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Abstract 
 
A three dimensional quantitative structure-activity relationship study using the atom  based 
3D QSAR analysis of 3-Bromo-4-(1-H-3-Indolyl)-2,5-Dihydro-1H-2,5-Pyrroledione 
derivatives had been undertaken with an aim to develop potent antibacterial agent using 
Schrödinger Software (Maestro8.5) on Linux operating system. The novel Three-
Dimensional QSAR (3D-QSAR) study based on the principle of the alignment of 
pharmacophoric features by PHASE module of Schrodinger suite has been carried out on the 
same set of inhibitors. Statistically significant 3D (r2=0.9057) QSAR models were generated 
using 37 molecules in the training set and 12 molecules in the test set. 
 
Key-words -3D QSAR,  PHASE, atom based, Antibacterial, Staphylococcus aureus. 
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Introduction 
 
The incidence of infections caused by multidrug-resistant Gram positive bacteria is 
increasing despite advances in antibacterial therapy over the last decades. As the pathogens 
causing these infections are frequently resistant to most currently available antibacterials, 
they are extremely difficult to treat. Almost all bacteria treated with antibiotics have 
developed at least some degree of resistance against these drugs [1]. 
 
The emergence of high levels of penicillin resistance followed by the evolvement and spread 
of strains resistant to the semisynthetic penicillins (methicillin, and oxacillin), macrolides, 
tetracyclines, aminoglycosides and glycopeptides (e.g., vancomycin) has made therapy of 
staphylococcal diseases a global challenge. In many countries, an increasing number of 
clinical isolates of multi resistant Staphylococcus aureus strains have been observed and the 
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pathogenetic potential in nosocomial and community acquired infections is well known 
[2].Efflux pumps compromise the efficacy of a wide range of antibiotics by actively 
extruding them from bacterial cells[3-4]. The pumps can be expressed in many different 
forms in both Gram-positive [5] and Gram-negative bacteria, [6] and for some species a 
variety of pumps may be present with different or overlapping substrates. For the important 
community and nosocomially acquired human pathogen Staphylococcus aureus a number of 
pumps have been identified, including NorA, which has been shown to play a role in the 
development of clinical multidrug resistance (MDR) by this organism [7] One promising 
strategy for combating MDR in S. aureus is to treat infections with a combination of a NorA 
efflux pump inhibitor and a conventional antibiotic, with the pump inhibitor serving to restore 
the antibiotic’s potency by reducing its efflux from bacterial cells [8]. In the recent past, some 
efforts have been made to understand three-dimensional quantitative structure–activity 
relationships, 3D QSAR, on oxazolidinone antibacterial agents using comparative molecular 
field analysis (CoMFA) [9-13]. 

 
Materials and Methods 
 
Data set 
The data set consist of structurally diverse compounds reported for antibacterial activity 
against S.aureus134/93.The selected series of 3-bromo-4-(1H-3-indolyl)-2,5-dihydro-1H-2,5-
pyrroledione derivatives having 55 compounds out of which 49 compounds having well 
defined biological activity reported by Mahboobi. S.et al [14] (Table1). The antibacterial 
activity of compounds in the series is reported as pMIC values. The compounds in the 
selected series were randomly divided in to two sets with 35 compounds used as a training set 
and the remaining 14 as test set in the prediction of biological activity. 
 
Molecular-Modelling 
Three-dimensional structure building, pharmacophore mapping and CoMFA 3DQSAR 
studies were carried out on a Silicon Graphics Octane (R12000) workstation with the IRIX 
6.5 operating system running the SYBYL program package, version 7.2 (Tripos Associates, 
St. Louis, MO) and the PHASE 1.0 program (Schrödinger Inc., San Diego,CA). Molecular 
energy minimizations were performed using the Tripos force field with a distance-dependent 
dielectric constant and the Powell conjugate gradient algorithm with an energy change 
convergence criterion of 0.001 kcal/mol A˚. Partial atomic charges were calculated using the 
Gaisteiger–Huckel program in SYBYL. All the molecules in the present study were aligned 
to the best-generated pharmacophore hypothesis (Pharm_A) obtained from the PHASE 
pharmacophore mapping exercise. 
 
