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Abstract

A three dimensional quantitative structure-activiéyationship study using the atom based
3D QSAR analysis of 3-Bromo-4-(1-H-3-Indolyl)-2,5Hydro-1H-2,5-Pyrroledione
derivatives had been undertaken with an aim to ldpvpotent antibacterial agent using
Schrédinger Software (Maestro8.5) on Linux opegtisystem. The novel Three-
Dimensional QSAR (3D-QSAR) study based on the pplac of the alignment of
pharmacophoric features by PHASE module of Schgstisuite has been carried out on the
same set of inhibitors. Statistically significa? 8°=0.9057) QSAR models were generated
using 37 molecules in the training set and 12 maé=cin the test set.

Key-words -3D QSAR, PHASEatom based, Antibacterial, Staphylococcus aureus.

Introduction

The incidence of infections caused by multidrugstast Gram positive bacteria is
increasing despite advances in antibacterial tlyeoapr the last decades. As the pathogens
causing these infections are frequently resistantmobst currently available antibacterials,
they are extremely difficult to treat. Almost alldieria treated with antibiotics have
developed at least some degree of resistance agjasise drugs [1].

The emergence of high levels of penicillin resistafollowed by the evolvement and spread
of strains resistant to the semisynthetic penmsli{methicillin, and oxacillin), macrolides,
tetracyclines, aminoglycosides and glycopeptideg.,(&ancomycin) has made therapy of
staphylococcal diseases a global challenge. In nwuntries, an increasing number of
clinical isolates of multi resistant Staphylococewseus strains have been observed and the
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pathogenetic potential in nosocomial and commuaitquired infections is well known
[2].Efflux pumps compromise the efficacy of a widange of antibiotics by actively
extruding them from bacterial cells[3-4]. The pungan be expressed in many different
forms in both Gram-positive [5] and Gram-negati\actBria, [6] and for some species a
variety of pumps may be present with different eertapping substrates. For the important
community and nosocomially acquired human pathdg@phylococcus aureus a number of
pumps have been identified, including NorA, whidsteen shown to play a role in the
development of clinical multidrug resistance (MDBY this organism [7] One promising
strategy for combating MDR in S. aureus is to trefgctions with a combination of a NorA
efflux pump inhibitor and a conventional antibiotiath the pump inhibitor serving to restore
the antibiotic’s potency by reducing its efflux indoacterial cells [8]. In the recent past, some
efforts have been made to understand three-dimeaisiquantitative structure—activity
relationships, 3D QSAR, on oxazolidinone antibaateagents using comparative molecular
field analysis (COMFA) [9-13].

Materials and Methods

Data set

The data set consist of structurally diverse compsureported for antibacterial activity
against S.aureus134/93.The selected series ofr3ebde(1H-3-indolyl)-2,5-dihydro-1H-2,5-
pyrroledione derivatives having 55 compounds outwbich 49 compounds having well
defined biological activity reported by MahboobieSal [14] (Tablel). The antibacterial
activity of compounds in the series is reportedp8C values. The compounds in the
selected series were randomly divided in to twe séth 35 compounds used as a training set
and the remaining 14 as test set in the predictfdnological activity.

Molecular-Modelling

Three-dimensional structure building, pharmacophorapping and CoMFA 3DQSAR
studies were carried out on a Silicon Graphics @t@g12000) workstation with the IRIX
6.5 operating system running the SYBYL program pgek version 7.2 (Tripos Associates,
St. Louis, MO) and the PHASE 1.0 program (Schroéeinigc., San Diego,CA). Molecular
energy minimizations were performed using the Tsifarce field with a distance-dependent
dielectric constant and the Powell conjugate gradedgorithm with an energy change
convergence criterion of 0.001 kcal/mol A°. Partitdmic charges were calculated using the
Gaisteiger—Huckel program in SYBYL. All the moleeslin the present study were aligned
to the best-generated pharmacophore hypothesissnPAa obtained from the PHASE
pharmacophore mapping exercise.

