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ABSTRACT 
 
World Health Organization has reported that 14 million people worldwide are infected with active tuberculosis and 
over 1.7 million deaths occur every year. There are many drugs available in the market for treating tuberculosis, but 
the emergence of tuberculosis is due to the appearance of Multi Drug Resistance (MDR) against one or more of the 
1st line antimycobacterial drug. Therefore, there is a need to explore and develop newer structural moiety as 
antitubercular drug. In the present study CORAL software was used for constructing large-scale QSAR models for 
predicting the antitubercular activity of 24 pyrazoline and benzoxazole based chalcones on the Monte Carlo 
approach. Further these 24 target molecules were subjected to docking for finding out the interactions of the 
molecules with various targets of mycobacterium species. Computational results indicated that this approach can 
satisfactorily predict the desired activity with very good statistical significance. For best built model statistical 
parameters were R2=0.8813 and Q2=0.8031 for test set and R2=0.6124 and Q2=0.4914 for training set. 
Additionally, molecular docking study was performed for finding out the interactions of the molecules with various 
targets of mycobacterium species. Monte Carlo method proved to be an efficient approach to build up a robust 
model for estimating. Based on QSAR and molecular docking studies, some important physicochemical parameters 
of pyrazoline moiety could be assessed for antitubercular drugs. 
 
Key words: Pyrazoline, Benzoxazole, , Multi drug resistance, Anti tubercular drugs.  
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

Tuberculosis is currently the leading killer of youth, women and patients suffering from AIDS. The duration of the 
present antitubercular therapy leads to patient non-compliance and this in turn has contributed to the development of 
drug resistance. In recent years, the pandemic of AIDS poses a major impact on the world wide spread of TB. 
However, since 1980s, the disease has seen resurgence due to variety of changes in social, medical and economic 
factors. Concomitant with the resurgence of TB, is the appearance of multidrug-resistant TB which exposes the 
frailties of the current drug armamentarium. 
 
The importance of quantitative structure-reactivity relationship (QSAR) studies in modern drug design is well 
established since QSAR can make the early prediction of activity-related characteristics of drug candidates and can 
eliminate molecules with undesired properties [1]. The main goal of QSAR approach is to correlate the biological 
activity of a series of compounds with the calculated molecular properties in terms of descriptors [2]. Thousands of 
molecular descriptors are used in QSAR studies for the purpose of encoding molecules chemical and structural 
features [3, 4] with great importance of topological descriptors calculated on the basis of molecular graphs [5]. The 
simplified molecular input line entry system (SMILES) is an alternative to molecular graphs and it can be used for 
representation of molecular structures [6]. 
 
A common problem in the development of QSAR/QSPR models can arise from: (i) selection of an appropriate 
subset of molecular descriptors from the masses of available descriptors, (ii) the vagueness of interpreting certain 
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descriptors obtained from QSAR/QSPR modeling and (iii) the need to geometrically optimize structures if three 
dimensional descriptors are to be used. Therefore  CORAL software (available at http://www.insilico.eu/coral) is a 
tool that allows QSAR/ QSPR analysis as a function of conformation-independent and SMILES based descriptors 
while complying with the OECD principles [7-10]. 
 

Molecular docking has been frequently used to predict the prominent and acknowledged geometry of a protein-
ligand complex and to understand the interaction studies of the target with specific ligands. Docking is often used 
with scoring functions to predict binding affinities of ligands in virtual screening experiments [11]. It is also 
important in studying the structure activity relationship of the newly synthesized compounds [12-13]. The function 
of docking is to define the energetics of the system and the efficiency of the ligand molecule to bind to its target, as 
it forms the basis of the docking algorithms attempt 
 
AutoDock Vina is a new open source program for drug discovery, molecular docking and virtual screening, offering 
multi-core capability, high performance and enhanced accuracy and ease of use. AutoDock Vina significantly 
improves the average accuracy of the binding mode predictions. 
 
Thus, the present study employed CORAL software for constructing large-scale QSAR models for predicting the 
antitubercular activity of 24 pyrazoline and benzoxazole based chalcones on the Monte Carlo approach. Such 
models afford a simple and versatile approach for discerning the origins of investigated activities directly from the 
SMILES notation that had been used for encoding molecular structures. Further these 24 target molecules were 
subjected to docking for finding out the interactions of the molecules with various targets of mycobacterium species. 
 

MATERIALS AND METHODS 
 
Data 
A dataset of 24 pyrazoline derivatives with determined antitubercular activity against M.tuberculosis H37Rv was 
selected for QSAR study [14]. Figure 1 presents general structures of used pyrazoline compounds for QSAR 
modeling. The negative logarithmic IC50 values of antitubercular activity (pIC50) were selected as the endpoint for 
QSAR analysis which was converted by microsoft excel sheet using the formula fx = -log10. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

Figure 1: General molecular structures of used molecules 
 

Canonical SMILES for all compounds were generated with the ACD/ChemSketch program (ACD/Chem Sketch 
v.11.0) in order to preserve consistency because different software may generate different SMILES notations. The 
role of the training set is in developing of the model. The role of test set is selection of preferable values for the 
number of epoch of the Monte Carlo optimization and the threshold value. 
 
