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ABSTRACT

World Health Organization has reported that 14 million people worldwide are infected with active tuberculosis and
over 1.7 million deaths occur every year. There are many drugs available in the market for treating tuberculosis, but
the emergence of tuberculosis is due to the appearance of Multi Drug Resistance (MDR) against one or more of the
1st line antimycobacterial drug. Therefore, there is a need to explore and develop newer structural moiety as
antitubercular drug. In the present study CORAL software was used for constructing large-scale QSAR models for
predicting the antitubercular activity of 24 pyrazoline and benzoxazole based chalcones on the Monte Carlo
approach. Further these 24 target molecules were subjected to docking for finding out the interactions of the
molecules with various targets of mycobacterium species. Computational results indicated that this approach can
satisfactorily predict the desired activity with very good satistical significance. For best built model statistical
parameters were R°=0.8813 and Q°=0.8031 for test set and R’=0.6124 and Q°=0.4914 for training set.
Additionally, molecular docking study was performed for finding out the interactions of the molecules with various
targets of mycobacterium species. Monte Carlo method proved to be an efficient approach to build up a robust
model for estimating. Based on QSAR and molecular docking studies, some important physicochemical parameters
of pyrazoline moiety could be assessed for antitubercular drugs.
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INTRODUCTION

Tuberculosis is currently the leading killer of youwomen and patients suffering from AIDS. Theadian of the
present antitubercular therapy leads to patientamonpliance and this in turn has contributed todbeelopment of
drug resistance. In recent years, the pandemiclbBSAposes a major impact on the world wide spread@k
However, since 1980s, the disease has seen resarder to variety of changes in social, medical ecmhomic
factors. Concomitant with the resurgence of TBthis appearance of multidrug-resistant TB which ergothe
frailties of the current drug armamentarium.

The importance of quantitative structure-reactivigfationship (QSAR) studies in modern drug desgrwell
established since QSAR can make the early predidiactivity-related characteristics of drug catades and can
eliminate molecules with undesired properties THe main goal of QSAR approach is to correlatebiotogical
activity of a series of compounds with the calcedamolecular properties in terms of descriptors T2jousands of
molecular descriptors are used in QSAR studiestferpurpose of encoding molecules chemical ancttsirai
features [3, 4] with great importance of topologidescriptors calculated on the basis of molecgtaphs [5]. The
simplified molecular input line entry system (SMIEEis an alternative to molecular graphs and itleamused for
representation of molecular structures [6].

A common problem in the development of QSAR/QSPRI@l® can arise from: (i) selection of an appropriat
subset of molecular descriptors from the massesvailable descriptors, (ii) the vagueness of imlipg certain
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descriptors obtained from QSAR/QSPR modeling aiigtfie need to geometrically optimize structuréshiree
dimensional descriptors are to be used. Therefo@RAL software (available at http://www.insilico/earal) is a
tool that allows QSAR/ QSPR analysis as a functibeonformation-independent and SMILES based detns
while complying with the OECD principl¢g-10].

Molecular docking has been frequently used to ptettie prominent and acknowledged geometry of aepro
ligand complex and to understand the interactiodist of the target with specific ligands. Dockisgoften used
with scoring functions to predict binding affinisieof ligands in virtual screening experiments [1lt]is also
important in studying the structure activity retetship of the newly synthesized compounds [12-TI3. function
of docking is to define the energetics of the aystand the efficiency of the ligand molecule to biodts target, as
it forms the basis of the docking algorithms attemp

AutoDock Vina is a new open source program for dtisgovery, molecular docking and virtual screeniofgering
multi-core capability, high performance and enhaneecuracy and ease of use. AutoDock Vina signifiga
improves the average accuracy of the binding moddigtions.

Thus, the present study employed CORAL softwarectorstructing large-scale QSAR models for predictime
antitubercular activity of 24 pyrazoline and beremxle based chalcones on the Monte Carlo apprdawuth
models afford a simple and versatile approach fecetning the origins of investigated activitiesedily from the
SMILES notation that had been used for encodingemdér structures. Further these 24 target molscwiere
subjected to docking for finding out the interansmf the molecules with various targetsmwytobacterium species.

MATERIALSAND METHODS

Data

A dataset of 24 pyrazoline derivatives with deterai antitubercular activity againkt.tuberculosis Hy/Rv was
selected for QSAR studyl4]. Figure 1 presents general structures of ysg@zoline compounds for QSAR
modeling. The negative logarithmic dQvalues of antitubercular activity (pIC50) wereesgéd as the endpoint for
QSAR analysis which was converted by microsoft Egheet using the formula fx = -log10.

R3 Rs
CHj
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CH N
N 3 N
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X

Figure 1: General molecular structures of used molecules

Canonical SMILES for all compounds were generatétth the ACD/ChemSketch program (ACD/Chem Sketch
v.11.0) in order to preserve consistency becauserelit software may generate different SMILES tiotes. The
role of the training set is in developing of thedab The role of test set is selection of prefezaldlues for the
number of epoch of the Monte Carlo optimization #melthreshold value.

