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Abstract

Evaluation of performance of an indirect evapoetoooler (IEC) involves solving complex
differential and analytical equations. ArtificialeNral Networks (ANN) approach provides a
simple but powerful tool for predicting the perfante of IEC. This paper presents both
analytical approach as well as ANN approach in ipted) the performance of an IEC. ANN is
trained with analytical data using back-propagatearning algorithm with 13 different training
algorithms. The logistic sigmoidal function is takas transfer function. The ANN model is then
compared and validated using experimental data frerliterature. It was found that the most
efficient and most accurate training algorithms eveevenberg-Marquardt (LM) and Bayesian
Regularization (BR) back-propagation respectivefyjter satisfactory training of both the
models, the statistical values i.e. R2, RMS, co@Bvand AIC for the prediction of primary air
outlet temperature, () were 0.9999, 0.1786, 1M0319 and -3.43 & 0.9999, 0.0546, 0.31,
0.0030 and -5.79 respectively. Similarly, for thrediction of effectiveness () of IEC using the
above two models the statistical values were faonoke 0.9999, 0.0020, 0.33, 3.8138E-06 and -
12.46 & 0.9999, 0.0004, 0.08, 1.9827E-07 and -18e4pectively. This tool is highly useful for
designers to know apriori the performance charmties of IEC under a given set of
environmental conditions without undergoing comgtiexl analysis of the system. This model
can also be very useful for designers to preditethergy savings by an IEC.

Keywords: Artificial Neural Networks, Indirect Evaporativealer, Effectiveness, training.

Introduction

Researchers all over the world are forced to look dlternative ways to reduce energy
consumptions as a result of the energy crisis, whele world is facing. Air conditioning
equipments consume a major fraction of the totakgy consumption in any economy. Indirect
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evaporative cooling (IEC) worked by researchers rfiore than two decades is one of the
alternatives which can be used with evaporativeliogoand has the potential to replace a
conventional air conditioning system working onazbfluorocarbons. Thus it can not only save
useful power but is environment friendly with thevantage of using 100% ventilation air to the
conditioned space without increasing the relatwmidity of the conditioned space.

IEC works on the principle of heat transfer betwéen types of air namely primary and
secondary air. The air normally supplied from adgsair to the conditioned space is termed as
primary air. This air is cooled by secondary aithvthe help of heat transfer passages which are
in the form of tubes or plates. Water is sprayedtlom surface of passage through which
secondary air passes so that heat and mass tréadsésrplace between secondary air and wetted
surface thus reducing the temperature of both. piiiple is elucidated with the help of figl.

Nomenclature

C.rax: Crin Maximum and minimum heat capacity rate {@)/

Cuo Saturation specific heat (kJ/Rg)

iy, Enthalpy of air entering and leaving IEC (kJ/kg)

m,, m, Mass flow rate of primary and secondary air gkg/
NTU ,,NTU, Number of transfer units of primary and secondary
8,6, Dry bulb temperature of air entering and leavigg ICC)
6,0, Effective surface temperatufic)

Epr s Cooling effectivenesgpoimary and secondary air

&, Cooling effectiveness of IEC

One of the first attempts to model IEC analyticaligh coupled heat and mass transfer processes
analogy theory was by Maclaine-Cross and BanksK&jtleborough and Hseih [2] explained a
counterflow indirect evaporative cooler with thdghef numerical analysis to study the thermal
performance of the unit. A reasonable agreementdset calculated and measured performance
data qualitatively was achieved. A unified theooy €quipments working on the principle of
evaporative cooling based on the concept of effecturface temperature was given by Webb
[3]. Scofield and DesChamps [4] studied charadiesisof direct and indirect evaporative
cooling units, which utilize plate type air-to-&ieat exchanger. The system contains an indirect
evaporative cooling unit with a plate type heathager constituting first stage. Ambient air,
with low wet bulb temperature is sprayed with watethis unit before it flows in the plate heat
exchanger against indoor air taken as primarytaus resulting in reduction its temperature.
Cooling tower is used as the next stage to comditie primary air further. Author found a
monthly savings of 30% in the energy cost with teystem over conventional refrigeration
systems.