Optimal descriptor 
Optimal descriptors for constructing QSAR models are based on SMILES notation as described according to the 
following equation [15]: 
 
Whereas DCW represents descriptor correlation weight for SMILES/molecular graph descriptors. ‘T’ represents 
threshold which in turn describes rare SMILES or molecular graph attribute which is used in Monte Carlo algorithm 
e.g. If  ‘T’ is defined as 1 then any SMILES/Graph attribute occurring less than instance ‘1’ is considered as rare 
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attribute whose correlation weight (CW) is fixed as 0. Nepoch is number of epoch of Monte Carlo algorithms which 
defines the cycle of modifications in correlation weight calculations for building up model. Hence, each Monte 
Carlo based QSAR model is a function of T and Nepoch value 
 
In the present study, each SMILES based DCWs were calculated according to following equation- 
 
DCW (SMILES) =α∑Sk + β∑SSk + γ∑SSSk               --------Equation 2 
 
Whereas α, β, γ represents correlation weights for the SMILES attributes, Sk represent single SMILE component in 
SMILES representation of the molecules e.g. atoms like C, H, N,O  etc, SSk represents two consecutive letter in the 
SMILES attribute. With respect to molecular structures this could be equivalent to two elements in the structures 
joined by any bond. SSSk represents three consecutive SMILES attributes. This could be considered as a 
representation of molecular fragments in the structure. In the present study correlation weights of the SSSk 
components were used in the DCW calculation of the SMILES optimal descriptors. 
 
The DCW values obtained were then correlated with pIC50 values by using least square methodology using 
following Equation. 
 
pIC50 = C0 + C1 × DCW (T, Nepoch)                  -------Equation 3 
 
The quality and robustness of the QSAR model developed was assessed by subjecting it to various statistical 
techniques as follows: 
 
1) Internal validation was performed by Leave One Out (LOO) cross validation  technique on the training set 
2) External validation was performed on Test set of compounds which also assess predictive power of the model on 
the compounds not included in the training set 
3) The Randomization test or Y-scrambling test to rule out any chance correlation of descriptors involved in the 
model to anticancer activity of the compounds. 
 

For calculation of cross validated squared correlation coefficient (q2), one molecule was randomly deleted from the 
training set and test set and model was rebuilt and regression coefficient was calculated by following formula- 
 
Q2(training/test set)= 1 - ∑ [Aexp(train/test)-Apred(train/test)]2/  
 
∑[Aexp(train/test)- Ā(train/test)]2.............................Equation 4 
 
Where Aexp represents the experimental pIC50 values of the compound in training/test set, Apred indicates 
predicted activities of the compounds after deletion of random molecules from the training or test set, Ā represents 
mean experimental pIC50 values of the training or test set molecules. 
 
In the present model novel statistical parameter for assessing the predictive power of the QSAR model known as 
(Rm2) was used [16] . Rm2 presents the stricter test of validation where built model is penalized for large differences 
in the experimental and predicted activities of the compounds [17]. 
 

Y-randomization or scrambling test were performed where activity fields were randomly assigned to compounds in 
training and test set and model was rebuilt. The squared correlation coefficients of the randomized model (Rr2) were 
compared to squared correlation coefficients of non randomized model (R2). A new statistical parameter (CR2p) 
which represents squared correlation coefficient of the model after penalizing model for small differences between 
Rr2  and R2 was used to assess robustness quality of the model [18]. 
 
SMILES (DCW) =  SMILESDCW (T, Nepoch)    -------Equation 1 
 
Docking Studies 
Enzyme structure 
The X-ray crystal structures of mycobacterium enoyl reductase (InhA) (PDB ID: 2H7I which was obsolete and now 
changed to 4UOJ27), Cytochrome P-450-14-alpha sterol demethylase  from Mycobacterium tuberculosis (PDB ID: 
1H5Z28), human and tubercular DHFR, complexed with folate and trimethoprim (TMP) respectively with (PDB ID 
1DRF29 and 1DG530), Glucosamine-1-Phosphate-N-Acetyl Transferase (GLmU) (PDB ID: 3D8V31), Shikimate 
Kinase (SK) (PDB ID: 1L4Y32) were obtained from the protein data bank. . (http://www.rcsb.org/pdb). 
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RESULTS 
 

QSAR 
 

Table 1: Molecules in SMILES format with their descriptor correlation weight (DCW) values and experimental and calculated pIC50 
values and residuals 