Optimal descriptor
Optimal descriptors for constructing QSAR models based on SMILES notation as described accordirthet
following equatiorf15]:

Whereas DCW represents descriptor correlation weigh SMILES/molecular graph descriptors. ‘T’ repeats
threshold which in turn describes rare SMILES oteunolar graph attribute which is used in Monte Gatlgorithm
e.g. If ‘T is defined as 1 then any SMILES/Gragiftribute occurring less than instance ‘1’ is cdased as rare
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attribute whose correlation weight (CW) is fixed@s\.pocniS number of epoch of Monte Carlo algorithms which
defines the cycle of modifications in correlatioright calculations for building up model. HencegcreMonte
Carlo based QSAR model is a function of T ang.Nvalue

In the present study, each SMILES based DCWs wapeikated according to following equation-
DCW (SMILES) =) Sk +B>SSk +y>SSSk - Equation 2

Whereasy, B, y represents correlation weights for the SMILESilaites, Sk represent single SMILE component in
SMILES representation of the molecules e.g. atdkesC, H, N,O etc, SSk represents two consecugitier in the
SMILES attribute. With respect to molecular struesithis could be equivalent to two elements ingtiactures
joined by any bond. SSSk represents three consec8MILES attributes. This could be considered as a
representation of molecular fragments in the stimgctIn the present study correlation weights of 8SSk
components were used in the DCW calculation ofSkELES optimal descriptors.

The DCW values obtained were then correlated wilisppvalues by using least square methodology using
following Equation.

pICs=CO + C1 x DCW (T, Bhoe) - Equation 3

The quality and robustness of the QSAR model dpeslowas assessed by subjecting it to various tatatis
techniques as follows:

1) Internal validation was performed by Leave One Q@O) cross validation technique on the trainieg s

2) External validation was performed on Test set afigounds which also assess predictive power of iehon
the compounds not included in the training set

3) The Randomization test or Y-scrambling test to g any chance correlation of descriptors involiredhe
model to anticancer activity of the compounds.

For calculation of cross validated squared cori@tatoefficient (), one molecule was randomly deleted from the
training set and test set and model was rebuiltragcession coefficient was calculated by followfagmula-

Q*(training/test set)= 1Y [Aexp(train/test)-Apred(train/test)]
Y [Aexp(train/test)-A(train/test)f...........cccccvevernnnne. Equation 4

Where Aexp represents the experimental plC50 vabfethe compound in training/test set, Apred intiBsa
predicted activities of the compounds after detetid random molecules from the training or test Aetepresents
mean experimental pkgvalues of the training or test set molecules.

In the present model novel statistical parameterafsessing the predictive power of the QSAR médelvn as
(RnT) was use(fl6] . Rnf presents the stricter test of validation wheretbuiddel is penalized for large differences
in the experimental and predicted activities of¢bepounds [17].

Y-randomization or scrambling test were performédtere activity fields were randomly assigned to coumls in
training and test set and model was rebuilt. Thexgef correlation coefficients of the randomizedigigRr) were
compared to squared correlation coefficients of ramdomized model @R A new statistical parameter (&1}
which represents squared correlation coefficierthefmodel after penalizing model for small diffeces between
Rr? and Rwas used to assess robustness quality of the rfitgjel

SMILES (DCW) = SMESDCW (T, Nepoc)  =-——--- Equation 1

Docking Studies

Enzyme structure

The X-ray crystal structures afycobacterium enoyl reductase (InhA) (PDB ID: 2H71 which was olete and now
changed to 4UGJ), Cytochrome P-450-14-alpha sterol demethylasem ycobacterium tuberculosis (PDB ID:
1H5Z7%), human and tubercular DHFR, complexed with fokate trimethoprim (TMP) respectively with (PDB ID
1DRF* and 1DG#%, Glucosamine-1-Phosphate-N-Acetyl TransferasenfG). (PDB ID: 3D8\*'), Shikimate
Kinase (SK) (PDB ID: 1L4Y%) were obtained from the protein data bank. . (Httgvw.rcsb.org/pdb).
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QSAR

RESULTS

Table1: Moleculesin SMILESformat with their descriptor correlation weight (DCW) values and experimental and calculated pl Csy