Scholars Research Library 328



T Ravi Kiran et al Arc. Apl. Sci. Res,, 1 (2) 327-343

=\
0“62&\;
)
g@(
N
P |
: g . P
2

ﬁ\;é\‘

&

@0
Fig. 1 Modd of Indirect Evapor ative cooler

Barun et al. [5] suggested effectiveness modelsoaling towers based on the principle of
saturation specific heat. Chen et al. [6] gave aaterpsimulation program for thermal and
hydraulic calculations for IEC performance whichswa quite agreement with the experimental
results. Peterson and Hunn [7] suggested a modadban analogy theory for an IEC and
compared it with experimental data. Erens and Dr§8jeproposed three analytical models and
showed that the optimum shape of the cooler untileveesult in a primary to secondary air
velocity ratio of about 1.4, taking the assumptibat the primary and the secondary air mass
flow rates are the same and that the same platengjsaused are on the primary and secondary
sides. Peterson [9] gave a simple but powerful mifmtecalculating the theoretical performance
of indirect evaporative coolers. Halasz [10] putwlard a generalized model based on non-
dimensional parameters for all types of evaporatiweling devices and established a rating
procedure for these devices. Guo and Zhao [11jeduthe effects of various parameters on the
performance of an IEC with the help of numericahdation. Chengqgin and Hongxing [12]
developed an analytical model for the indirect erapive cooling with parallel and counter flow
configurations. Within relatively narrow range gdevating conditions, humidity ratio of air in
equilibrium with water surface was assumed to beear function of the surface temperature. In
this model, effects of spray water evaporationagprater temperature variation along the heat
exchanger, non unity surface wettability and Lefaistor were taken into consideration. A good
agreement between results of analytical solutiom$ af numerical integrations was found.
Heidarinejad and Bozorgmehr [13] developed a madehdirect evaporative cooling starting
from the governing equations of heat and massfeais primary and secondary air and water
flows. Factors affecting performance of IEC suchnaass flow rates, geometry and flow
configuration has been investigated. Authors fotivad cooling efficiency depends considerably
upon mass flow rates ratios of primary and secgondarflows and spacing between plates of
wet and dry passages.
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From the above survey of previous work it is obgidat to predict the performance of an IEC
accurately requires solving conventional mathemahtiwodels consisting of complex differential
and analytical equations. Artificial Neural NetwsrfdNN) gives not only an accurate but viable
approach for modeling an IEC. This powerful teclueigs based on learning technique of human
brain. ANN model approach is particularly useful feystems which are complex and its
behavior is non-linear. It works by establishingekationship between input and output variables
with the help of neurons.

In the recent past there has been a considerableingy interest amongst researchers in using
ANN for modeling air conditioning devices. Sozen at. used ANN model approach for
thermodynamic analysis of ejector absorption cyt#d, for calculation for the thermodynamic
properties of an alternative refrigerant (R508b)[15R407c)[16] and ozone friendly
refrigerant/absorbent couples[17], for determinirthe efficiency of flat-plate solar
collectors[18], for predicting the performance a$aar-driven ejector-absorption cycle[19], for
the performance analysis of ejector absorption peatp using ozone safe fluid couple[20] and
for determining the properties of liquid and twaaph boiling and condensing of two refrigerant
couples i.e. methanol-LiBr and methanol-LiCl [2Placheco-Vega et al. 2001, predicted heat
rates of heat exchangers used for refrigeratioricgtipns [22] and for humid air-water heat
exchangers[23] using ANN model and correlationsic8@a et al. used ANN prediction model to
determine the thermodynamic properties of fourradive refrigerant or absorbent couples
namely LiCI-HO and LiBr + LING + Lil +LiCI-H,0 [24] & thermodynamic properties of
LiBr-water and LiCl-water solutions [26]. Sencaredd.inear Regression and M5’Rules models
within data mining process and ANN model for thedyrmamic evaluation of ammonia-water
absorption refrigeration systems [26]. Yang eff2aI] used ANN model to predict optimal start
time for heating system in building. Kalogirou [Z22P] reviewed the application of ANN for
energy systems. Kalogirou and Bojic [30] used ANNdel the prediction of the energy
consumption of a passive solar building. Kalogiedual [31] predicted the performance of a
thermosiphon solar water heater using ANN modellogieou [32] predicted the long-term
performance of forced circulation solar domestidenvdeating systems with the help of ANN
model.