 
Code SMILES    DCW Exp Calc Residual 
KK1 + :O=C(C)N2N=C(CC2c1cc(N)c(O)c(OC)c1)c3ccccc3 44.32750 4.113 4.213 -0.100 
KK3 + :O=C(C)N2N=C(CC2c1cc(N)c(O)c(OC)c1)c3ccc(F)cc3   45.19088: 4.438 4.416 0.022 
KK5 + :O=C(C)N2N=C(CC2c1ccc(O)c(N)c1)c3ccccc3 48.51100 5.373 5.197 0.176 
KK7 + :O=C(C)N2N=C(CC2c1cc(N)c(O)c(Cl)c1)c3ccccc3 48.38800 5.005 5.168 -0.163 
KK9 + :CC(=O)N3N=C(CC3c1ccc2nc(N)oc2c1OC)c4ccccc4 48.86056 5.748 5.280 0.468 
KK10 + :Clc1ccc(c(Cl)c1)C=4CC(c2ccc3nc(N)oc3c2OC)N(N=4)C(C)=O~ 45.65425 4.524 4.525 -0.001 
KK11 + :Fc1ccc(cc1)C=4CC(c2ccc3nc(N)oc3c2OC)N(N=4)C(C)=O 46.22394 4.769 4.659 0.110 
KK13 + :CC(=O)N3N=C(CC3c1ccc2nc(N)oc2c1)c4ccccc4 43.89481 4.107 4.111 -0.004 
KK15 + :CC(=O)N3N=C(CC3c1ccc2nc(N)oc2c1Cl)c4ccccc4 46.89281 4.149 4.816 -0.667 
KK17 + :CC(=O)N3N=C(CC3c1ccc2nc(S)oc2c1OC)c4ccccc4 48.83031 4.769 5.273 -0.504 
KK19 + :Fc1ccc(cc1)C=4CC(c2ccc3nc(S)oc3c2OC)N(N=4)C(C)=O 46.19369 4.487 4.652 -0.165 
KK20 + :Brc1ccccc1C=4CC(c2ccc3nc(S)oc3c2OC)N(N=4)C(C)=O 45.43931 4.551 4.474 0.077 
KK21 + :CC(=O)N3N=C(CC3c1ccc2nc(S)oc2c1)c4ccccc4   43.86456 4.129 4.104 0.025 
KK22 + :Brc1ccccc1C=4CC(c2ccc3nc(S)oc3c2)N(N=4)C(C)=O 45.49981 4.520 4.489 0.031 
KK23 + :CC(=O)N3N=C(CC3c1ccc2nc(S)oc2c1Cl)c4ccccc4  46.86256 5.471 4.809 0.662 
KK24 + :Brc1ccccc1C=4CC(c2ccc3nc(S)oc3c2Cl)N(N=4)C(C)=O 46.98456 4.856 4.838 0.018 
KK2 # :O=C(C)N2N=C(CC2c1cc(N)c(O)c(OC)c1)c3ccc(Cl)cc3Cl 44.90500 4.497 4.349 0.148 
KK4 # :O=C(C)N2N=C(CC2c1cc(N)c(O)c(OC)c1)c3ccccc3Br   45.32850 4.508 4.448 0.060 
KK6 # :O=C(C)N2N=C(CC2c1ccc(O)c(N)c1)c3ccccc3Br 49.51200 5.776 5.433 0.343 
KK8 # :O=C(C)N2N=C(CC2c1cc(N)c(O)c(Cl)c1)c3ccccc3Br 49.38900 5.513 5.404 0.109 
KK12 # :Brc1ccccc1C=4CC(c2ccc3nc(N)oc3c2OC)N(N=4)C(C)=O 45.46956 4.534 4.481 0.053 
KK14 # :Brc1ccccc1C=4CC(c2ccc3nc(N)oc3c2)N(N=4)C(C)=O 45.53006 4.202 4.496 -0.294 
KK16 # :Brc1ccccc1C=4CC(c2ccc3nc(N)oc3c2Cl)N(N=4)C(C)=O 47.01481 5.122 4.845 0.277 
KK18 # :Clc1ccc(c(Cl)c1)C=4CC(c2ccc3nc(S)oc3c2OC)N(N=4)C(C)=O~ 45.62400 4.843 4.518 0.325 

 

Table 2: The data showing statistical parameters of the constructed model for the molecules of test and training set 
 

Set N r2 q2 MAE s F 
Train. 16 0.6124 0.4914 0.201 0.313 22 
Test. 8 0.8813 0.8031 0.200 0.247 45 

N= Number of molecules; r2= squared correlation coefficient, q2= leave one out cross validated squared correlation coefficient, s= standard 
deviation in the activity and F= Fischer coefficient 

 
Table 3: The data representing the details of ten randomization tests 

 
No. of Randomization runs Training test (r2) Test set (r2) 
1 0.0033 0.8813 
2 0.2650 0.1077 
3 0.2034 0.0035 
4 0.0481 0.0715 
5 0.4880 0.0509 
6 0.3612 0.3967 
7 0.2302 0.1883 
8 0.1543 0.2499 
9 0.0418 0.1504 
10 0.1168 0.0965 
AverageR2 of randomized  0.1912 0.1361 
R2 of Non Randomized Model 0.5079 0.8105: 
CRp2=R*sqrt(R2-Rr2) 0.6124 0.8813 

 

Table 4: List of SMILES attributes contributing in the antitubercular activity of the pyrazoline compounds 
 

Promoter of antitubercular activity Demoter of antitubercular activity Insignificant attributes 
(...C...(...:     1.26181,  
(...F...(...:     1.48238 
(...O...(...:     2.00200 
1...Cl..(...:     1.18750 
2...Cl..(...:     1.00200 
2...N...(...:     1.44050 
3...c...(...:     1.40925 
=...4...(...:     1.59375 
=...C...(...:     1.87200 
=...C...1...:     1.09375 
=...N...2...:     2.00300 
=...N...3...:     1.87600 
=...O...(...:     1.52925 