valuesand residuals

Code SMILES DCW Exp Calc  Residual
KK1L + :0O=C(C)N2N=C(CC2clcc(N)c(O)c(OC)cl)c3ccece3 432750 4.113 4.213 -0.100
KK3 + :0=C(C)N2N=C(CC2clcc(N)c(O)c(OC)cl)c3ccc(Rcc 45.19088: 4.438 4.416 0.022
KK5 + :0=C(C)N2N=C(CC2clccc(O)c(N)cl)c3cceee3 4460 5373 5.197 0.176
KK7 + :0=C(C)N2N=C(CC2clcc(N)c(O)c(Cl)cl)c3cceee3 8.38800 5.005 5.168 -0.163
KK9 + :CC(=O)N3N=C(CC3clccc2nc(N)oc2c10OC)cdcccecsd 8.86056 5.748 5.280 0.468
KK10 + :Clclcee(c(Cl)cl)C=4CC(c2ccec3nc(N)oc3c20QYNA)C(C)=O~ 45.65425 4.524 4525 -0.001
KK11 + :Fclcee(cel)C=4CC(c2cce3nc(N)oc3c20C)N(NFOE0 46.22394 4.769 4.659 0.110
KK13 + :CC(=O)N3N=C(CC3clccc2nc(N)oc2cl)cacccccsd .89381 4.107 4.111 -0.004
KK15 + :CC(=O)N3N=C(CC3clccc2nc(N)oc2clCl)cdcceecd 46.89281 4.149 4.816 -0.667
KK17 + :CC(=O)N3N=C(CC3clccc2nc(S)oc2clOC)cicccecsd 48.83031 4.769 5.273 -0.504
KK19 + :Fclcec(cecl)C=4CC(c2cce3nc(S)oc3c20C)N(NXD)E0 46.19369 4.487 4.652 -0.165
KK20 + :BrclccececclC=4CC(c2cce3nc(S)oc3c20C)N(N=9E0 4543931 4.551 4.474 0.077
KK21 + :CC(=O)N3N=C(CC3clccc2nc(S)oc2cl)cdcceecd 43.86456 4.129 4.104 0.025
KK22 + :BrclccececlC=4CC(c2cce3nc(S)oc3c2)N(N=4)G(@Q) 4549981 4.520 4.489 0.031
KK23 + :CC(=O)N3N=C(CC3clccc2nc(S)oc2clCl)cdcceccsd 46.86256 5.471 4.809 0.662
KK24 + :BrclccececlC=4CC(c2cce3nc(S)oc3c2CN(N=HEO0 46.98456 4.856 4.838 0.018
KK2 # :0=C(C)N2N=C(CC2clcc(N)c(0)c(OC)cl)c3ccc(EhBEl 4490500 4.497 4.349 0.148
KK4  # :0=C(C)N2N=C(CC2clcc(N)c(O)c(OC)cl)c3ccccc3Br 45.32850 4.508 4.448 0.060
KK6 # :0=C(C)N2N=C(CC2clccc(O)c(N)cl)c3ccece3Br 5200 5.776 5.433 0.343
KK8 # :0=C(C)N2N=C(CC2clcc(N)c(O)c(Cl)c1)c3ccceec3Br 49.38900 5.513 5.404 0.109
KK12 # :BrclccececlC=4CC(c2ccec3nc(N)oc3c20C)N(N=OE0 45.46956 4.534 4.481 0.053
KK14 # :BrclccececlC=4CC(c2ccc3nc(N)oc3c2)N(N=4)G{O) 4553006 4.202 4.496 -0.294
KK16 # :BrclcccecclC=4CC(c2ccc3nc(N)oc3c2Cl)N(N=43£0 47.01481 5.122 4.845 0.277
KK18 # :Clclcec(c(Cl)c1)C=4CC(c2cce3nc(S)oc3c20RY)C(C)=0O~  45.62400 4.843 4518 0.325

Table 2: The data showing statistical parameters of the constructed model for the molecules of test and training set

2 2

Set N r q MAE s F
Train. 16 0.6124 0.4914 0.201 0.313 22
Test. 8 0.8813 0.8031 0.200 0.247 45

N= Number of molecules; r’= squared correlation coefficient, g?= leave one out cross validated squared correlation coefficient, s= standard

deviation in the activity and F= Fisch

Table 3: The data representing the details of t

er coefficient

en randomization tests

No. of Randomization runs

Training test (%)

Test set (r9)

0.0033
0.2650
0.2034
0.0481
0.4880
0.3612
0.2302
0.1543
0.0418
0.1168
0.1912
0.5079
0.6124

O©CoOoO~NO O WNPE

10

AverageR2 of randomized

R2 of Non Randomized M odel
CRp2=R*sgrt(R2-Rr2)

0.8813
0.1077
0.0035
0.0715
0.0509
0.3967
0.1883
0.2499
0.1504
0.0965
0.1361

0.8105:
0.8813

Table4: List of SMILESattributes contributing in the antitubercular activity of the pyrazoline compounds

Promoter of antitubercular activity | Demoter of antitubercular activity | Insignificant attributes
(...C..(.... 1.26181, (...c...(.... -0.30950 . (-..CL(.... 0.93950
(..F...(... 1.48238 =..N...(.... -0.06750 (-..N...(.... 0.93750
(...0...(....  2.00200 ..0...(.... -0.74700 (...S..(.... 0.46675
1..Cl.(... 1.18750 O..C...(... -0.75300 1..c..(... 0.24700
2..Cl..(.... 1.00200 c...(...0.... -0.00300 2..c..(... 0.38281
2..N..(.... 1.44050 c...0..(... -0.37600 2..c..l... 0.53525
3..c..(..  1.40925 3..N...(....  0.11338
=.4..(.. 159375 3..c..l... 0.48038
=...C..(....  1.87200 3..c..2... 0.87200
=..C..1.... 1.09375 4..c..(.. 0.06550
=..N..2.... 2.00300 C..(.4... 051181
=..N..3....  1.87600 C...(..=.. 0.12600
=...0..(... 1.52925 C..(..C... 0.52044
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C..(..1.... 2.03625 C...4..=... 0.06250
C..C..(... 253225 C..=.4... 0.12881
C..C..2.... 3.15125 C..C..3.... 0.35056
C...0...1.... 2.94050 C..C..4.... 0.27844
N...(...Cl 2.28225 C...0...2.... 0.87200
N...2..N.... 1.97075 F..c...l.... 0.73937