Ertunc and Hosoz with the help of ANN predicted flegformance of evaporative condenser
[33] and an automobile air conditioning system [34psoz et al. [35] gave ANN prediction
model of cooling tower. Jambunathan et al. [36]l@ai@d convective heat transfer coefficients,
Chouai et al. [37] predicted the thermodynamic praps of R134a, R32 and R143a, Manohar
et al. [38] predicted the performance of doubledfivapour absorption chiller, Atthajariyakul
and Leephakpreeda [39] computed thermal comforéxnidr HVAC systems, Qi et al. [40]
simulated shower cooling tower and Islamoglu [4ddicted the performance of non-adiabatic
capillary tube suction line heat exchanger using\ANodels.

In this work, ANN model approach is used to prede performance of IEC. Analytical data
obtained from Engineering Equation Solver (EES)] [¢2used to train the ANN model under
summer conditions of Bhopal, India. The ANN modah de used to predict output primary air
temperature and effectiveness of IEC. In this wbekmost accurate and efficient ANN model is
found using different training algorithms. The ANfModel is then validated using limited
experimental data.
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2. Artificial Neural Networks

Artificial Neural Networks or popularly known as ANis an attempt to mimic the learning
process of human brain. ANN consists of a group aimber of interconnected cells called as
neurons with weights working together to creatdiasl! intelligence or ‘learning’ in machines.
ANN consists of primarily three layers: input, heddand output layer. The input and output
layer consists of a collection of neurons repraagninput and output variables. Similarly the
hidden layer also consists of a series of defingarons and is connected in between the above
two layers. Each neuron, m in a layer is connettedll the neurons in the consecutive layers
with some weight which represents the strengthadranection.

m=Y wx + 4 2.1)

where, n = number of neurons in the subsequent,laye

wi = weights of the respective connections, and

[ = bias for the neuron.
Firstly training is being imparted to the ANN modeth the help of known set of data patterns
which the network ‘learns’ continuously by adaptitegweights and biases through an activation
function, A. Thus the network computes output aditg to the following equation [43]:

A(m) = A{Zn: W, X, + ,B} (2.2)

Induction of activation functions makes it a morersatile and powerful tool and makes it
capable to represent even complex non-linear palysiodels. A number of activation or
transfer functions (TF) are used to connect amomggtrons of different layers such as
sigmoidal, tansigmoidal, purelinear, logsigmoidalardlimit, positive linear, radial basis,
triangular basis, soft linear etc.

The network is thus trained until the error is reghllito a great extent and is acceptable for a
particular task. The ‘intelligent’ ANN is now ready predict accurate from a given set of input
data same no of variables. There are no hard astdriides for the construction of neural
networks. It is dependent on past experience outfir trial and error method.

ANN is trained by a suitable algorithm for a speciroblem. Although a number of training
algorithms are available like but the most popiddeed forward back propagation algorithm.

The performance of an ANN model can be checked whth help of following statistical
functions. The coefficient of multiple determinatio (R) according to [44] is defined as:

) Z(ua,k _up,i)2
R =1--= (2.3)

> (0,7

where, U,  is the values predicted by the ANN model and

U, « is the actual analytical values of a variable.
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The root mean square error (RMSE) and coefficigntvaniation (cov) are defined as [44]:

Zn: (ua,k - l"Ip,k)z

RMSE =/ (2.4)
n
where, n is the no of observations or data patterns
RMSE
cov=———x100 (25)
Ua

where, uais the mean of actual values of a variable.

The Akaike’s Information Criterion (AIC) proposedy Hirotsugu Akaike is defined as
AIC =In(s2) + 27 (2.6)
n

where, s’ = (sum of squared residuals for a model with m atars)/n,

n = no. of observations and
m = no of output variables

3. Analytical model approach to [EC

The following equations are derived from Petersghf¢r the analysis of indirect evaporative
cooler.

