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Abstract

In this paper we compute voltage distribution and charge flux for two-dimensional surface with a
curved edge using finite element method. The ease with which the finite element method is
implemented on a digital computer system and its flexibility which allows for choosing any
desired degree of approximation without having to reformulate the problemis the reason for its
consideration in thiswork. The numerical solutions were obtained using maple software package
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INTRODUCTION

The desire in this paper is to compute the numleapproximation of two-dimensional partial
differential equations (Poisson and Laplace equnajistep-by-step. One obvious observation
with a two-dimensional domaif is, in general a curve. Fourier's law and the loedénce [4]
are employed to characterize the temperature loligion and analogue relationship is also
available to model field problems as in the areale€trical engineering. Electrical engineers use
similar approach when modeling electrostatic fiel8ge for example [7]. An analogue of
Fourier's law can be represented in one dimensifumal as

dv
D= - 1
= 1)

See for instance [2], where D is called electreddfiflux density vector, v is the electrostatic
potential.
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In a similar manner, a Poisson equation for elstatac fields can be represented in two-
dimension as

2 2
ﬂ + ﬂ = & (2)

x> ay* [
see [9] whereg is the permittivity of the materialg, is the volumetric charge density [5]. If the
region contains no free charge (that is), then(Egreduces to Laplace equation written as

2 2

v, ov_ (3)

x> oy’
In what follows we will employ the finite elementethod to solve Eq. (3). This is because the
finite element method takes care of the boundanditions and allows for the exactness of the
results [1]. In addition the finite element methodplementation has a great potential for
assisting Scientists as well as engineers in makésgarch in their fields and other related
scientific and engineering fields that require &milon of finite element scheme. In the next
section we used moderate matrix size which helpedadhieve a high degree of accuracy of
results.

M ethod of Solution

We consider a two-dimensional system which considtériangles and rectangles that are
connected to each other at the nodal points obdhedary of the elements. Here we consider a
mesh generation which involves the numbering ofdleenents and the nodes. Nodes numbering
is always done column wise from bottom to the tsiarting with the leftmost column and
proceeding to the next, when each column is dore rapeating the procedure when the
numbering along a particular column is done. Tleeneints were numbered in accordance with
the angle subtended between the two co ordinaxes; aee [6]. The result determines whether
the elements will take a number incremented oretaented by one or ignored completely in the
case of the surface of the boundary. In fact tleeneht numbering has no effect on the half
bandwidth, however, it does have effect on the ademprun-time required to assemble the
global coefficient matrix [8]. This is the reasasr thoosing maple symbolic software package
which is very reliable, flexible and has a high aegof accuracy of results, always consistent to
some extent with standard classical solutions.

Below we considered a two-dimensional system witloléage of 1000 units along the circular
boundary and a voltage of zero (0) along the bashawn irFig. 1.

Fig. 1 (a) acircular boundary with a base
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Fig. 1(b) the nodal numbering scheme

If x =3 andy = 2 then we determine the voltagrdbution of each node using Eq. (4)

(4)

2 { Vi1 ~ Vou + Vi = Vo }_'_ 2 { Vi1 ~ Vi + Vii — Vi, }
Do+ @) ay(a )| Y| B(B+B) BlB+B)

according to the geometry addition depicted in(. Rig), substituting these values into Eq. (4)
yield.
0.12132y;—121.32 + 0.11438,y- 0.11438y, + 0.25y;+ 0 + 0.25y;- 0.25\,

Similar approaches were applied to the remainingrior nodal points. In this way six
simultaneous equations were obtained which we egprkin a matrix form as

[0.735700 - 0.11438 0 -025000 0 0 [Vai] [12132]
-011111 0722222 -0.11111 0 -0.25000 0 Vas 0
0 -011438 0.735700 0 0 ~025000| | Vs | 12132
~0.31288 0 0 1.28888 -0.149070 O v, | 82692
0 -025000 0  -011111 0722222-011111 ||v,,| | 250
0 0 -031288 0  -0149070 128888 ||v,,| |82692]

Using maple software yields the following resuls a
vi1=521.19, v =421.85 y,; =521.19, y,=855.47, y,=755.40, y, = 855.47

In order to compute the flux density (D), the riglaships are given below.

Vi, =V
DX =_l:| i+1 ] i-1j (5a)
a, +a, JAx
Vo=V
D - i,j+1 i,j-1 ISb
’ (6.+ 8, )y
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For node (1,1), the flux density is computed as
_ _,42185-1000 _ 984 (©)

= &= WP
x (0.94281+1)3

In a similar manner, this in turn can be use tewate the electric density vector using Eq. (7)
below.

D=,DS+D/’ (7

The direction of the flux can be determine using @B{ below [3]

6 =tan™ Dy 8
=tan o ) (

X

The electric flux density vector D = 471.5 and thix direction® = -65.1 from Eq. (7) and (8)
above.

Results
The solution of the other nodes is given in Table

Table 1: Resultsfor the other nodes

Node Dy Dy D 6

2,1 0.000 | -377.7| 3777.1 -90.0
31 -198.4 | -427.7| 4715 2451
1,2 109.4 | -299.6| 281.9| -69.1
2,2 0.000 | -289.1| 289.1| 90.1

3,2 -109.4 | -299.6| 318.6| 249.9

Solution of the Laplace equation with correctiontéas for the irregular boundaries is shown in
(Fig. 2) below
1000

1004
10006 @® 85 7@ b5 1000
1000

Fig. 2 (a) Potentials
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Fig. 2(b) Flux

CONCLUSION

The computation of voltage distribution and chaflyx using Laplace equation for a two-
dimensional surface with a curved edge were acHiaveelation to boundary problems. All the
distributed voltage and charge flux falls withirethoundary limit, no any single value exceeds
the required boundary. The same method can alsenpgloy to determine the voltage
distribution and change flux for three dimensiomsrmre with a curved edge, if desired. This
type of problem is usually associated or drawn frengineering problem. Their numerical
approximations by the use of numerical method folvisg partial differential equations
especially finite element methods usually demotestashigh degree of reliability; efficiency and
accuracy as it accommodate unequal spacing and gup@ng in the discretisation procedure.
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