N...3..N....  1.53625 Br..c...1.... 0.71375
N...=..4.... 1.03425 Cl.c...1.... 0.62200
N...=...C.... 1.51963 N...(...C....  0.62500
O...(...N...:  1.51963 N...(...N...:  0.62781
O..=..C... 1.27825 O..=..(... 054188
c...(..F.... 1.37200 c...(..1.... 0.03125

c...(...c.... 1.15525 c...(...C....  0.37800

c...1..Cl 1.46975 c...(...Cl 0.99800

c...1..0 3.05750 c...(...N....  0.34775

c...1..c.... 1.62900 c...(...S....  0.12700

c...2..(.... 2.87200 c..l..(... 0.62600

c...2..C....  2.37600 c...1..C....  0.50400
c...2...Cl 1.00500 c...2...c.... 0.35938

c...2...0 2.00000 c...3..c.... 0.10538

c...3..C.... 1.85838 c...c...2.... 0.61037

c...3..Br 1.00100 c...c...4.... 0.44031

c...3...Cl 1.00500 n..2...c... 0.78625
c...4..c.... 1.93850 n...c...(.... 0.19150

c...c...(.... 1.06750 0...c...2.... 0.14263
c...c..l.... 225781 0..c..3.... 1.96675
c...c...3.... 1.67188

C...C...C.... 2.74900

c...n..2.... 196775

c...n..3.... 1.12981

n..3...c... 2.28525

0...(...N...:  1.05950

o..(..S.... 1.72075

Table: DCW and CWsvaluesfor a pyrazoline (KK-1)

OCH3

H2N OH
SMILES notation: O=C(C)N2N=C(CC2clcc(N)c(O)c(OC)cl)c3ccecc3

(SA) CW(SA)
0.=.C.. 12782
=.C..(. 18720
C..(.C.. 05204
(.C..(.. 10618
N..(..C.. 0.6250
2.N.(._ _ 1.4405
N..2.N.. 19707
=.N..2.. 20030
N..=.C.. 15196
=.C..(. 18720
C..(.C.. 05204
C..C.(.. 25322
C.C.2.. 31513

c..2..C... 23760
2..c.l.. 0.5353
c..l..c. 1.6290

c...c..1l... 2.2578
c...C...(... 1.0675
c...(...N... 0.3478

i
(.N.(. 009375
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c..(.N.. 0.3478
(..Cole -0.3095
c..(..0.. -0.0030
(..0..(.. _ 2.0020
c..(..0.. -0.0030
(..Co.(en. -0.3095
c..(.0 -0.0030
C..0..(.. -0.7470
0..C..(.. -0.7530
c..(.C.. 03780
1..c..(.. 0.2470
c.l.(.. 0.6260
c..(.l.. 00313
3..c.(.. 14092
c..3..c.. 0.1054
c..c.3.. 16719
C...C...C... 2.7490
c...C...C... 2.7490
C...C...C... 2.7490
c..C.3.. 16719

Descriptor correlation weight (DCW) = 44.32750
SA= Structural attribute (SMILES); CWs= Correlation weights

DOCKING
The binding energy scores of the targeted benzdxdzased pyrazoline derivatives with the varioustgins of
mycobacterium species have been depicted in the tables from 5-9.

Table5: Benzoxazole based pyrazoline derivativeswith their binding ener gy scores (Kcal/mol) and H-bonds interactions against
mycobacterium enoyl reductase (InhA) (PDB ID: 2H7! which is obsolete and changed to 4UQJ)

. - H-bond
Ligand Binding energy score  pMIC50 uM -
Code T R Re X (K cal/mol) (HyRy) ~ 'meracing
esidues
KK1 OCH; H H - -9.2 4.113 -
KK2 O-CH; ClI ClI - -7.6 4.497 Gly 96
KK3 OCH; H F - -7.8 4.438 Meth 98
KK4 O-CH; Br H - -8.4 4.508 Gly 96
KK5 H H H - -8.3 5.373 Gly 96
KK6 H Br H - -8.5 5.776 -
KK7 Cl H H - -8.5 5.005 Gly 96
KK8 Cl Br H - -8.7 5.513 Gly 96
KK9 OCH; H H NH -8.5 5.748 Gly 96
KK10 O-CH; CI ClI NH -7.4 4.524 -
KK11 OCH H F NH -8.4 4.769 -
KK12 O-CH; Br H NH -8.6 4534 -
KK13 H H H NH -8.7 4.107 -
KK14 H Br H NH -8.8 4.202 Gly 96
KK15 Cl H H NH -8.8 4.149 Gly 96
KK16 Cl Br H NH -8.9 5.122 Gly 96
KK17 OCH, H H SH -8.5 4.769 -
KK18 O-CH CI ClI SH -7.8 4.843 -
KK19 OCHs H F SH -6.3 4.487 Threo 96
KK20 O-CH Br H SH -8.4 4,551 -
KK21 H H H SH 7.1 4.129 -
KK22 H Br H SH -8.6 4.520 -
KK23 H H H SH -8.8 5471 -
KK24 H Br H SH -8.7 4.856 Threo 196
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Table 6: Benzoxazole based pyrazoline derivatives with their binding energy scores (in Kcal/mol) and H-bonds inter actions against
Cytochr ome P-450-14-Alpha Sterol Demethylase demethylase from Mycobacterium tuberculosis (PDB I D: 1H5Z)