Generation of pharmacophore models 
PHASE 1.0 implemented in the Maestro 7.0 modelling package (Schrödinger Inc., San 
Diego, CA) was used to generate Pharmacophore models for antibacterial activity. The 3D 
structures of all the molecules used in PHASE were built in, and imported from SYBYL. 
Conformers of each molecule were generated using the MMFF force field in the PHASE 
program. Pharmacophore feature sites for the molecules were assigned using a set of features 
defined in PHASE as hydrogen-bond acceptor (A), hydrogen- bond donor (D), hydrophobic 
group (H), negatively charged group (N), positively charged group (P), and aromatic ring (R). 
Three highly active compounds, Common pharmacophore hypotheses were identified using 
conformational analysis and a tree-based partitioning technique. The resulting 
pharmacophores were then scored and ranked. Pharmacophores with high-ranking scores 
were validated by a partial least square (PLS) regression-based PHASE 3D-QSAR cross-
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validation, and the best pharmacophore hypothesis identified was further validated by 
CoMFA 3D-QSAR modelling. All the molecules used for QSAR studies were aligned to the 
pharmacophore hypothesis obtained in PHASE.The software use for 3-D QSAR study is 
Schrodinger PHASE Module Workstation used are raster systems in which a computer with 
Linux as operating systems,180 giga bite space storage facility Intel Pentium IV as a 
processor and integrated with graphical display. PHASE module works as a following five 
staps as: Selection of training set, generating conformers, Find hypothesis for actives, Score 
hypothesis, Built QSAR model .This 3D-QSAR approach involves the generation of a 
common pharmacophore hypothesis built on the principle of identification and alignment of 
pharmacophoric features of the chemical structures. QSAR models are then developed for the 
pharmacophore hypothesis using the training set structures that match the pharmacophore on 
three or more sites, using Partial Least Square (PLS) statistical analysis. The volume 
occluded maps, generated for the pharmacophore hypothesis help in explaining the observed 
variation in activity by the variation in the structural features. 
 
Computational details for 3D QSAR  
In the 3D-QSAR approach, all molecular modeling and statistical analyses were performed 
using PHASE [15] PHASE is a versatile product for pharmacophore perception, structural 
alignment, activity prediction, and 3-D database creation and searching. Given a set of 
molecules with affinity for a particular target, PHASE utilizes fine-grained conformational 
sampling and a range of scoring techniques to identify common pharmacophore hypothesis, 
which convey characteristics of 3-D chemical structures that are purported to be critical for 
binding. Each hypothesis is accompanied by a set of aligned conformations that suggest the 
relative manner in which the molecules are likely to bind to the receptor. Generated 
hypothesis with the aligned conformations may be combined with known activity data to 
create 3D-QSAR model that identifies overall aspects of molecular structure that govern 
activity. PHASE 3D-QSAR model workflow consists of the following five steps  
 
I. Preparing ligands  
The 3-D conversion and minimization was performed using LigPrep [16] (MMFF force field) 
incorporated in PHASE. Developing a pharmacophore model requires all-atom 3-D structures 
that are realistic representations of the experimental molecular structure. Most ligands are 
flexible, so it is important to consider a range of thermally accessible conformational states in 
order to increase the chances of finding something close to the putative binding mode. For 
purpose of pharmacophore model development, PHASE provides two built-in approaches, 
both of which employ the MacroModel conformational search engine. Conformers were 
generated using a rapid torsion angle search approach followed by minimization of each 
generated structure using MMFF force field, with implicit distance dependent dielectric 
solvent model. A maximum of 100 conformers were generated per structure using a 
preprocess minimization of 100 steps and post process minimization of 50steps. Each 
minimized conformer was filtered through a relative energy window of 11.4 k Cal/mol (50kJ/ 
mol) and a minimum atom deviation of 2.00 Ǻ. 
 
II. Creating pharmacophore sites  
The second step in developing a pharmacophore model is to use a set of pharmacophore 
features to create sites for all the ligands. Each ligand structure is represented by a set of 
points in 3-D space, which coincide with various chemical features that may facilitate 
noncovalent binding between the ligand and its target receptor. PHASE provides a built-in set 
of six pharmacophore features, hydrogen bond acceptor (A), hydrogen bond donor (D), 
hydrophobic group (H), negatively ionizable (N), positively ionizable (P), and aromatic ring 
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(R). The rules that are applied to map the positions of pharmacophore sites are known as 
feature definitions, and they are represented internally by a set of SMARTS patterns. Each 
pharmacophore feature is defined by a set of chemical structure patterns. All user-defined 
patterns are specified as SMARTS queries and assigned one of the three possible geometries, 
which define physical characteristic of the site:  
 
Point: the site is located on a single atom in the SMARTS query.  
Vector: the site is located on a single atom in the SMARTS query, and it will be assigned 
directionality according to one or more vectors originating from the atom.  
Group: the site is located at the centroid of a group of atoms in the SMARTS query. For 
aromatic rings, the site is assigned directionality defined by a vector that is normal to the 
plane of the ring. A default setting having acceptor (A), donor (D), hydrophobic (H), negative 
(N), positive (P), and aromatic ring (R) was used for the creation of pharmacophore sites. No 
user-defined feature was employed for the present study. 
 