(...c...(...:    -0.30950 
=...N...(...:    -0.06750 
C...O...(...:    -0.74700 
O...C...(...:    -0.75300 
c...(...O...:    -0.00300 
c...o...(...:    -0.37600 

. (...Cl.(...:     0.93950 
(...N...(...:     0.93750 
(...S...(...:      0.46675 
1...c...(...:     0.24700 
2...c...(...:     0.38281 
2...c...1...:     0.53525 
3...N...(...:     0.11338 
3...c...1...:     0.48038 
3...c...2...:     0.87200 
4...c...(...:     0.06550 
C...(...4...:     0.51181 
C...(...=...:     0.12600 
C...(...C...:     0.52044 
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C...(...1...:     2.03625 
C...C...(...:     2.53225 
C...C...2...:     3.15125 
C...O...1...:     2.94050 
N...(...Cl..:     2.28225 
N...2...N...:     1.97075 
N...3...N...:     1.53625 
N...=...4...:     1.03425 
N...=...C...:     1.51963 
O...(...N...:     1.51963 
O...=...C...:     1.27825 
c...(...F...:     1.37200 
c...(...c...:     1.15525 
c...1...Cl..:     1.46975 
c...1...O...:     3.05750 
c...1...c...:     1.62900 
c...2...(...:     2.87200 
c...2...C...:     2.37600 
c...2...Cl..:     1.00500 
c...2...O...:     2.00000 
c...3...C...:     1.85838 
c...3...Br..:     1.00100 
c...3...Cl..:     1.00500 
c...4...c...:     1.93850 
c...c...(...:     1.06750 
c...c...1...:     2.25781 
c...c...3...:     1.67188 
c...c...c...:     2.74900 
c...n...2...:     1.96775 
c...n...3...:     1.12981 
n...3...c...:     2.28525 
o...(...N...:     1.05950 
o...(...S...:     1.72075 

C...4...=...:     0.06250 
C...=...4...:     0.12881 
C...C...3...:     0.35056 
C...C...4...:     0.27844 
C...O...2...:     0.87200 
F...c...1...:     0.73937 
Br..c...1...:     0.71375 
Cl..c...1...:     0.62200 
N...(...C...:     0.62500 
N...(...N...:     0.62781 
O...=...(...:     0.54188 
c...(...1...:     0.03125 
c...(...C...:     0.37800 
c...(...Cl..:     0.99800 
c...(...N...:     0.34775 
c...(...S...:     0.12700 
c...1...(...:     0.62600 
c...1...C...:     0.50400 
c...2...c...:     0.35938 
c...3...c...:     0.10538 
c...c...2...:     0.61037 
c...c...4...:     0.44031 
n...2...c...:     0.78625 
n...c...(...:     0.19150 
o...c...2...:     0.14263 
o...c...3...:     1.96675 

 
Table : DCW and CWs values for a pyrazoline (KK-1) 

 
 

 
 
 

 
 

 
 
 

 
 

 
SMILES notation: O=C(C)N2N=C(CC2c1cc(N)c(O)c(OC)c1)c3ccccc3 

 

    (SA)        CW(SA)   
O...=...C... 1.2782 
=...C...(... 1.8720 
C...(...C... 0.5204 
(...C...(... 1.2618 
N...(...C... 0.6250 
2...N...(.. 1.4405 
N...2...N... 1.9707 
=...N...2... 2.0030 
N...=...C... 1.5196 
=...C...(... 1.8720 
C...(...C... 0.5204 
C...C...(... 2.5322 
C...C...2... 3.1513 
c...2...C... 2.3760 
2...c...1... 0.5353 
c...1...c... 1.6290 
c...c...1... 2.2578 
c...c...(... 1.0675 
c...(...N... 0.3478 
(...N...(... 0.9375 

N

N
O

CH3

OHH2N

OCH3



Kalpana Devi et al                             J. Comput. Methods Mol. Des., 2016, 6 (3):8-19  
______________________________________________________________________________ 

13 
Available online at www.scholarsresearchlibrary.com 

OHNH2

c...(...N... 0.3478 
(...c...(... -0.3095 
c...(...O... -0.0030 
(...O...(... 2.0020 
c...(...O... -0.0030 
(...c...(... -0.3095 
c...(...O... -0.0030 
C...O...(... -0.7470 
O...C...(... -0.7530 
c...(...C... 0.3780 
1...c...(... 0.2470 
c...1...(... 0.6260 
c...(...1... 0.0313 
3...c...(... 1.4092 
c...3...c... 0.1054 
c...c...3... 1.6719 
c...c...c... 2.7490 
c...c...c... 2.7490 
c...c...c... 2.7490 
c...c...3... 1.6719 

Descriptor correlation weight (DCW) = 44.32750 
SA= Structural attribute (SMILES); CWs= Correlation weights 

 
DOCKING 
The binding energy scores of the targeted benzoxazole based pyrazoline derivatives with the various proteins of 
mycobacterium species have been depicted in the tables from 5-9. 
 