Saturation specific heat can be defined as:

(i —i)
=_Yo i/ 3.1
" (Hwo _evw) ( )
The outlet temperature of air from IE€, as given by [9] is
6,=6- (émax @,.,-6,) (3.2)

min

where,

C.in =My, andC_, =mg,,
Generally the performance of an IEC is expressedrms of cooling effectiveness which can be
defined as below

g =146 (3.3)
6= 6,
After analysis the required expression for cookfigctiveness as given by [9] is
£, = 1 = 1 (3.4)
1 1 {Cmax} 1 1 { mpcp}
4+ = 4+ =
£p ‘gs Cmin Ep gs rns.Cwb
Where,fp =1_e—NTUP — Cmax ewo _Hwi (35)
Cmin 01 - 0W
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g ,=1-e"" = Ll (3.6)
ewi _ew

4. Application of ANN to IEC

Determination of performance characteristics oft&@ is one of the major problems due to the
complex heat and mass transfer phenomena. Andlyésalts of a simplified model of IEC as

suggested by [9] are obtained with the help of Begiing Equation Solver (EES) for different
atmospheric conditions during summer season of 8hdpdia. The primary and secondary air
mass flow rates are varied in the range of 0.1kg/5, inlet dry bulb temperature of outside air is
varied from 20-4%C and the variation of relative humidity is takeorfi 10-70%.

A number of ANN models are trained and tested witferent algorithms, details of which are
shown in the table 1. The input and output data @& normalized in the range of (0, 1) before
training. The input layer, hidden layer and outlayer of the ANN model contains 4, 10 and 2
neurons respectively as shown in figure 2. Thesfiarfunction used for all the layers is logistic
sigmoidal function which is given by:

1

1+e”

f(x) = (4.1)

Table 1. List of training algorithms used for ANN models

S.-NO  Training
AlgorithmsExpanded form

1 trainbfg BFGS quasi-Newton backpropagation

2 tranbr Bayesian regularization.

3 traincgb  Powell-Beale conjugate gradient backpropagation

4 traincgf  Fletcher-Powell conjugate gradient backpropagation.
5 traincgp  Polak-Ribiere conjugate gradient backpropagation

6 traingd Gradient descent backpropagation

7 traingda Gradient descent with adaptive Ir backpropagation

8 traingdm Gradient descent with momentum backpropagation.
9 traingdx Gradient descent with momentum and adaptive Ir fpagagation
10 trainim Levenberg-Marquardt backpropagation

11 trainoss  One-step secant backpropagation

12 trainrp  Resilient backpropagation (Rprop)

13

trainscg  Scaled conjugate gradient backpropagation

The most prominent variables which influences teefggmance of an IEC are primary and
secondary mass flow rate of air{f mg), ambient dry bulb and wet bulb temperatéte &,).

Thus these four variables are taken as input iasab
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Fig. 2: Network Architecture of ANN model of an IEC.

The outlet temperature of aiff) and effectivenesse() are taken as output variables for the
ANN model. The network architecture is shown inZig

Results and Discussion

With the increasing demands for electricity, daplgfossil fuels and depleting ozone layer due
to the use of chlorofluorocarbons(CFC’s) has formskarchers to look for alternative and eco-
friendly technologies for air conditioning. Inditezooling not only saves valuable electricity but
is eco-friendly takes away heat from the condittbrgpace without increasing the relative
humidity. Thus designers require performance dataah IEC according to different climatic
conditions to design efficient systems.

In this work an IEC has been modeled analyticaflynell as with ANN model approach. The
ANN model was trained with atmospheric conditioh8bopal, India during the summer season
(April-June) with the help of 1300 data sets olediby solving with the help of EES. 13 training
algorithms as shown in table 4.1 were used to mAdN and thus then the most efficient and
accurate one are determined. The ANN model is @dhith the help of m-file programming
under MATLAB 7.0 [45]. After the network is suffently trained, it is tested with 50 data sets
to get predictions and is then compared with aralytesults.
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Four input parameters namely mass flow rate of arynair and secondary air,,rand m &
ambient dry bulb and wet bulb temperaté&eand 8, were used to obtain two outputs variables

namely effectiveness, andé, .

Statistical values are calculated for each ANN nhedth a suitable test data which is shown in
table 2. Table 3 shows statistical values durimining of various ANN models. The various
performance characteristics during training like amesquare error with regularization
(MSEREG), mean square error (MSE), mean absolutes éMAE) and sum squared error
(SSE) depicts how well the ANN model is trained.

It can be observed that the model is trained véfigiently and accurately using LM and BR
training algorithms. Although LM is very fast asnche observed from the no of epoch is the
least; but the only drawback is that it requiresdbcomputer memory. On the other hand BR
algorithm requires less of it and is very accueteeompared to LM but it is not as efficient as it
is evident that it requires 1300 epoch as comptard® for LM.