No. of H-Bonds/

Ligand R R, R X Binding energy score  pMIC50 uM H-bond
Code ! 2 (Kcal/mol) (HzRv) Inter acting
Residues

KK1 OCH; H H - -9.0 41134 Arg 326, Tyr 76
KK2 O-CH; CI ClI - -8.9 4.497 Arg 326
KK3 OCH; H F - -8.7 4.438 Arg 326
KK4 OCH; Br H - -9.0 4.508 Arg 326
KK5 H H H - 9.4 5.373 Arg 326, Tyr 76
KK6 H Br H - 9.1 5.776 Arg 326
KK7 Cl H H - 9.1 5.005 Arg 326
KK8 Cl Br H - -9.8 5.513 Leu 324, Arg 326, Prol 386
KK9 OCH; H H NH -8.6 5.748 His 259
KK10 O-CH; CI ClI NH -9.0 4524 Ala 256
KK11 OCHy H F NH 9.1 4.769 -

KK12 O-CH; Br H NH -9.0 4534 -

KK13 H H H NH 9.1 4.107 -

KK14 H Br H NH -8.9 4.202 -

KK15 Cl H H NH -8.8 4.149 -

KK16 Cl Br H NH -8.7 5.122 -

KK17 OCH; H H SH -9.0 4.769 -

KK18 O-CH CI ClI SH -8.7 4.843 -

KK19 OCH; H F SH -9.3 4.487 -

KK20 OCH; Br H SH -8.9 4551 -

KK21 H H H SH -8.3 4.129 -

KK22 H Br H SH 9.1 4.520 Arg 326
KK23 H H H SH -9.4 5.471 -

KK24 H Br H SH -9.4 4.856 Arg 326

Table 7: Benzoxazole based pyrazoline derivatives with their binding energy scores (in Kcal/mol) and H-bonds inter actions against
human and tuber cular DHFR, complexed with folate and trimethoprim (TM P) respectively, was obtained from the protein data bank
(PDB ID 1DRF* and 1DG5* respectively

a) PDBID 1DRF

No. of H-Bonds/

L(':%%ld R R, Rs X Binding energy score (Kcal/mol) pMIC50 uM (HsRv) | n';;,b;g;jng
Residues
KK1 OCH; H H - -9.0 4.113 -
KK2 OCH; ClI ClI - -9.2 4.497 -
KK3 OCH; H F - -9.2 4.438 -
KK4 O-CH; Br H - -8.8 4.508 -
KK5 H H H - -9.4 5.373 -
KK6 H Br H - -9.3 5.776 -
KK7 Cl H H - -9.4 5.005 -
KK8 Cl Br H - -9.3 5.513 -
KK9 OCH; H H NH -10.0 5.748 -
KK10 O-CH; CI ClI NH -9.9 4524 -
KK11 OCH: H F NH -10.1 4.769 -
KK12 O-CH; Br H NH -9.3 4534 -
KK13 H H H NH -10.4 4.107 Glu 30
KK14 H Br H NH -10.1 4.202 Glu 30
KK15 Cl H H NH -10.2 4.149 -
KK16 Cl Br H NH -9.8 5.122 -
KK17 OCH: H H SH -10.2 4.769 -
KK18 O-CH; CI ClI SH -9.2 4.843 -
KK19 OCHs H F SH -10.0 4.487 -
KK20 OCH; Br H SH -9.5 4551 -
KK21 H H H SH -10.0 4.129 Peptide bond between 3ly & gly 116
KK22 H Br H SH -10.0 4.520 -
KK23 H H H SH -10.2 5471 -
KK24 H Br H SH -9.4 4.856 -
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a) PDBID 1DG5

. H-bond
Lé%adr;d Ry R, Rs X Binding energy score (Kcal/mol) pMIC50uM (HsRv) Interacting
Residues
KK1 O-CH; H H - -8.4 4.113 -
KK2 O-CH; ClI ClI - -8.1 4.497 -
KK3 O-CH; H F - -8.3 4.438 -
KK4 O-CH; Br H - -8.3 4.508 -
KK5 H H H - -7.8 5.373 Gly 96
KK6 H Br H - -7.7 5.776 Threo 46
KK7 Cl H H - -8.5 5.005 -
KK8 Cl Br H - -8.0 5.513 Threo 46
KK9 OCH; H H NH -8.5 5.748 Gly 96
KK10 OCH ClI ClI NH -8.6 4.524 -
KK11 OCH H F NH -8.7 4.769 Gly 96
KK12 O-CH; Br H NH; -8.6 4.534 Threo 46
KK13 H H H NH -8.9 4.107 -
KK14 H Br H NH -8.9 4.202 -
KK15 Cl H H NH -8.4 4.149 Gly 97
KK16 Cl Br H NH -8.8 5.122 Threo 46
KK17 OCH H H SH -8.5 4.769 Gly 97
KK18 O-CH ClI ClI SH -8.6 4.843 Gly 96
KK19 OCH H F SH -8.6 4.487 Gly 97
KK20 OCH Br H SH -8.4 4.551 -
KK21 H H H SH -8.3 4.129 Gly 96
KK22 H Br H SH -8.7 4.520 Gly 97
KK23 H H H SH -8.4 5471 Gly 96
KK24 H Br H SH -84 4.856 Threo 46

