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Abstract

Euler introduced the famous Euler method in 1728.tie simplest and the most analyzed
numerical integration, it has become the steppitoyps of numerical methods for solving Initial
value Problems in Ordinary Differential EquationShere has been considerable efforts to
improve on Euler method by increasing its orderasoturacy. Recently, in [1], Abraham
proposed a new improvement on Euler Method callemtifléd Improved Modified Euler
Method. In this work, we investigate the basic prtips of this new method vis-a-vis the older
ones. Our analysis show that the method is conmerigeorder 2 and stable when applied to
autonomous Initial Value Problem.
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INTRODUCTION

Ordinary Differential Equation often arise from theathematical modelling of physical

phenomena in almost every sphere of human endeausir as engineering, physical and
biological sciences.

Given a functionf(x,y (x)) and an "initial valuey(x,), corresponding to a solution value at
X0, We seek to evaluate numerically the functygm) satisfying

y,(x) = f(x’y (x)),x € [xOIxend]l
z €Y)
y (x0) = Yo

An approximate solution to an Initial Value ProblgivP) given in (1) above is typically
obtained by iterating a set difference equationthat approximate the original problem. For this
reason, we need thscretizethe independent variable

Let {x;li=0,1,..,n}

be a mesh over the interval of integration,

Xo< X1 < Xpo1 < X, =T
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T— X0

Thenh; = x; — x;_, is thei*" step size. We assume for simplicity a uniform méash —.

n
The recursive application of the difference equatdefines a meshy;}, with eachy; an
approximation of the exact solutigrix;).

The number of instances where an exact solutiqt)odan be found by analytical means is very
limited. Apparently, only a small class of diffeteth equations possesses analytic solution
expressible in terms of known tabulated transcetadldonctions that satisfy the differential
eqguation as well as the initial conditions. Everewlthe analytic solutions to certain differential
equations are available, their numerical evaluati@y be quite difficult. This gave rise to the
development of many numerical methods for advantiegsolution of IVP (1). In the selection
of a good numerical scheme, basic characteristicls as consistency, convergence and stability
are paramount. In this article, we study thesecbasiperties in relation to the newly proposed
method and the existing ones.

2. Development of Euler Methods

2.1 Famous Euler Method

The historical method of Euler involves computindiscrete sefy, } for argumentgx,} using
the difference equation

) _ = @g (Xp, Yn; h)
EM' yn+1 yn {: hf (xn;yn) ) n= 11 Zr "'lm (2)
where the step size= x,,,1 — x,

It is linear iny,, andf,,, and being a one-step method, it poses no diffiauhen there is need to
change from one step size to the other [4, 5, 7,A8]the simplest and the most analyzed
numerical integration, it has become the impetusd&eloping numerical algorithms for IVPs
in ODEs.

2.2 Modified Euler and Improved Euler Method

There has been a considerable effort to improveEoiter method because of its easy
implementation and low computational cost. Whiledying the relationship between an IVP (1)
and, in the case whefis independent of, the integration problem,

xo+h
Yi— Yo = f f (x)dx
X0

Runge [9], observed that Euler method (2) gives tisa rather inefficient approximation of the

integral by the area of a rectangle of heifjlik,). Thus, he says, "it is already much better" to
extend the Midpoint rule and the Trapezoidal ra@elifferential equations by inserting for the

missingy — values the results of Euler steps yielding thetaihg methods:

= @yp(xy,yn; h)

ME : Yn+1 — Yn {: hf (xn-|— %h'yn‘}‘ %hf (xn;yn))

3)
. = q)IE(xn'yn; h)
IE : yni1— Yn {z 3 (FCow yu) + f(xn + hyn + Bf (Gt Yn))
(4)
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Method (3) is referred to as tivodified Euler (ME)or thelmproved Polygon method, whilé)
is known as thémproved Euler (IE) method.

2.3 Improved Modified Euler and Modified Improved M odified Euler Method

In [1], Abraham improved on the Modified Euler mserting the forward Euler method, in place
of y,, in the inner function evaluation of the ModifiedilEBr method. This improvement led to a
new method calletmproved Modified Euler (IME) Methodt is given as,

= Dyyp(Xp, Yn; )

IME? Y1 = In {= Rf (% + Yo+ 2hf (X0 + B Yo+ B G y))
5)

That is,y, in ME method (3) was replaced wighh + hf (x,,, Yn)-

However, it was found out that the IME method perfed very poorly in comparison with the
ME method, with respect to autonomous IVP. Thufgjrtner improvement was carried out by
usingy, + %hf (x5, ¥n) to replacey,, in IME method (5) to develop,

= @uyyg(Xp, Yns )

MIME : Yni1— Yn {: hf (xn + 2, yn + 3hf (%0 + 2y + thf(xn, y")))

(6)
known asModified Improved Modified Euler (MIME) method

3. Basic Properties of Euler Methods

The properties of the increment functi@n of the newly proposeMIME and olderEuler
methodg2) — (6) are, in general, very crucial to theatslity and convergence characteristics.
These properties are studied in this section. Rgrséandard IVP of an ODE given by (1), we are
interested in finding the solution ¢{x) by theEuler method€2) — (6). Whenever the function
f does not depend anthe equation (1) is said to be autonomous.