Generation of pharmacophore models

PHASE 1.0 implemented in the Maestro 7.0 modellpagkage (Schrodinger Inc., San
Diego, CA) was used to generate Pharmacophore siéoiebntibacterial activity. The 3D
structures of all the molecules used in PHASE warit in, and imported from SYBYL.
Conformers of each molecule were generated usiag\iNFF force field in the PHASE
program. Pharmacophore feature sites for the mi@eauvere assigned using a set of features
defined in PHASE as hydrogen-bond acceptor (A) rbgen- bond donor (D), hydrophobic
group (H), negatively charged group (N), positivelharged group (P), and aromatic ring (R).
Three highly active compounds, Common pharmacophgpetheses were identified using
conformational analysis and a tree-based partitpnitechnique. The resulting
pharmacophores were then scored and ranked. Phgwh@es with high-ranking scores
were validated by a partial least square (PLS)esgon-based PHASE 3D-QSAR cross-
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validation, and the best pharmacophore hypothasestified was further validated by
CoMFA 3D-QSAR modelling. All the molecules used EAR studies were aligned to the
pharmacophore hypothesis obtained in PHASE.Thevaodt use for 3-D QSAR study is
Schrodinger PHASE Module Workstation used are raststems in which a computer with
Linux as operating systems,180 giga bite spaceaggoffacility Intel Pentium IV as a
processor and integrated with graphical displayABH module works as a following five
staps as: Selection of training set, generatindocorers, Find hypothesis for actives, Score
hypothesis, Built QSAR model .This 3D-QSAR approaotiolves the generation of a
common pharmacophore hypothesis built on the gieaf identification and alignment of
pharmacophoric features of the chemical struct®&AR models are then developed for the
pharmacophore hypothesis using the training settstres that match the pharmacophore on
three or more sites, using Partial Least SquareS)Pdtatistical analysis. The volume
occluded maps, generated for the pharmacophoretlimsgie help in explaining the observed
variation in activity by the variation in the sttucal features.

Computational detailsfor 3D QSAR

In the 3D-QSAR approach, all molecular modeling atatistical analyses were performed
using PHASE [15PHASE is a versatile product for pharmacophore guron, structural
alignment, activity prediction, and 3-D databaseation and searching. Given a set of
molecules with affinity for a particular target, RBE utilizes fine-grained conformational
sampling and a range of scoring techniques to iiflecdbmmon pharmacophore hypothesis,
which convey characteristics of 3-D chemical suues that are purported to be critical for
binding. Each hypothesis is accompanied by a satigied conformations that suggest the
relative manner in which the molecules are likety lind to the receptor. Generated
hypothesis with the aligned conformations may bmlgoed with known activity data to
create 3D-QSAR model that identifies overall aspeaft molecular structure that govern
activity. PHASE 3D-QSAR model workflow consiststbé following five steps

|. Preparing ligands

The 3-D conversion and minimization was performsithg LigPrep [16] (MMFF force field)
incorporated in PHASE. Developing a pharmacophavdehrequires all-atom 3-D structures
that are realistic representations of the experiedemolecular structure. Most ligands are
flexible, so it is important to consider a rangalwrmally accessible conformational states in
order to increase the chances of finding somethioge to the putative binding mode. For
purpose of pharmacophore model development, PHA®Eides two built-in approaches,
both of which employ the MacroModel conformatiorssarch engine. Conformers were
generated using a rapid torsion angle search apprfmdlowed by minimization of each
generated structure using MMFF force field, withplimit distance dependent dielectric
solvent model. A maximum of 100 conformers were egated per structure using a
preprocess minimization of 100 steps and post gsogainimization of 50steps. Each
minimized conformer was filtered through a relatereergy window of 11.4 k Cal/mol (50kJ/
mol) and a minimum atom deviation of 2.40

I1. Creating pharmacophore sites

The second step in developing a pharmacophore msedel use a set of pharmacophore
features to create sites for all the ligands. Hagdnd structure is represented by a set of
points in 3-D space, which coincide with variousermrical features that may facilitate
noncovalent binding between the ligand and itsetargceptor. PHASE provides a built-in set
of six pharmacophore features, hydrogen bond accgpt), hydrogen bond donor (D),
hydrophobic group (H), negatively ionizable (N)spively ionizable (P), and aromatic ring
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(R). The rules that are applied to map the postiohpharmacophore sites are known as
feature definitions, and they are represented natbr by a set of SMARTS patterns. Each

pharmacophore feature is defined by a set of chansitucture patterns. All user-defined

patterns are specified as SMARTS queries and ass$igne of the three possible geometries,
which define physical characteristic of the site:

Point: the site is located on a single atom iInSMARTS query.

Vector: the site is located on a single atom in IMARTS query, and it will be assigned
directionality according to one or more vectorgimating from the atom.