Table 8: Benzoxazole based pyrazoline derivatives with their binding energy scores (in Kcal/mol) and H-bonds inter actions against
Glucosamine-1-Phosphate-N-Acetyl Transferase (GLmU) (PDB 1D: 3D8V)

No. of H-Bonds/

Ligand R R, R X Binding energy pMIC50 uM H-bond

Code ! 2 scor e (K cal/mol) (Hz7RV) Inter acting

Residues

KK1 OCH; H H - -8.1 4.113 -

KK2 O-CH; CI Cl - -8.7 4.497 -

KK3 OCHs H F - -8.7 4.438 -

KK4 OCH; Br H - -8.6 4.508 -

KK5 H H H - -8.5 5.373 Lys 26

KK6 H Br H - -8.6 5.776 Lys 26

KK7 Cl H H - -8.3 5.005 -

KK8 Cl Br H - -8.9 5.513 Gly 88

KK9 OCH; H H NH; -8.8 5.748 -

KK10 OCH CI Cl NH; -9.2 4524 Lys 26 and Asp 114

KK11 OCH H F NH -8.9 4.769 Lys 26 and Asp 114

KK12 OCH Br H NH; 9.1 4534 Gly 15

KK13 H H H NH, -8.8 4.107 Lys 26

KK14 H Br H NH, -8.7 4.202 Lys 26

KK15 Cl H H NH, -8.8 4.149 Lys 26 and Asp 114

KK16 Cl Br H NH, -8.7 5.122 Ser 112

KK17 OCH H H SH -8.2 4.769 Peptide bond between Gly 15 & M
KK18 O-CH ClI Cl SH -8.6 4.843 Asp 114

KK19 OCH H F SH -8.2 4.487 Asp 114

KK20 OCH Br H SH 84 4551 Peptide b_ond between Gly 15 & Ala 14 and Ala 18€si

amino acid)

KK21 H H H SH -8.4 4.129 Ala 182

KK22 H Br H SH -8.4 4.520 Peptide bond between ¥82 & Asn 181
KK23 H H H SH -8.4 5.471 Peptide bond between Aa & Asn 181
KK24 H Br H SH -8.4 4.856 Peptide bond between 0188 & Asp 114
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Table 9: Benzoxazole based pyrazoline derivatives with their binding energy scores (in Kcal/mol) and H-bonds inter actions against
Shikimate Kinase (SK) (PDB ID: 1L4Y)

No. of H-Bonds/

Lé%a(jr;d R R Rs X Binding energy score (Kcal/mol) pMIC50 uM (Hs7Rv) | n':(;rbaocrt]idng
Residues
KK1 OCH; H H - -7.9 4.113 -
KK2 OCH; ClI ClI - -8.4 4.497 Ser 16 and Lys 15
KK3 OCH; H F - -8.0 4.438 Arg 117
KK4 OCH; Br H - -8.4 4.508 Ser 16
KK5 H H H - -7.9 5.373 -
KK6 H Br H - -8.3 5.776 -
KK7 Cl H H - -8.3 5.005 -
KK8 Cl Br H - -8.4 5.513 -
KK9 OCH; H H NH -8.8 5.748 -
KK10 O-CH: CI ClI NH, -8.8 4524 -
KK11 OCHs H F NH -8.9 4.769 Gly 81
KK12 O-CH; Br H NH -9.2 4534 Gly 81
KK13 H H H NH -8.7 4.107 -
KK14 H Br H NH -8.9 4.202 -
KK15 Cl H H NH -9.0 4.149 -
KK16 Cl Br H NH 9.1 5.122 -
KK17 OCHs H H SH -8.2 4.769 -
KK18 O-CH; CI ClI SH -8.0 4.843 -
KK19 OCHs H F SH -8.3 4.487 -
KK20 OCH; Br H SH -8.3 4551 -
KK21 H H H SH -8.6 4.129 -
KK22 H Br H SH -8.5 4.520 -
KK23 H H H SH -8.4 5.471 -
KK24 H Br H SH -7.8 4.856

The interaction the compounds KK -5, KK -8 (as these two derivatives have shown hydrogen bonding with all
the targeted proteins) are shown in Figures 1-4.
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Fig O1: Interaction of KK-5and KK-8 against 1DG5
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Fig 02: Interaction of KK-5and KK-8 against 1H5Z
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KK-5 KK-8

