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Abstract 
 
In this paper we compute voltage distribution and charge flux for two-dimensional surface with a 
curved edge using finite element method. The ease with which the finite element method is 
implemented on a digital computer system and its flexibility which allows for choosing any 
desired degree of approximation without having to reformulate the problem is the reason for its 
consideration in this work. The numerical solutions were obtained using maple software package 
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INTRODUCTION 
 
The desire in this paper is to compute the numerical approximation of two-dimensional partial 
differential equations (Poisson and Laplace equations) step-by-step. One obvious observation 
with a two-dimensional domain Ω is, in general a curve. Fourier’s law and the heat balance [4] 
are employed to characterize the temperature distribution and analogue relationship is also 
available to model field problems as in the area of electrical engineering. Electrical engineers use 
similar approach when modeling electrostatic fields. See for example [7]. An analogue of 
Fourier’s law can be represented in one dimensional form as  
 

 D = ∑
dx

dv
                                                                                                         (1) 

 
See for instance [2], where D is called electric field flux density vector, v is the electrostatic 
potential. 
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In a similar manner, a Poisson equation for electrostatic fields can be represented in two- 
dimension as  
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see [9] where  ε is the permittivity of the materials, ρv is the volumetric charge density [5]. If the 
region contains no free charge (that is), then Eq. (2) reduces to Laplace equation written as  
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In what follows we will employ the finite element method to solve Eq. (3). This is because the 
finite element method takes care of the boundary conditions and allows for the exactness of the 
results [1]. In addition the finite element method implementation has a great potential for 
assisting Scientists as well as engineers in making research in their fields and other related 
scientific and engineering fields that require application of finite element scheme. In the next 
section we used moderate matrix size which helped us achieve a high degree of accuracy of 
results.  
 
Method of Solution  
 
We consider a two-dimensional system which consists of triangles and rectangles that are 
connected to each other at the nodal points on the boundary of the elements. Here we consider a 
mesh generation which involves the numbering of the elements and the nodes. Nodes numbering 
is always done column wise from bottom to the top, starting with the leftmost column and 
proceeding to the next, when each column is done and repeating the procedure when the 
numbering along a particular column is done. The elements were numbered in accordance with 
the angle subtended between the two co ordinate’s axes; see [6]. The result determines whether 
the elements will take a number incremented or decremented by one or ignored completely in the 
case of the surface of the boundary. In fact the element numbering has no effect on the half 
bandwidth, however, it does have effect on the computer run-time required to assemble the 
global coefficient matrix [8]. This is the reason for choosing maple symbolic software package 
which is very reliable, flexible and has a high degree of accuracy of results, always consistent to 
some extent with standard classical solutions. 
 
Below we considered a two-dimensional system with a voltage of 1000 units along the circular 
boundary and a voltage of zero (0) along the base as shown in Fig. 1. 

 
 
 
        1000 
                               2 6 1000 
 3 
 

 
Fig. 1 (a) a circular boundary with a base 
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Fig. 1(b) the nodal numbering scheme 

 
 

If  x = 3 and y = 2 then we determine the voltage distribution of each node using Eq. (4)  
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according to the geometry addition depicted in( Fig. 1b), substituting these values into Eq. (4) 
yield. 
 
0.12132v1,1 – 121.32  + 0.11438 v1,1 - 0.11438v2,1  +  0.25v1,1 + 0 + 0.25v1,1 -  0.25v1,2  
 
Similar approaches were applied to the remaining interior nodal points. In this way six 
simultaneous equations were obtained which we expressed in a matrix form as  
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Using maple software yields the following results as 
 
 v1,1 = 521.19,  v2,1 = 421.85  v3,1 = 521.19, v1,2 = 855.47,  v2,2 = 755.40,  v3,2  = 855.47  
 
In order to compute the flux density (D), the relationships are given below. 
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For node (1,1), the flux density is computed as 

( ) 4.198
3194281.0

100085.421
2 =

+
−−=xD                                                                                         (6) 

 
In a similar manner, this in turn can be use to calculate the electric density vector using Eq. (7) 
below. 
 

22
yx DDD +=                                                                                                    (7) 

 
The direction of the flux can be determine using Eq. (8) below [3] 
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The electric flux density vector D = 471.5 and the flux direction Ө = -65.1o from Eq. (7) and (8) 
above. 
 
Results 
The solution of the other nodes is given in Table 
 

Table 1: Results for the other nodes 
Node D x D y D  θ  
2,1 0.000 -377.7 3777.7 -90.0 
3,1 -198.4 -427.7 471.5 245.1 
1,2 109..4 -299.6 281.9 -69.1 
2,2 0.000 -289.1 289.1 90.1 
3,2 -109.4 -299.6 318.6 249.9 

Solution of the Laplace equation with correction factors for the irregular boundaries is shown in 
(Fig. 2) below 
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Fig. 2 (a) Potentials 
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Fig. 2(b)   Flux 
 
 

CONCLUSION 
 

The computation of voltage distribution and charge flux using Laplace equation for a two-
dimensional surface with a curved edge were achieved in relation to boundary problems. All the 
distributed voltage and charge flux falls within the boundary limit, no any single value exceeds 
the required boundary. The same method can also be employ to determine the voltage 
distribution and change flux for three dimensions or more with a curved edge, if desired. This 
type of problem is usually associated or drawn from engineering problem. Their numerical 
approximations by the use of numerical method for solving partial differential equations 
especially finite element methods usually demonstrate a high degree of reliability; efficiency and 
accuracy as it accommodate unequal spacing and equal spacing in the discretisation procedure. 
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