Group: the site is located at the centroid of augrof atoms in the SMARTS query. For
aromatic rings, the site is assigned directionaliéfined by a vector that is normal to the
plane of the ring. A default setting having acce#y, donor (D), hydrophobic (H), negative
(N), positive (P), and aromatic ring (R) was usedthe creation of pharmacophore sites. No
user-defined feature was employed for the predadys

[11. Finding a common pharmacophore

In the find common pharmacophore step, pharmaceghttom all conformations of the
ligand in the active site are examined, and thdsgrpacophores that contain identical sets of
features with very similar spatial arrangements gn@uped together. If a given group is
found to contain at least one pharmacophore frath #gand, then this group gives rise to a
common pharmacophore. Any single pharmacophorehén group ultimately become a
common pharmacophore hypothesis which gives anaeapbn how ligands bind to the
receptor. Common pharmacophores are identifiedguaitree based partitioning technique
that groups together similar pharmacophores aaogrth their intersite distances, i.e., the
distances between pairs of sites in the pharmacepl#ctive and inactive thresholds of
PICso respectively, were applied to the training set fdeveloping the common
pharmacophore hypotheses. After applying defau#ttuie definitions to each ligand,
common pharmacophores containing six sites wererged using a terminal box size of 1.5
A, and with requirement that all actives should inatc

I'V. Scoring Hypotheses

In the score hypotheses step, common pharmacopltaesexamined, and a scoring
procedure is applied to identify the pharmacophooen each surviving n-dimensional box
that yields the best alignment of the active sgards. This pharmacophore provides a
hypothesis to explain how the active molecules hthe receptor. The scoring procedure
provides a ranking of the different hypotheseqvalhg making rational choices about which
hypotheses are most appropriate for further ingastn. Scoring with respect to actives was
conducted using default parameters for site, veadod volume terms. Ligand activity,
expressed as -log10 @€, was incorporated into the score with a weight &, and relative
conformational energy (kJ/mol) was included witlweight of 0.01. Hypotheses that emerged
from this process were subsequently scored withesto inactive, using a weight of 1.0.
The inactive molecules were scored to observeltheraent of these molecules with respect
to the pharmacophore hypothesis to enable makirdeasion on the selection of the
hypothesis. Larger is the difference between tlweescof active and inactive, better is the
hypothesis at distinguishing the actives from iivact

V. Building QSAR mode

PHASE provides the means to build QSAR models u#liegactivities of the ligands that

match a given hypothesis. PHASE QSAR models arecbar PLS regression, applied to a
large set of binary valued variables. The indepehderiables in the QSAR model are
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derived from a regular grid of cubic volume elensetiitat span the space occupied by the
training set ligands. Each ligand is represented et of bit values (0 or 1) that indicate
which volume elements are occupied by a Vander 8Vaalface model of the ligand. To
distinguish different atom types that occupy themaaegion of space, a given cube in the
grid may be allocated as many as six bits, accogritr six different classes of atoms. The
atoms classes are: D: hydrogen-bond donor, H: Ipyaroic or nonpolar, N: negative ionic,
positive ionic, electron-withdrawing (includes hgden-bond acceptors), miscellaneous (all
other types).PHASE QSAR models may be either atageth or pharmacophore- based, the
difference being whether all atoms are taken istmant, or merely the pharmacophore sites
that can be matched to the hypothesis. The chdieghich type of model to create depends
largely on whether or not the training set molesidee sufficiently rigid and congeneric. If
the structures contain a relatively small numberrathtable bonds and some common
structural framework, then an atom-based model mark quite well. Atom-based QSAR
models were generated for AHRRRR hypothesis usiaghb-member training set and a grid
spacing of 1.8. QSAR models containing one to seven PLS factegsewgenerated. A
model with five PLS factors was considered as tést Istatistical model. This model was
validated by predicting activities of test set nooiles.

Analysis of Atom-Based PHASE Model

Figure 5, 6, 7 shows the volume occlusion mapstlier atom-based PHASE 3D-
QSAR model (donor, hydrophobic, and electronegatrepresented by color codes.
These maps represent the regions of favourableuafalzourable interactions. The
volume occlusion maps of hydrogen bond donor (FEd)r describe the spatial
arrangement of favourable hydrogen bonding intevastto acceptor groups of the
target protein. In figure-5, 6, 7 red regions imdés unfavourable region for
substitution and blue region indicates favourabgon for substitution.