III. Finding a common pharmacophore  
In the find common pharmacophore step, pharmacophores from all conformations of the 
ligand in the active site are examined, and those pharmacophores that contain identical sets of 
features with very similar spatial arrangements are grouped together. If a given group is 
found to contain at least one pharmacophore from each ligand, then this group gives rise to a 
common pharmacophore. Any single pharmacophore in the group ultimately become a 
common pharmacophore hypothesis which gives an explanation how ligands bind to the 
receptor. Common pharmacophores are identified using a tree based partitioning technique 
that groups together similar pharmacophores according to their intersite distances, i.e., the 
distances between pairs of sites in the pharmacophore. Active and inactive thresholds of 
PIC50 respectively, were applied to the training set for developing the common 
pharmacophore hypotheses. After applying default feature definitions to each ligand, 
common pharmacophores containing six sites were generated using a terminal box size of 1.5 
Ǻ, and with requirement that all actives should match.  
 
IV. Scoring Hypotheses  
In the score hypotheses step, common pharmacophores are examined, and a scoring 
procedure is applied to identify the pharmacophore from each surviving n-dimensional box 
that yields the best alignment of the active set ligands. This pharmacophore provides a 
hypothesis to explain how the active molecules bind to the receptor. The scoring procedure 
provides a ranking of the different hypotheses, allowing making rational choices about which 
hypotheses are most appropriate for further investigation. Scoring with respect to actives was 
conducted using default parameters for site, vector, and volume terms. Ligand activity, 
expressed as -log10 (IC50), was incorporated into the score with a weight of 1.0, and relative 
conformational energy (kJ/mol) was included with a weight of 0.01. Hypotheses that emerged 
from this process were subsequently scored with respect to inactive, using a weight of 1.0. 
The inactive molecules were scored to observe the alignment of these molecules with respect 
to the pharmacophore hypothesis to enable making a decision on the selection of the 
hypothesis. Larger is the difference between the scores of active and inactive, better is the 
hypothesis at distinguishing the actives from inactive.  
 
V. Building QSAR model  
PHASE provides the means to build QSAR models using the activities of the ligands that 
match a given hypothesis. PHASE QSAR models are based on PLS regression, applied to a 
large set of binary valued variables. The independent variables in the QSAR model are 
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derived from a regular grid of cubic volume elements that span the space occupied by the 
training set ligands. Each ligand is represented by a set of bit values (0 or 1) that indicate 
which volume elements are occupied by a Vander Waals surface model of the ligand. To 
distinguish different atom types that occupy the same region of space, a given cube in the 
grid may be allocated as many as six bits, accounting for six different classes of atoms. The 
atoms classes are: D: hydrogen-bond donor, H: hydrophobic or nonpolar, N: negative ionic, 
positive ionic, electron-withdrawing (includes hydrogen-bond acceptors), miscellaneous (all 
other types).PHASE QSAR models may be either atom-based or pharmacophore- based, the 
difference being whether all atoms are taken into account, or merely the pharmacophore sites 
that can be matched to the hypothesis. The choice of which type of model to create depends 
largely on whether or not the training set molecules are sufficiently rigid and congeneric. If 
the structures contain a relatively small number of rotatable bonds and some common 
structural framework, then an atom-based model may work quite well. Atom-based QSAR 
models were generated for AHRRRR hypothesis using the 55-member training set and a grid 
spacing of 1.0Ǻ. QSAR models containing one to seven PLS factors were generated. A 
model with five PLS factors was considered as the best statistical model. This model was 
validated by predicting activities of test set molecules. 
 
Analysis of Atom-Based PHASE Model 
Figure 5, 6, 7 shows the volume occlusion maps for the atom-based PHASE 3D-
QSAR model (donor, hydrophobic, and electronegative) represented by color codes. 
These maps represent the regions of favourable and unfavourable interactions. The 
volume occlusion maps of hydrogen bond donor (Figure.5) describe the spatial 
arrangement of favourable hydrogen bonding interactions to acceptor groups of the 
target protein. In figure-5, 6, 7 red regions indicates unfavourable region for 
substitution and blue region indicates favourable region for substitution. 
 