Theorem 3.0.1
: The existence of such a solutpfx) is guaranteed and unique provided tiféx, y):
* item is continuous in the infinite st = {xo <x <T, |y| < «},
» and is, more specifically, Lipschitz continuousha dependent variablg over the same
region¥, i.e.3 a positive constant L such thai(x, y), (x,5) € WP,

IfCe,y) — fF(x,P|< L|ly — j|

Actually, these (sufficient) conditions also guarantee that the solution depebigpschitz
continuously on the initial condition. i.e.,y{(x) is the solution to the original problem and now
J(xo) also satisfies the ODE but with a different iditandition3 a positive constarkK such

that|y(x) — p(x)| < K | y(x0) — $(x0)I-

These conditions together with the existence anquamess of a solution definesaa&ll-posed
problem (2).

The following lemma will be useful for establishitige properties.

Lemma 3.0.2 Let Let {§;i = 0(1)n} be set of real numbers. If there exist finite tants
I' and Il such that

|6i+1| < Tle;| + Mi=0(1)n -1, (7)
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then
16 < == M+ Tijeg|, T 1. (8)

Proof.Wheni = 0, (8) is satisfied identically aley| < |eql.
Suppose (8) holds wheneueK j so that

6] < 522 M+ Dlegl. (9)
Then, from (7)i < j implies that
6j+1| < T|ej| + ML (10)

On substltutlng (9) into (10) we have

|6j41] < (11)

Hence, (8) holds forail > 0

3.1  Stability
The following theorem guarantees the stability leé hewly proposedIME and otherEuler
methodq2) — (6)

Theorem 3.11 Suppose the IVP (1) satisfies the hypotheses offeine(3.0.1), then the methods
are stable.

Proof Lety, and z, be two sets of solutions generated recursivelyhieyeuler methodsvith
the initial condition

y(x0) = ¥0,2(x9) = 20,10 — 2zo| = &

Let
6, = VYn— Z,,n =20, 12)
and
Yn+1 = Yn + h®@(xp, yn; h), (13)
Zni1 = Zn + hD(xy,, Zy; h) (14)

This implies that
Va1~ Znt1 = Yn— Zn + hi® (xn: Yn h) — (D(xn: Zy; h)}, (15)

And for the individual methods, we have
Yn— Zn+ h{@py(xy yn; h) — @py(xp, 2, h) }
Yn— Zpt h {(DME(xn' Yns h) - q)ME(xn' Zy; h) }
Yni1— Znt1 =\ Yn— Zp + h {q)IE(xnl Yns h) - d)IE(xnl Zy; h) }

l Yn— Zp+ h {Q)IME(xn; Yn; h) - (DIE(xn; Zy; h) } (16)
Yn— Zn + h{@yye(Xy, Yn; h) — @yiye(Xn, Zy; h) }
Using (12) and triangle inequality, we have :
EM:|6,,1| < (1+hL)|6,, n =0 a7
ME: |8,41| < (1 + hL)|6,], n =0 (18)
IE: |6,,1| < (1 + hL)|6,|, n =0 (29)
IME: |8,,1| < (1 + hL)|8,], n =0 (29)
MIME: |8,.1| < (1 + hL)|5,], n =0 (20)
If we assumd™ = 1 + hL,and IT = 0, then Lemma 3.0.2 implies that
18] < K|8l, (22)
where
K = el®-9 < ¢
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which implies the stability of the newly proposkiddified Improved Modified Euleand other
Euler method

3.2 Absolute Stability
A special stability concept is that of absolutebsity, which is normally associated with

inherently stable IVPs (such as (1) whose Jacob@%‘)shave eigenvalues with negative real

parts [6, 7]). If the step length used for the iempéntation of a numerical method is too small,
excessive computation time and round--off erroultedVe should also consider the opposite
case, and ask whether there is any upper bounteprength. Often there is such a bound, and it
is reached when the method becomes numericallablestthe numerical solution produced no
longer corresponds qualitatively with the exacusoh because some bifurcation has occurred.
In this section, we study the absolute stabilitytred newly proposed (MIME) and othEuler
methodq?2) - (6).

Absolute stability analysis of one-step methodsissally carried out using the linear model
problem

y'=Ay,y(x¢) = Yo, Xo < x (23)

whereA is complex. This has the analytical solution
y(x) = net =% (24)

The problem has a stable fixed poinyat 0 for Re(4) < 0 .

The region of absolute stability for a method ierththe set of values of (real and non-
negative) and (complex) for whichy,, - 0 asn — o, that is, for which the fixed point at the
origin is stable. Thus, we want the set of valog® and A for which |Ryetnoa(h1)| < 1|
where Ry.:noa(RA) < 1, the stability function, is the eigenvalue of thecobian of the Euler
methods map evaluated at the fixed point.