Table 5: Benzoxazole based pyrazoline derivatives with their binding energy scores (Kcal/mol)  and H-bonds interactions against 
mycobacterium enoyl reductase (InhA) (PDB ID: 2H7I which is obsolete and changed to 4UOJ) 

 

Ligand 
Code 

R1 R2 R3 X Binding energy score  
(Kcal/mol) 

pMIC50 uM 
 (H37Rv) 

H-bond 
Interacting 
Residues 

KK1 O-CH3 H H - -9.2 4.113 - 
KK2 O-CH3 Cl Cl - -7.6 4.497 Gly 96 
KK3 O-CH3 H F - -7.8 4.438 Meth 98 
KK4 O-CH3 Br H - -8.4 4.508 Gly 96 
KK5 H H H - -8.3 5.373 Gly 96 
KK6 H Br H - -8.5 5.776 - 
KK7 Cl H H - -8.5 5.005 Gly 96 
KK8 Cl Br H - -8.7 5.513 Gly 96 
KK9 O-CH3 H H NH2 -8.5 5.748 Gly 96 
KK10 O-CH3 Cl Cl NH2 -7.4 4.524 - 
KK11 O-CH3 H F NH2 -8.4 4.769 - 
KK12 O-CH3 Br H NH2 -8.6 4.534 - 
KK13 H H H NH2 -8.7 4.107 - 
KK14 H Br H NH2 -8.8 4.202 Gly 96 
KK15 Cl H H NH2 -8.8 4.149 Gly 96 
KK16 Cl Br H NH2 -8.9 5.122 Gly 96 
KK17 O-CH3 H H SH -8.5 4.769 - 
KK18 O-CH3 Cl Cl SH -7.8 4.843 - 
KK19 O-CH3 H F SH -6.3 4.487 Threo 96 
KK20 O-CH3 Br H SH -8.4 4.551 - 
KK21 H H H SH -7.1 4.129 - 
KK22 H Br H SH -8.6 4.520 - 
KK23 H H H SH -8.8 5.471 - 
KK24 H Br H SH -8.7 4.856 Threo 196 
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Table 6: Benzoxazole based pyrazoline derivatives with their binding energy scores (in Kcal/mol) and H-bonds interactions against 
Cytochrome P-450-14-Alpha Sterol Demethylase demethylase from Mycobacterium tuberculosis (PDB ID: 1H5Z) 

 

Ligand 
Code 

R1 R2 R3 X Binding energy score 
(Kcal/mol) 

pMIC50 uM 
(H37Rv) 

No. of H-Bonds / 
H-bond 

Interacting 
Residues 

KK1 O-CH3 H H - -9.0 4.1134 Arg 326, Tyr 76 
KK2 O-CH3 Cl Cl - -8.9 4.497 Arg 326 
KK3 O-CH3 H F - -8.7 4.438 Arg 326 
KK4 O-CH3 Br H - -9.0 4.508 Arg 326 
KK5 H H H - -9.4 5.373 Arg 326, Tyr 76 
KK6 H Br H - -9.1 5.776 Arg 326 
KK7 Cl H H - -9.1 5.005 Arg 326 
KK8 Cl Br H - -9.8 5.513 Leu 324, Arg 326, Prol 386 
KK9 O-CH3 H H NH2 -8.6 5.748 His 259 
KK10 O-CH3 Cl Cl NH2 -9.0 4.524 Ala 256 
KK11 O-CH3 H F NH2 -9.1 4.769 - 
KK12 O-CH3 Br H NH2 -9.0 4.534 - 
KK13 H H H NH2 -9.1 4.107 - 
KK14 H Br H NH2 -8.9 4.202 - 
KK15 Cl H H NH2 -8.8 4.149 - 
KK16 Cl Br H NH2 -8.7 5.122 - 
KK17 O-CH3 H H SH -9.0 4.769 - 
KK18 O-CH3 Cl Cl SH -8.7 4.843 - 
KK19 O-CH3 H F SH -9.3 4.487 - 
KK20 O-CH3 Br H SH -8.9 4.551 - 
KK21 H H H SH -8.3 4.129 - 
KK22 H Br H SH -9.1 4.520 Arg 326 
KK23 H H H SH -9.4 5.471 - 
KK24 H Br H SH -9.4 4.856 Arg 326 

 

Table 7: Benzoxazole based pyrazoline derivatives with their binding energy scores (in Kcal/mol) and H-bonds interactions against 
human and tubercular DHFR, complexed with folate and trimethoprim (TMP) respectively, was obtained from the protein data bank 

(PDB ID 1DRF32 and 1DG533 respectively 
a) PDB ID 1DRF 
 

Ligand 
Code 

R1 R2 R3 X Binding energy score (Kcal/mol) pMIC50 uM (H37Rv) 