Result and Discussion

In 3D-QSAR analysis of 3-Bromo-4-(1-H-3-Indolyl)-2,5-Dihydro-1H-2,5-Pyrmdlione
derivatives it was found that Correlation Coeffiti (F) = 0.9057, Cross validation Co-
efficient (cf)=0.0207,& Standard Deviation(S.D)=0.211 (Tablegl)om fig 5, 6, 7 it was
found that on substitutinghydrogen bond donor or electron withdrawing groop
hydrophobic group to compounds (34a-h) having atsuwited anilide substructure linked to
the to the indole-2 position by alkyl spacer shadtease antibacterial activity ,on substituting
electron withdrawing group at 5-position of indaleall decrease activity , on substituting
hydrophobic group at 5 & 7 position of indole dhatrease antibacterial activityhere,
Aromatic Ring (R) Orange torus in the plane of tivey, Acceptor (A) Light red sphere
centered on the atom with the lone pair, with agrgwinting in the direction of the lone
pairs, Donor (D) Light blue sphere centered onHhatom, with an arrow pointing in the
direction of the potential H-bond, Hydrophobic (@)een sphere.
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Table 1 Activity of 3- bromo-4-(1-H-3-indolyl)-2, 5-dihydro-1H-2, 5-Pyrroledione
derivatives against Staphylococcus aureus 134/93

(7a-28h)

Nr R1

7a H 4-OMe 0.32 6.5

7b H 4-OBu 0.45 6.3

7c H 4-OPen - 0.88 6.1
7d H 4-Ooct 50 4.3

7f H 4-0OBzl 0.21 6.7

79 H 4-ONaph 15 5.8
12a 5-OMe H 1.00 6.0
12b 5-OEt H 3.80 5.4

12c 5-OPr H 0.95 6.0
12d 5-OBu H 0.11 6.9

12e 5-Open H 27 4.6
13a 5-OEt 4-OMe 2.0 5.7
13b 5-OPr 4-OMe 0.44 6.4
13c 5-OBu 4-OMe 0.10 7.0
18a 5-OHex H 0.13 6.9
18b 5-Et H 0.13 6.9

18c 5-Pr H 0.50 6.3
18d 5-Bu H 0.24 6.6

18e 5-Pen H 0.91 6.0
19a 5-Me 4-OMe 0.12 6.9
19b 5-Et 4-OMe 0.23 6.6
19c 5-Pr 4-OMe 0.45 6.3
19d 5-Bu 4-OMe 0.44 6.4
19e 5-Pen 4-OMe 0.85 6.1
24a 7-Me H 3.98 5.4
24b 7-Et H 2.51 5.7

24c 7-Bu H 0.25 6.6
24d 7-Pen H 0.50 6.3
25a 7- Me 4-OMe 2.00 5.7
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25b 7- Et 4-OMe 0.50 6.3
25¢c 7- Pr 4-OMe 0.50 6.3
25d 7- Bu 4-OMe 0.25 6.6
25e 7- Hex 4-OMe 0.40 6.4
28a 5-OMe 3- OMe 1.90 5.7
28b 5-OEt 3- OMe 3.50 5.5
28c 5-OBu 3- OMe 3.30 5.5
28d 5-OHex 3- OMe 12.60 4.9
28e 5-Me 3- OMe 0.20 6.6
28f 5-Et 3- OMe 0.50 6.3
28g 5-Bu 3- OMe 3.40 5.5
28h 5-Hex 3- OMe 26.00 4.6
34a 2 H 0.18 6.7
34b 3 H 1.7 5.8
34c 4 H 1.7 5.8
34d 5 H 0.10 7.0
34e 6 H 0.10 7.0
34f 3 4-Me 1.58 5.8
349 3 3-Me 0.79 6.1
34h 3 2-Me 0.32 6.5
ciprofloxacin 38.1 4.4