Fig 03: Interaction of KK-5and KK -8 against 3D8V
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Fig 04: Interaction of KK-5and KK-8 against 4UOJ
DISCUSSION

QSAR

Each and every SMILES based optimal descriptore wealuated for obtaining best statistical pararaeiar the
QSAR model.After several trials, SSSk were founthe suitable for these molecules. The threshott epoch
values for these optimal descriptors obtained Weamd 4 respectively. The experimental and prediesdues for
the training and test set molecules have been showmable 1 along with their DCW values. For better

understanding of DCW calculation, component CWswé of the compound used in model building has been

depicted in Table 8. The statistical parametersiobtl for the model are represented in Table 2Sthered
correlation coefficients obtained for training aedt set were 0.6124 and 0.8813 which represeinis gorrelation
of the compound activity with the predicted acivithich has been calculated by SMILES. The crosglatdd
squared correlation coefficient values were alsadtisfactory range. The model is considered higingdictive
when @ values presented by both training and test sgteater than 0.5 . The stringent statistical pataradike
Rn? which penalizes the model for greater differeneaveen experimental and predicted values havefalfited
the minimum criteria for its predicitive ability.HE model is considered as predictive when? Railues is greater
than 0.5.The average Rrfor this model was found to be 0.7743. During mduélding there is possibility that
descriptors under consideration are correlated wighactivity values by mere chance and not becthmse are
certainly useful for the activity. Hence randomiaat or Y-scrambling tests were performed. After damly
shuffling the activity fields, descriptors which reefound to be useful for model building of nondamized dataset
did not correlate well with the randomized activifiglds. The squared correlation coefficient valugsere
substantially less in such cases as comparedialiRs of non-randomized model. *Ralues for randomized
datasets are represented in Table 3.Data have dhaivany possibility of chance correlation coutddliminated as
RrPvalues are substantially less for the built modédo stringent statistical parameter tRwhich penalizes model
for small differences between randomized and nodamized correlation coefficients were calculaféde CRP
values for training and test set of the model weBd and 0.81. For considering the model to begi Quality and
robust this value should be greater than 0.5.

17
Available online at www.scholar sresear chlibrary.com




Kalpana Devi et al J. Comput. Methods Moal. Des., 2016, 6 (3):8-19

Docking

Interaction of Ligandswith the active site of mycobacterium

The result showed that the binding interaction gasd for the protein 3D8V, 1DG5, 2H7I, 1H5Z in madtthe

compounds as compared to the protein 1DRF, 1L4% dimino acids which are involved in the bond foramat
between the ligands and the protein were glyckhes1, 96, 97,98, 116, 117, methionine 98, thremHié, 89 ,196,
arginine 117, 326, tyrosine 76, leucine 324, peB86, histidine 259, alanine 13, 14, 182, 256aghine 30, lysine
15, 26, aspartate 114, serine 16 ,112.

In case of 1DG5, most of the hydrogen bonding &dtons were due to the presence of electron dapatioups
like methoxy, pyrazoline moiety and methoxy groop$enzoxazole moiety. Therefore hydrogen bondtaeptor
amino acids residues are predominantly in the aiterof proteins of mycobacterium tuberculosisguse majority
of the hydrogen bond interactions to the ligandsewmediated through ligand donating groups. HermcetHe
designing of novel analogues incorporation of mgjaf hydrogen bond acceptors group in the ligasidsuld be
considered

Docking studies of these 24 ligands against DHFRng€obacteria and human proteins have revealed rianuo
information regarding selectivityof these molecuwasintended microorganism. However results wesealiraging.

It was observed that optimum distance between twmatic moieties of benzoxazole substituted pyiaesl have
led to higher scores for these molecules whereasase of mycobacterium this distance was of seeggnda
importance as most of interaction were polar gralgsinated. For shift in the selectivity of the diimg affinity of
these scaffolds increase in distance between tematic groups were suggested to impart lesseritga€ these
molecules to human host

In case of 1H5Z, planar group of pyrazoline andzoeazole moiety played an important role in pi-pickof non
bonding interaction. In addition it also facilitdt@ydrogen bonding interactions of the substituggoup with the
polar amino acids . For example in KK-1, KK-2, KK-BK-22 hydrogen bond interaction have been obskrve
mostly with arginine 326 residues. This emphas@&ésstitutent of electron rich groups on the aroenatbiety for
enhanced interaction with cationing arginine groofpactive site at physiological pH.