Result and Discussion  
 
In 3D-QSAR analysis of 3-Bromo-4-(1-H-3-Indolyl)-2,5-Dihydro-1H-2,5-Pyrroledione  
derivatives  it was found that Correlation Coefficient (r2) = 0.9057, Cross validation Co-
efficient  (q2)=0.0207,& Standard Deviation(S.D)=0.211 (Table3). From fig 5, 6, 7 it was 
found that on substituting hydrogen bond donor or electron withdrawing group or 
hydrophobic group to compounds (34a-h) having a substituted anilide substructure linked to 
the to the indole-2 position by alkyl spacer shall increase antibacterial activity ,on substituting 
electron withdrawing group at 5-position of indole shall decrease activity , on substituting 
hydrophobic group at 5 & 7 position of indole  shall increase antibacterial activity. Where, 
Aromatic Ring (R) Orange torus in the plane of the ring, Acceptor (A) Light red sphere 
centered on the atom with the lone pair, with arrows pointing in the direction of the lone 
pairs,  Donor (D) Light blue sphere centered on the H atom, with an arrow pointing in the 
direction of  the potential H-bond, Hydrophobic (H) Green sphere. 
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Table 1:  Activity of 3- bromo-4-(1-H-3-indolyl)-2, 5-dihydro-1H-2, 5-Pyrroledione 
derivatives against Staphylococcus aureus 134/93 
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                                       (7a-28h)                                                     (38a-h) 

Nr R1 R2 MIC*10 -6 pMIC 

7a H 4-OMe 0.32 6.5 

7b H 4-OBu 0.45 6.3 

7c H 4-OPen - 0.88 6.1 

7d H 4-Ooct 50 4.3 

7f H 4-OBzl 0.21 6.7 

7g H 4-ONaph 1.5 5.8 

12a 5-OMe H 1.00 6.0 

12b 5-OEt H 3.80 5.4 

12c 5-OPr H 0.95 6.0 

12d 5-OBu H 0.11 6.9 

12e 5-Open H 27 4.6 

13a 5-OEt 4-OMe 2.0 5.7 

13b 5-OPr 4-OMe 0.44 6.4 

13c 5-OBu 4-OMe 0.10 7.0 

18a 5-OHex H 0.13 6.9 
18b 5-Et H 0.13 6.9 
18c 5-Pr H 0.50 6.3 
18d 5-Bu H 0.24 6.6 
18e 5-Pen H 0.91 6.0 
19a 5-Me 4-OMe 0.12 6.9 
19b 5-Et 4-OMe 0.23 6.6 
19c 5-Pr 4-OMe 0.45 6.3 
19d 5-Bu 4-OMe 0.44 6.4 
19e 5-Pen 4-OMe 0.85 6.1 
24a 7-Me H 3.98 5.4 
24b 7-Et H 2.51 5.7 
24c 7-Bu H 0.25 6.6 
24d 7-Pen H 0.50 6.3 
25a 7- Me 4-OMe 2.00 5.7 
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25b 7- Et 4-OMe 0.50 6.3 
25c 7- Pr 4-OMe 0.50 6.3 
25d 7- Bu 4-OMe 0.25 6.6 
25e 7- Hex 4-OMe 0.40 6.4 
28a 5-OMe 3- OMe 1.90 5.7 
28b 5-OEt 3- OMe 3.50 5.5 
28c 5-OBu 3- OMe 3.30 5.5 
28d 5-OHex 3- OMe 12.60 4.9 
28e 5-Me 3- OMe 0.20 6.6 

28f 5-Et 3- OMe 0.50 6.3 
28g 5-Bu 3- OMe 3.40 5.5 
28h 5-Hex 3- OMe 26.00 4.6 
34a 2 H 0.18 6.7 
34b 3 H 1.7 5.8 
34c 4 H 1.7 5.8 
34d 5 H 0.10 7.0 
34e 6 H 0.10 7.0 
34f 3 4-Me 1.58 5.8 
34g 3 3-Me 0.79 6.1 
34h 3 2-Me 0.32 6.5 