After satisfactory training the performance of e#ddN model is tested with the help of test
data which is summarized in Table 4 and 5. The AXbdel is considered superior as the
statistical values like RMS, cov and MSE approache® and Rvalue approaches one. AIC
gives the measure of the goodness of fit of aitmeéid statistical model. The model having the
lowest AIC being is considered the best one. lbbsious from both the tables that the BR
algorithm is most accurately trained as the statisivalues i.e R RMS, cov, MSE and AIC
values are 0.9999920, 0.0546, 0.31, 0.0030 an® foi7predictingd, & 0.9999995, 0.0004,

0.080, 1.9827E-07 and -15.42 for predictiag The next most accurate model is using LM

algorithm. Fig 3 and 4 shows the training curve BR and LM backpropagation training
algorithm. The analytical output and ANN output ammpared and are shown in Fig 5-8. The
ANN model is validated using experimental data giva [9]. A comparison between the
experimental performance and that with ANN modalhswn in fig 9-10.

Table 2 Sample of the testing data used for various ANN models

6, &, o, .

Patternsm, m,  6,(°C) HW(OC)(Analytical)(Analytical)(PfediCted(pcredictedError(6’2)Error(£c)

by ANN,p ANN)

C)
1 1.1 08 31.8 7.1 15.93 0.6443 15.95 0.6436 -0.02 0.0007
2 0.8 1.3 32.7 6.7 12.16 0.791 12.19 0.7904 -0.03 0.0006
3 19 08 34.3 6.1 19.52 0.5244 19.55 0.5243 -0.03 1E-04
4 1.0 1.8 34.7 5.8 11.47 0.8027 11.59 0.8027 -0.12 0
5 24 22 34.9 57 14.85 0.6856 14.91 0.6855 -0.06 1E-04
6 2.1 1.6 354 5.6 16.07 0.6492 16.04 0.6491 0.03 1E-04
7 2.2 2.2 34.9 57 14.36 0.7023 14.43 0.7021 -0.07 0.0002
8 13 24 356 54 11.27 0.8049 11.44 0.8048 -0.17 1E-04
9 0.8 1.7 36.1 51 10.58 0.824 10.66 0.8236 -0.08 0.0004
10 1.6 1.5 36.6 5.0 14.89 0.6882 14.87 0.6877 0.02 0.0005
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Table 3 Statistical values obtained during training of various ANN models

S Training Algorithm M SEREG M SE MAE SSE Epochs

1 trainbfg 2.66E-05 2.96E-05 0.0036  0.0031 3600

2 trainbr 2.25E-07 2.50E-07 3.62E-04 2.60E-05 1300

3 traincgb 0.0034 0.0038  0.0446  0.3981 130

4 traincgf 0.0035 0.0038  0.0448  0.3987 300

5 traincgp 0.0074837  0.0053  0.0557  0.5464 800

6 traingd 0.0056105  0.0034  0.0416  0.3557  1E+06

7 traingda 0.0059 0.0039  0.0444  0.04032 42000

8 traingdm 0.0031 0.0035  0.0422  0.398 1E+05

9 traingdx 0.00509 0.0449  0.0449  0.3978 20000

10 trainim 3.13E-06 0.0013  3.62E-04 3.62E-04 40

11 trainoss 0.0051 0.0446  0.3975  0.3975 1100

12 trainrp 0.00507805 0.0038  0.3976  0.3976 2000

13 trainscg 0.00503897 0.0445  0.398 0.398 1000
where,

MSEREG: mean square error with regularization

MAE: mean absolute error

SSE: sum squared error

Table 4 Statistical values of various ANN modelsto predict primary air outlet temperature,

g, from I[EC

S. No. Training

Algorithm R? RMS cov MSE AIC
1 trainbfg 0.9990990 0.5852 3.28 0.3425 -1.05
2 trainbr  0.9999920 0.0546 0.31 0.0030 -5.79
3 traincgb 0.9714471 3.3359 18.71 11.1280 2.43
4 traincgf  0.9714807 3.3369 18.72 11.1349 2.43
5 traincgp 0.9102609 5.3041 29.75 2.8328 3.36
6 traingd  0.9806052 2.7362 15.35 7.4867 2.03
7 traingda 0.9757449 2.6090 16.42 -0.4390 1.94
8 traingdm 0.9749340 3.1396 17.61 9.8573 2.31
9 traingdx 0.9744041 2.6840 16.90 -0.4495 1.99
10 trainlm 0.9999141 0.1786 1.00 0.0319 -3.43
11 trainoss 0.9759299 2.5991 16.36 -0.4405 1.93
12 trainrp  0.9765177 2.5652 16.15 -0.4343 1.90
13 trainscg 0.9745877 2.6740 16.83 -0.4490 1.99

