
second order relativistic quantum mechanical eggrgies.

Secondly, it may also be noted that the harmonidlasor is the greatest showpiece of quantum meicisaFor it is
the most common system in nature, both in the mactbmicro worlds. Consequently, the revolutiorthiis study
implies corresponding hitherto unknown revolutioims all areas of theoretical and experimental phs/sid
oscillations and vibrations such as follows

Solid state physics
Statistical physics

Thermal physics
Elementary particle physics

Recommendation
This work can now be extended to the derivatiorthef eigen energies and eigen functions of the fis@aple
harmonic oscillator correct to all ordersidf; n=1,2,3,....

For instance it is obvious that our sixth ordematigistic quantum mechanical energy wave functiérine Isho,
denoted by, (x) will satisfy an equation of the form.

0 =E6 U6111111(x) +'€4 U61111(x) +'€2 U611(x)
1
+ By = mye®) - Emongz] Ue(®) (1.54)

subject to the condition of uniqueness and regylaeverywhere and continuity across all bounda@es!
normalization, wherd, is the sixth order relativistic quantum mechanieaérgy of the linear simple harmonic

oscillator ande, is constant of order 6 ift and hence their physical and mathematical apjicsit
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