The interactions of ligands with protein 4UOJ hatiewn that non bonding interactions were unifordiktributed
along the length of the molecule in the form ofcption type of interaction (lysine 196) and hydmod®nding
interactions with aliphatic amino acid residue® lthreonine 196 and aromatic hydroxyl group likeogine 168.
However thiol group could not offer any interactiaa aliphatic hydrophobic amino acid were surrongdihe
sulphur substituted ring as found in KK-19 makihmpt group frivolous

In case of 1L4Y, predominant polar interactionshvamino acids residue like arginine 117 were oletnAnalysis
of active site has shown predominance of aliphaéatral amino acids justifying why aromatic ligan@dd to
interact optimally with shikimate acid protein. $hivas corroborated by lower energy scores in theeraf -7.8 to -
9.2. Hence it was clear that shikimate acid isanfatvoured target for these molecules for its abétcular activity.
Polar mediated interactions with predominantlyarat active site were observed with the target 3DBytazoline
moiety is of secondary importance with regard t@8DBinding affinity scores range from -8.1 to -9.2

It was observed from these data that N of pyramwéety contributed significantly in the antitubelauactivity as
all the SMILES attribute representing pyrazoleagtns have shown higher positive correlation weiglthe range
of 2.00-1.440.Attributes showing methoxy groups evexpresented as demoter of activity which is atsafirmed

by the docking studies . It was also observed dkelization of amino and hydroxyl groups was unfanable for

the targeted activity as SMILE attribute[ (c..(0... -0.37600)] has shown negative CWs.Atonatius of halogen
substitution plays an important role as increasatimic radius might have caused congestion irathize site as
evidenced by decreased CWs of halogens in the ofdesCI>Br. Electronegativty also follows the saoreler for

activity as that of atomic radius. In case of betwzole derivatives thiol substitutent is more potean NH Based
on these observations and DCW calculations, QSARt#mn was obtained for calculating anticancervigtof the

compounds and is represented as follows-

pMIC (H37Rv) = -6.2221000 (x 0.6479070) + 0.2860 (+ 0.0143569) * DCW(0,4) Where DCW is desaipt
correlation weights calculated for individual coropds.

CONCLUSION

After analyzing docking and QSAR studies and bageah availability of chemicals proposed moleculghtuto
posses the following properties
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» Presence of fluorine and chlorine is preferredaaspared to bromine and iodine
» Presence of thiol is preferred as compared to @agriaup
* OH or CH; instead of OCHl

The compounds which have been identified by QSAR Ivé considered for design and development of new
molecules by Lead Grow module and the same wikimedyzed for its binding affinity towards the sééstprotein
receptor by docking studies and further carriedfousynthesis.

REFERENCES

[1] C Hansch; D Hoekman; H GaBhem Rev; 1996, 96, 3, 1045-76.

[2] A Tropsha; P Gramatica; VK Gomb#&SAR Comb Sci; 2003, 22, 1, 69-77.

[3] M Karelson. Molecular Descriptors in QSAR/QSPR. &Yil Interscience, New Yor000.

[4] Todeschini R, Consonni V. Handbook of Molecular €&¥gxors, Wiley-VCH, Weinheim, Germang000.

[5] PR Duchowicz; A Talevi; LE Bruno-Blanch; EA CastBioorg Med Chem; 2008, 16, 17, 7944-55.

[6] Daylight Chemical Information Systems, In2008.

[7]1 AA Toropov; AP Toropova; E Benfenati; G Gini; D lzzynska; J Leszczynski. Biochem Biophys Res
Commun; 2013, 432, 214-25.

[8] AA Toropov, AP Toropova, E Benfenati, G Gini, D zegynska, J LeszczynskChemosphere; 2013, 90, 877—-
80.

[9] AP Toropova; AA ToropovEur J Pharm Sci; 2014, 52, 21-25.

[10]A Worachartcheewan; C Nantasenamat; NAC IsarankurachayasittikulLett Drug Des Discov; 2014, 11,
420-27.

[11]1 Muegge, M Rarey. Reviews in computational chemistohn Wiley & Sons, Inc2001, pp 1-60.

[12]KM Holloway et al.J Med Chem; 1995, 38, 305-17.

[13]M Vieth, DJ CumminsJ Med Chem; 2000, 43,16, 3020-32

[14]NR Dharmarajsinh, TC Mahesh, KS Nisha, SB Patkiéd Chem Res, 2014, 23, 2218-28.

[15] AP Toropova, AA Toropov, E Benfenati, G Gini, D zegynska, J Leszczynskl.Comput Chem; 2011, 32,
2727-33.

[16] PP Roy, K RoyChembiol & drug design; 2009, 73, 442-55.

[17]1PK QOjha, | Mitra, RN Das, K RoyChemometrics & Intelligent Lab Syst; 2011, 107, 194-205.

[18]PK Ojha, K RoyChemometrics & Intelligent Lab Syst; 2011, 109, 146-61.

[19]X He , A Alian , R Stroud , MPR Ortiz de&J Med Chem; 2006, 49, 21, 6308-23.

[20]LM Podust , LV Yermalitskaya , Gl Lepesheva , VNdBst , EA Dalmasso , etalSructure; 2004, 12, 11,
1937- 45.

[21]C Oefner, DA Arcy, FK Winkler.Eur J Biochem; 1988, 174, 377-85.

[22] R Li, R Sirawaraporn, P Chitnumsub, et aMol Biol; 2000, 295, 307-23.

[23]Z Zhang, EM Bulloch, RD Bunker, EN Baker, CJ Squ#eta Crystallogr D Biol Crystallogr, 2009, 65, 275-
83.

[24]Y Gu, L Reshetnikova, Y Li, Y Wu, H Yan, etal.Mol Biol; 2002, 319, 779-89.

19
Available online at www.scholar sresear chlibrary.com