No. of H-Bonds / 
H-bond 

Interacting 
Residues 

KK1 O-CH3 H H - -9.0 4.113 - 
KK2 O-CH3 Cl Cl - -9.2 4.497 - 
KK3 O-CH3 H F - -9.2 4.438 - 
KK4 O-CH3 Br H - -8.8 4.508 - 
KK5 H H H - -9.4 5.373 - 
KK6 H Br H - -9.3 5.776 - 
KK7 Cl H H - -9.4 5.005 - 
KK8 Cl Br H - -9.3 5.513 - 
KK9 O-CH3 H H NH2 -10.0 5.748 - 
KK10 O-CH3 Cl Cl NH2 -9.9 4.524 - 
KK11 O-CH3 H F NH2 -10.1 4.769 - 
KK12 O-CH3 Br H NH2 -9.3 4.534 - 
KK13 H H H NH2 -10.4 4.107 Glu 30 
KK14 H Br H NH2 -10.1 4.202 Glu 30 
KK15 Cl H H NH2 -10.2 4.149 - 
KK16 Cl Br H NH2 -9.8 5.122 - 
KK17 O-CH3 H H SH -10.2 4.769 - 
KK18 O-CH3 Cl Cl SH -9.2 4.843 - 
KK19 O-CH3 H F SH -10.0 4.487 - 
KK20 O-CH3 Br H SH -9.5 4.551 - 
KK21 H H H SH -10.0 4.129 Peptide bond between Gly 117 & gly 116 
KK22 H Br H SH -10.0 4.520 - 
KK23 H H H SH -10.2 5.471 - 
KK24 H Br H SH -9.4 4.856 - 
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a) PDB ID 1DG5 
 

Ligand 
Code 

R1 R2 R3 X Binding energy score (Kcal/mol) pMIC50 uM (H37Rv) 
H-bond 

Interacting 
Residues 

KK1 O-CH3 H H - -8.4 4.113 - 
KK2 O-CH3 Cl Cl - -8.1 4.497 - 
KK3 O-CH3 H F - -8.3 4.438 - 
KK4 O-CH3 Br H - -8.3 4.508 - 
KK5 H H H - -7.8 5.373 Gly 96 
KK6 H Br H - -7.7 5.776 Threo 46 
KK7 Cl H H - -8.5 5.005 - 
KK8 Cl Br H - -8.0 5.513 Threo 46 
KK9 O-CH3 H H NH2 -8.5 5.748 Gly 96 
KK10 O-CH3 Cl Cl NH2 -8.6 4.524 - 
KK11 O-CH3 H F NH2 -8.7 4.769 Gly 96 
KK12 O-CH3 Br H NH2 -8.6 4.534 Threo 46 
KK13 H H H NH2 -8.9 4.107 - 
KK14 H Br H NH2 -8.9 4.202 - 
KK15 Cl H H NH2 -8.4 4.149 Gly 97 
KK16 Cl Br H NH2 -8.8 5.122 Threo 46 
KK17 O-CH3 H H SH -8.5 4.769 Gly 97 
KK18 O-CH3 Cl Cl SH -8.6 4.843 Gly 96 
KK19 O-CH3 H F SH -8.6 4.487 Gly 97 
KK20 O-CH3 Br H SH -8.4 4.551 - 
KK21 H H H SH -8.3 4.129 Gly 96 
KK22 H Br H SH -8.7 4.520 Gly 97 
KK23 H H H SH -8.4 5.471 Gly 96 
KK24 H Br H SH -8.4 4.856 Threo 46 

 
Table 8: Benzoxazole based pyrazoline derivatives with their binding energy scores (in Kcal/mol) and H-bonds interactions against 

Glucosamine-1-Phosphate-N-Acetyl Transferase (GLmU) (PDB ID: 3D8V) 
 

Ligand 
Code 

R1 R2 R3 X Binding energy 
score (Kcal/mol) 

pMIC50 uM 
(H37Rv) 

No. of H-Bonds / 
H-bond 

Interacting 
Residues 

KK1 O-CH3 H H - -8.1 4.113 - 
KK2 O-CH3 Cl Cl - -8.7 4.497 - 
KK3 O-CH3 H F - -8.7 4.438 - 
KK4 O-CH3 Br H - -8.6 4.508 - 
KK5 H H H - -8.5 5.373 Lys 26 
KK6 H Br H - -8.6 5.776 Lys 26 
KK7 Cl H H - -8.3 5.005 - 
KK8 Cl Br H - -8.9 5.513 Gly 88 
KK9 O-CH3 H H NH2 -8.8 5.748 - 
KK10 O-CH3 Cl Cl NH2 -9.2 4.524 Lys 26 and Asp 114 
KK11 O-CH3 H F NH2 -8.9 4.769 Lys 26 and Asp 114 
KK12 O-CH3 Br H NH2 -9.1 4.534 Gly 15 
KK13 H H H NH2 -8.8 4.107 Lys 26 
KK14 H Br H NH2 -8.7 4.202 Lys 26 
KK15 Cl H H NH2 -8.8 4.149 Lys 26 and Asp 114 
KK16 Cl Br H NH2 -8.7 5.122 Ser 112 
KK17 O-CH3 H H SH -8.2 4.769 Peptide bond between Gly 15 & Ala 14 
KK18 O-CH3 Cl Cl SH -8.6 4.843 Asp 114 
KK19 O-CH3 H F SH -8.2 4.487 Asp 114 