Scholars Research Library

336



T Ravi Kiran et al Arc. Apl. Sci. Res,, 1 (2) 327-343

Table5 Statistical values of various ANN models to predict effectivenessfrom an IEC, &,

S. No. Training
Algorithm R? RMS cov MSE AlC

1 trainbfg 0.9999356 0.0050 0.84 2.4835E-05 -10.58
2 trainbr  0.9999995 0.0004 0.080 1.9827E-07 -15.42
3 traincgb 0.9829715 0.0809 13.68 0.006545 -5.01
4 traincgf  0.9829424 0.0810 13.69 0.006554 -5.01
5 traincgp 0.9814795 0.0877 14.83 -0.014531 -4.85
6 traingd 0.9841170 0.0781 13.20 0.006093 -5.08
7 traingda 0.9999981 0.0824 13.39 0.043383  -4.97
8 traingdm 0.9845065 0.0771 13.03 0.005937 -5.11
9 traingdx 0.9999989 0.0674 10.96 -0.001296 -5.37

10 trainlm 0.9999901 0.0020 0.33 3.8138E-06 -12.46
11 trainoss 0.9999989 0.0674 10.96 -0.001279 -5.37
12 trainrp  0.9999989 0.0674 10.96 -0.001280 -5.37
13 trainscg 0.9999989 0.0674 10.96 -0.001284 -5.37
Training SSE = 0.00830821
E: i b -
=
L L i i 'l A 1
3 Squared Weights = 11060.3
10 . . . . . ; .

|

L L I i A | 1

Effactiva Numbar of Paramsaters = 120.021
1 dl:l T T T T T T T

o
=
T T T T 7

# Parameters
u ]
m |

ED L L 'l 1 I 1

i
i 100 200 300 400 500 B00 i il
775 Epochs

Fig. 3 Training curveduring ANN training of IEC with trainbr (Bayesian regularization)
back propagation Algorithm
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Performance is 0.0237402, Goal is 0
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1|:|' ] ] L 1 1 1 1 1
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Fig. 4 Training curveduring ANN training of IEC with trainlm (Levenberg M arquar dt)
back propagation Algorithm
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Fig. 5: Comparison of analytical resultswith ANN model output being trained with
L evenberg Marquardt back Propagation algorithm
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Fig. 6: Comparison of analytical resultswith ANN model output being trained with
L evenberg Marquardt back propagation algorithm
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Fig. 7: Comparison of analytical resultswith ANN model output being trained with
Bayesian Regularization (BR) back-propagation algorithm
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Fig. 8: Comparison of analytical resultswith ANN model output being trained with
Bayesian Regularization (BR) Back-propagation algorithm
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Figure 9: Comparison of experimental results with ANN model output trained with BR
algorithm
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Fig. 10: Comparison of experimental results with ANN model output trained with BR
algorithm

Conclusion

This work shows the usefulness of an intelligenty i@ predict the performance of indirect
evaporative cooler using artificial neural networksfferent ANN models were trained and
tested with analytical results for an IEC. The hesswere obtained for the summer season of a
typical meteorological year of Bhopal, India, uskggineering Equation Solver. The model was
then validated with a limited experimental datawlis found that the most efficient training
algorithm for modeling an indirect evaporative @olas Levenberg Marquardt followed by
Bayesian regularization backpropagation algoritfitee LM algorithm although is very fast but

in training large data patterns it requires largemmary. This deficiency can be overcome by
using BR algorithm.

Excellent result proves that artificial neural netks have the capability to predict the
performance of IEC very accurately as comparetiéaconventional methods of modeling. Also,
ANN has the superiority of simplicity, adaptabilayd robustness over classical methods.
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