ciprofloxacin   38.1 4.4 
MIC* indicates Minimum Inhibitory Concentration 

 
Table 2: Fitness and activity 

 
Ligand 
Name 

QSAR 
Set Activity 

PLS 
Factor 

Predicted 
Activity 

Pharm 
Set Fitness 

7a training 6.49 4 6.35  2.87 
7b training 6.34 4 6.27  2.77 
7c test 6.05 4 6.09  2.75 
7d test 4.30 4 6.35 inactive 2.67 
7f training 6.67 4 6.67 active 2.71 
7g training 5.82 4 5.92  2.67 
12a training 6 4 6.27  2.95 
12b test 5.42 4 6.07 inactive 2.89 
12c training 6.02 4 6.2  2.88 
12d training 6.95 4 6.52 active 2.84 
12e training 4.56 4 4.39 inactive 2.81 
13a test 5.69 4 6.25 inactive 2.82 
13b training 6.35 4 6.4  2.82 
13c training 7 4 6.71 active 2.78 
18a training 6.88 4 6.59 active 3 
18b test 6.88 4 6.65 active 2.95 
18c training 6.30 4 6.59  2.92 
18d training 6.62 4 6.39 active 2.88 
18e test 6.04 4 6.18  2.84 
19a test 6.92 4 6.77 active 2.92 
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19b training 6.63 4 6.76 active 2.88 
19c test 6.34 4 6.69  2.85 
19d training 6.35 4 6.5  2.81 
19e training 6.07 4 6.28  2.78 
24a training 5.4 4 5.68 inactive 2.9 
24b training 5.6 4 5.75 inactive 2.86 
24c test 6.60 4 6.32 active 2.8 
24d training 6.30 4 6.43  2.77 
25a training 5.69 4 5.88 inactive 2.83 
25b test 6.30 4 5.93  2.8 
25c training 6.30 4 6.18  2.77 
25d training 6.60 4 6.48 active 2.75 
25e training 6.39 4 5.7  2.69 
28a training 5.72 4 5.7 inactive 2.88 
28b training 5.45 4 5.52 inactive 2.83 
28c training 5.48 4 5.88 inactive 2.78 
28d training 4.9 4 6.48 inactive 2.73 
28e test 6.69 4 5.95 active 2.91 
28f training 6.30 4 6.07  2.88 
28g test 5.46 4 5.98 inactive 2.81 
28h training 4.58 4 4.37 inactive 2.76 
34a training 6.74 4 6.73 active 2.52 
34b training 5.77 4 5.79 inactive 2.6 
34c training 5.77 4 5.55 inactive 2.61 
34d training 7 4 6.88 active 2.54 
34e training 7 4 6.95 active 2.55 
34f test 5.80 4 5.93  2.58 
34g training 6.10 4 5.99  2.58 
34h test 6.49 4 6.07  2.59 

 
Table 3: 3D QSAR Result 

 
ID PLS 

Factors 
SD R-2 F 

 
P RMSE Q-squared Pearson-R 

ADHRR.86 4 0.211 0.9057 72 6.05e-15 0.6745 0.0207 0.2949 

 
Table.4 QSAR Hypothesis Score 

 
ID  Survival Survival –

inactive 
Post-hoc Site Vector Volume 

ADHRR 43 2.145 1.034 2.341 0.98 0.67 0.341 
ADHRRR.52 2.790 2.371 3.043 0.98 0.45 0.341 
ADRRRR.68 3.142 3.782 3.936 0.98 0.56 0.315 
ADRRRR.82 3.537 3.867 4.231 0.93 0.71 0.662 
ADRRRR.88 3.781 4.162 4.683 0.92 0.94 0.501 
ADHRRR.249 4.449 4.357 4.283 0.92 0.91 0.736 
ADHRRR.432 4.901 4.631 4.783 0.94 0.97 0.289 
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Figure 1: Plot of predicted activity Vs phase activity for test compounds 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Plot of predicted activity Vs phase activity for training compounds 
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Figure 3:  Plot of predicted activity Vs phase activity for all compounds 

 
 

Fig 4:  QSAR Model of 3-Bromo-4-(1-H-3-Indolyl)-2, 5-Dihydro-1H-2,5 Pyrroledione 
derivatives along with alignment of structures 

 

 
 

Fig 5: QSAR Model of 3-Bromo-4-(1-H-3-Indolyl)-2, 5-Dihydro-1H-2, 5-Pyrroledione 
derivatives with electron withdrawing effect 
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Figure 6:  QSAR Model of 3-Bromo-4-(1-H-3-Indolyl)-2, 5-Dihydro-1H-2, 5-
Pyrroledione derivatives with H-bond donor effect 

 

 
 

Figure 7: QSAR Model of 3-Bromo-4-(1-H-3-Indolyl)-2, 5-Dihydro-1H-2, 5-
Pyrroledione derivatives with hydrophobic effect 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Conclusion 
 
A set of 49 compounds of 3-Bromo-4-(1-H-3-Indolyl)-2,5-Dihydro-1H-2,5-Pyrroledione 
derivatives  was subjected to 3D-QSAR analysis using Partial Least Square (PLS) method to 
design its derivatives as potent antibacterial agent. In fig 4,5,6,7 red regions indicates 
unfavourable region for substitution, and blue region indicates favourable region for 
substitution which draws the conclusion that by substituting group at direction identified at 
QSAR model potent antibacterial agent can be produced. 
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