KK20 O-CH3 Br H SH -8.4 4.551 
Peptide bond between Gly 15 & Ala 14 and Ala 13 (side 
amino acid) 

KK21 H H H SH -8.4 4.129 Ala 182 
KK22 H Br H SH -8.4 4.520 Peptide bond between Ala 182 & Asn 181 
KK23 H H H SH -8.4 5.471 Peptide bond between Ala 182 & Asn 181 
KK24 H Br H SH -8.4 4.856 Peptide bond between Threo 89 & Asp 114 
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Table 9: Benzoxazole based pyrazoline derivatives with their binding energy scores (in Kcal/mol) and H-bonds interactions against 
Shikimate Kinase (SK) (PDB ID: 1L4Y) 

 

Ligand 
Code 

R1 R2 R3 X Binding energy score (Kcal/mol) pMIC50 uM (H37Rv) 

No. of H-Bonds / 
H-bond 

Interacting 
Residues 

KK1 O-CH3 H H - -7.9 4.113 - 
KK2 O-CH3 Cl Cl - -8.4 4.497 Ser 16 and Lys 15 
KK3 O-CH3 H F - -8.0 4.438 Arg 117 
KK4 O-CH3 Br H - -8.4 4.508 Ser 16 
KK5 H H H - -7.9 5.373 - 
KK6 H Br H - -8.3 5.776 - 
KK7 Cl H H - -8.3 5.005 - 
KK8 Cl Br H - -8.4 5.513 - 
KK9 O-CH3 H H NH2 -8.8 5.748 - 
KK10 O-CH3 Cl Cl NH2 -8.8 4.524 - 
KK11 O-CH3 H F NH2 -8.9 4.769 Gly 81 
KK12 O-CH3 Br H NH2 -9.2 4.534 Gly 81 
KK13 H H H NH2 -8.7 4.107 - 
KK14 H Br H NH2 -8.9 4.202 - 
KK15 Cl H H NH2 -9.0 4.149 - 
KK16 Cl Br H NH2 -9.1 5.122 - 
KK17 O-CH3 H H SH -8.2 4.769 - 
KK18 O-CH3 Cl Cl SH -8.0 4.843 - 
KK19 O-CH3 H F SH -8.3 4.487 - 
KK20 O-CH3 Br H SH -8.3 4.551 - 
KK21 H H H SH -8.6 4.129 - 
KK22 H Br H SH -8.5 4.520 - 
KK23 H H H SH -8.4 5.471 - 
KK24 H Br H SH -7.8 4.856  

 
The interaction the compounds KK-5, KK-8 (as these two derivatives have shown hydrogen bonding with all 
the targeted proteins) are shown in Figures 1-4. 
 

KK-5                                                                                    KK-8 

 
 

Fig 01: Interaction  of KK-5 and KK-8 against 1DG5 
KK-5                                                                                        KK-8 

 
 

Fig 02: Interaction  of KK-5 and KK-8 against 1H5Z 
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KK-5                                                                             KK-8 

 
 

Fig 03: Interaction of KK-5 and KK-8 against 3D8V 
 

KK-5                                                                                               KK-8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 04: Interaction  of KK-5 and KK-8 against 4UOJ 
 

DISCUSSION 
 

QSAR 
Each and every SMILES based optimal descriptors were evaluated for obtaining best statistical parameters for the 
QSAR model.After several trials, SSSk  were found to be suitable for these molecules. The threshold and epoch 
values for these optimal descriptors obtained were 0 and 4 respectively. The experimental and predicted values for 
the training and test set molecules have been shown in Table 1 along with their DCW values. For better 
understanding of DCW calculation, component CWs of one of the compound used in model building has been 
depicted in Table 8. The statistical parameters obtained for the model are represented in Table 2.The squared 
correlation coefficients obtained for training and test set were 0.6124 and 0.8813 which represents good correlation 
of the compound activity with the predicted acivity which has been calculated by SMILES. The cross validated 
squared correlation coefficient values were also in satisfactory range. The model is considered highly predictive 
when Q2 values presented by both training and test set is greater than 0.5 . The stringent statistical parameters like 
Rm2 which penalizes the model for greater difference between experimental and predicted values have also fulfilled 
the minimum criteria for its predicitive ability. The model is considered as predictive when Rm2 values is greater 
than 0.5.The average Rm2 for this model was found to be 0.7743. During model building there is possibility that 
descriptors under consideration are correlated with the activity values by mere chance and not because they are 
certainly useful for the activity. Hence randomization or Y-scrambling tests were performed. After randomly 
shuffling the activity fields, descriptors which were found to be useful for model building of non-randomized dataset 
did not correlate well with the randomized activity fields. The squared correlation coefficient values were 
substantially less in such cases as compared to R2values of non-randomized model. Rr2values for randomized 
datasets are represented in Table 3.Data have shown that any possibility of chance correlation could be eliminated as 
Rr2values are substantially less for the built model. Also stringent statistical parameter CR2P which penalizes model 
for small differences between randomized and non-randomized correlation coefficients were calculated. The CR2P 
values for training and test set of the model were 0.51 and 0.81. For considering the model to be of high quality and 
robust this value should be greater than 0.5. 
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Docking  
Interaction of Ligands with the active site of mycobacterium 
The result showed that the binding interaction was good for the protein 3D8V, 1DG5, 2H7I, 1H5Z in most of the 
compounds as compared to the protein 1DRF, 1L4Y. The amino acids which are involved in the bond formation 
between the ligands and the protein  were glycine 15, 81, 96, 97,98, 116, 117, methionine 98, threonine 46, 89 ,196, 
arginine 117, 326, tyrosine 76, leucine 324, proline 386, histidine 259, alanine 13, 14, 182, 256, glutamine 30, lysine 
15, 26, aspartate 114, serine 16 ,112.  
 