MIC* indicates Minimum Inhibitory Concentration

Table 2: Fitness and activity

Ligand QSAR PLS Predicted Pharm
Name Set Activity | Factor Activity Set Fithess
7a training 6.49 4 6.35 2.87
7b training 6.34 4 6.27 2.77
7C test 6.05 4 6.09 2.75
7d test 4.30 4 6.35 inactive 2.67
7f training 6.67 4 6.67 active 2.71
79 training 5.82 4 5.92 2.67
12a training 6 4 6.27 2.95
12b test 5.42 4 6.07 inactive 2.89
12c training 6.02 4 6.2 2.88
12d training 6.95 4 6.52 active 2.84
12e training 4.56 4 4.39 inactive 2.81
13a test 5.69 4 6.25 inactive 2.82
13b training 6.35 4 6.4 2.82
13c training 7 4 6.71 active 2.78
18a training 6.88 4 6.59 active 3
18b test 6.88 4 6.65 active 2.95
18c training 6.30 4 6.59 2.92
18d training 6.62 4 6.39 active 2.88
18e test 6.04 4 6.18 2.84
19a test 6.92 4 6.77 active 2.92
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19b training 6.63 4 6.76 active 2.88
19c test 6.34 4 6.69 2.85
19d training 6.35 4 6.5 2.81
19e training 6.07 4 6.28 2.78
24a training 5.4 4 5.68 inactive 2.9
24b training 5.6 4 5.75 inactive 2.86
24c test 6.60 4 6.32 active 2.8
24d training 6.30 4 6.43 2.77
25a training 5.69 4 5.88 inactive 2.83
25b test 6.30 4 5.93 2.8
25¢c training 6.30 4 6.18 2.77
25d training 6.60 4 6.48 active 2.75
25e training 6.39 4 5.7 2.69
28a training 5.72 4 5.7 inactive 2.88
28b training 5.45 4 5.52 inactive 2.83
28c training 5.48 4 5.88 inactive 2.78
28d training 4.9 4 6.48 inactive 2.73
28e test 6.69 4 5.95 active 2.91
28f training 6.30 4 6.07 2.88
289 test 5.46 4 5.98 inactive 2.81
28h training 4.58 4 4.37 inactive 2.76
34a training 6.74 4 6.73 active 2.52
34b training 5.77 4 5.79 inactive 2.6
34c training 5.77 4 5.55 inactive 2.61
34d training 7 4 6.88 active 2.54
34e training 7 4 6.95 active 2.55
34f test 5.80 4 5.93 2.58
349 training 6.10 4 5.99 2.58
34h test 6.49 4 6.07 2.59
Table 3: 3D QSAR Result
ID PLS SD R? F P RMSE | Q-squared| Pearson-R
Factors
ADHRR.86 4 0.211 0.9057 72 6.05e-15 0.6745 0.0207 .294®
Table.4 QSAR Hypothesis Score
ID Survival | Survival — | Post-hoc Site Vector Volume
inactive
ADHRR 43 2.145 1.034 2.341 0.98 0.67 0.341

ADHRRR.52 2.790 2.371 3.043 0.98 0.45 0.341

ADRRRR.68 3.142 3.782 3.936 0.98 0.56 0.315

ADRRRR.82 3.537 3.867 4,231 0.93 0.71 0.662

ADRRRR.88 3.781 4.162 4.683 0.92 0.94 0.501

ADHRRR.249 4.449 4.357 4.283 0.92 0.91 0.736

ADHRRR.432 4,901 4.631 4.783 0.94 0.97 0.289
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Figure 1: Plot of predicted activity Vs phase actiity for test compounds
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Figure 2: Plot of predicted activity Vs phase actiity for training compounds
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Figure 3: Plot of predicted activity Vs phase actiity for all compounds
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Fig 4: QSAR Model of 3-Bromo-4-(1-H-3-Indolyl)-2,5-Dihydro-1H-2,5 Pyrroledione
derivatives along with alignment of structures

Fig 5: QSAR Model of 3-Bromo-4-(1-H-3-Indolyl)-2, 5Dihydro-1H-2, 5-Pyrroledione
derivatives with electron withdrawing effect
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Figure 6: QSAR Model of 3-Bromo-4-(1-H-3-Indolyl)2, 5-Dihydro-1H-2, 5-
Pyrroledione derivatives with H-bond donor effect

Figure 7: QSAR Model of 3-Bromo-4-(1-H-3-Indolyl)-2 5-Dihydro-1H-2, 5-
Pyrroledione derivatives with hydrophobic effect

Conclusion

A set of 49 compounds of 3-Bromo-4-(1-H-3-IndolglB-Dihydro-1H-2,5-Pyrroledione
derivatives was subjected to 3D-QSAR analysisguBiartial Least Square (PLS) method to
design its derivatives as potent antibacterial agén fig 4,5,6,7 red regions indicates
unfavourable region for substitution, and blue eegiindicates favourable region for
substitution which draws the conclusion tlgt substituting group at direction identified at
QSAR model potent antibacterial agent can be prediuc
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