In case of 1DG5, most of the hydrogen bonding interactions were due to the presence of electron donating groups 
like methoxy, pyrazoline moiety and methoxy groups of benzoxazole moiety. Therefore hydrogen bonding acceptor 
amino acids residues are predominantly in the outer site of proteins of mycobacterium tuberculosis because majority 
of the hydrogen bond interactions to the ligands were mediated through ligand donating groups. Hence for the 
designing of novel analogues incorporation of majority of hydrogen bond acceptors group in the ligands should be 
considered 
 
Docking studies of these 24 ligands against DHFR of mycobacteria and human proteins have revealed important 
information regarding selectivityof these molecules on intended microorganism. However results were discouraging. 
It was observed that optimum distance between two aromatic moieties of benzoxazole substituted pyrazolines have 
led to higher scores for these molecules whereas in case of mycobacterium this distance was of secondary 
importance as most of interaction were polar groups dominated. For shift in the selectivity of the binding affinity of 
these scaffolds increase in distance between two aromatic groups were suggested to impart lesser toxicity of these 
molecules to human host 
 
In case of 1H5Z, planar group of pyrazoline and benzoxazole moiety played an important role in pi-pi kind of non 
bonding interaction. In addition it also facilitated hydrogen bonding interactions of the substitutent group with the 
polar amino acids . For example in KK-1, KK-2, KK-5, KK-22 hydrogen bond interaction have been observed 
mostly with arginine 326 residues. This emphasizes substitutent of electron rich groups on the aromatic moiety for 
enhanced interaction with cationing arginine groups of active site at physiological pH. 
 
The interactions of ligands with protein 4UOJ have shown that non bonding interactions were uniformly distributed 
along the length of the molecule in the form of pi-cation type of interaction (lysine 196) and hydrogen bonding 
interactions with aliphatic amino acid residues like threonine 196 and aromatic hydroxyl group like tyrosine 168. 
However thiol group could not offer any interaction as aliphatic hydrophobic amino acid were surrounding the 
sulphur substituted ring as found in KK-19 making thiol group frivolous 
 
In case of 1L4Y, predominant polar interactions with amino acids residue like arginine 117 were observed. Analysis 
of active site has shown predominance of aliphatic neutral amino acids justifying why aromatic ligands fail to 
interact optimally with shikimate acid protein. This was corroborated by lower energy scores in the range of -7.8 to -
9.2. Hence it was clear that shikimate acid is not a favoured target for these molecules for its antitubercular activity. 
Polar mediated interactions with predominantly cationic active site were observed with the target 3D8V. Pyrazoline 
moiety is of secondary importance with regard to 3D8V. Binding affinity scores range from -8.1 to -9.2 
 
It was observed from these data that N of pyrazole moiety contributed significantly in the antitubercular activity as 
all the SMILES attribute representing pyrazole nitrogens have shown higher positive correlation weight in the range 
of 2.00-1.440.Attributes showing methoxy groups were represented as demoter of activity which is also confirmed 
by the docking studies . It was also observed that cyclization of amino and hydroxyl groups was unfavourable for 
the targeted activity as SMILE attribute[ (c...o...(...:    -0.37600)] has shown negative CWs.Atomic radius of halogen 
substitution plays an important role as increase in atomic radius might have caused congestion in the active site as 
evidenced by decreased CWs of halogens in the order of F>Cl>Br. Electronegativty also follows the same order for 
activity as that of atomic radius. In case of benzoxazole derivatives thiol substitutent is more potent than NH2 Based 
on these observations and DCW calculations, QSAR equation was obtained for calculating anticancer activity of the 
compounds and is represented as follows- 
 
pMIC (H37Rv) =  -6.2221000 (± 0.6479070) +    0.2354000 (± 0.0143569) * DCW(0,4) Where DCW is descriptor 
correlation weights calculated for individual compounds. 
 

CONCLUSION 
 

After analyzing docking and QSAR studies and based upon availability of chemicals proposed molecule ought to 
posses the following properties 
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• Presence of fluorine and chlorine is preferred as compared to bromine and iodine 
• Presence of  thiol is preferred as compared to amino group 
• OH or CH3 instead of OCH3 
 
The compounds which have been identified by QSAR will be considered for design and development of new 
molecules by Lead Grow module and the same will be analyzed for its binding affinity towards the selected protein 
receptor by docking studies and further carried out for synthesis. 
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