Using the linear model problem (23), the Euler rodth(2) — (6) give the following recurrence
relation

EM: yu1 = (1+hAd)y, (25)
ME: yoq= (1+hi+ ;h?2%)y, (26)
IE: Yoy = (1+ha+ Sh22% + 2H3A)y, (27)
IME: yoq = (1+ha+ 3222 + 2h32)y, (28)
MIME : y,oq = (1+hi+ 3h22% + TH32)y, (29)
Using the newMIME as a case study, the solution which satisfiegnitial conditiony, = 1 is
ya= 0 (1+mat In222 + 1nsad)” (30)

In order to examine the convergence of this at, gyt is necessary to study the behaviour of
this function ash tends to zero in such a manner tharemains fixed.
Now

n

yu= (1+ha+ 3R222 + IH32%)" (31)
so that
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Iny, =In(1+ha+ ;h?2% + ;h323) (32)
Then by de I'Hopital’s rule

— lim 21 1,272 1,343

—llll_lghln(1+h/1+2hl + 1032 (33)
Hence,

limIny, = Ax, (35)
and thus,

limy, = e**n (36)

Then the method is consistent and convergedt(t®) If we letz = hA then, the general form
of the stability function oMIME method is

R(2) = 1+z+%z2 + %23 (37)

The stability functions of the new method show tihas a second-order method. Similarly, the
stability function and order of convergence of othBaler methods are displayed in the table 1

Table 1: Stability functions and Region of AbsoluteStability of MIME and other Euler

Methods
Method Rythod® Stability Function Region of Absolute Stability
EM REM(Z) 1+2z -2<z<0
ME RME(Z) 1+z+ %ZZ -2<z<0
IE R, 1+z+ %zz+ %23 —2<z<0
IME RIME(Z) 14+2z+ %ZZ + %ZB —-1.47797 <z <0
MIME RMIME(Z) 14+2z+ %ZZ + %ZB -2<z<0

3.3 Convergence

For a difference approximation to be usable folaascof function#(xn,y (xn)) it is necessary
that any function in this class satisfies a nundfeequirements as mentioned earlier on [7]. One
of such requirement is the convergence of the nadetfibough convergence is implied by the
consistency condition proved above. However, aisatoverview of the test of convergence is
presented below:

Lemme 3.3.1Suppose the IVP (1) satisfies the hypothesis ofEttistence and Uniqueness
Theorem (3.0.1), and then the increment functigpy e specified by (6) satisfies a Lipschitz
condition of order 2 with respect to the indeperidamiabley.

Proof. Supposd. is the Lipschitz constant fgt (x, y) w.r.t.y, then, by theorem (3.0.1)

IfCey)— fOePI<Lly— jl
Using (6),

| DPyime (X, Yns h) — @yimg (Xy, 25 h)|
= |hf (xn +2h,y, + Shf (xn + 2h Yo + Shf (xy, m))

~hf (xn 43,z hf (X0 Jhzy + f e, m))‘

374
Scholar Research Library



Akanbi Ma Arch. Apll. Sci. Res,, 2 (2): 369-379

< Llyn — zal {h + Jh? + 03}

<L Iyn - an
where the Lipschitz constahtx is given as
L* = L{h+ h* + in3} (39)

Thus, the proposed method is convergent and dsraf accuracy is 2.

4, Numerical Computations
In this section, we discuss the implementation led proposedMIME and existing Euler
Methodson the IVP given by

() = —10((y(x? - 1),y (0) = 2 (39)

Four numerical experiments comprising of 1000 stepsh, were performed on this IVP as
follows:

for  x=0(0.01)10i.e h =0.01

for x=01(0.02)20i.eh =0.02

forr x=0(0.03)30i.eh =0.03

for x=0(0.04)40i.e h = 0.04

oo

The numerical results of the experimeAts D are displayed in tables 2 — 5 and figure 1 — 4. In
order to distinguish between the methods in theleplotted for the numerical values, we
limited the display t00.1 <x < 0.23, though the problem was solved far= 0 -
10,20, 30,40 respectively.

Table 2: Numerical Values and Absolute Error of y(¥ forx =0 (0.01) 10

h=0.01 Numerical Values of y(x) Absolute Error ofhe Numerical Values of y(x)

X yExact EM ME IE IME MIME EM ME IE IME MIME

2 2 2 Y 2 2 D D D 0
1.090909 1.0889]13 1.090971 1.090949 1.09p804 1.090886019R5996 6.19185E-PS 3.96068H-05 0.00010p313 2.32@82E-
1.047619 1.046924 1.04737 1.04763 1.04y589 1.0476120068806)1 1.77296E-05 1.13597E05 3.01534F-05  6.631E-06
1.032258 1.031898 1.032366 1.032263 1.03p244 1.0822560035986p 8.25589E-D6 5.29282H-06 1.40413F-05 3.08B@LE-
1.02439 1.0241¢8 1.024395 1.024B93 1.0271382 1.0243880022R53¢ 4.75476E- 3.04918E-06 8.08684F-06 1. 774BbE—0
1.019608 1.0194%6 1.019¢11 1.01061 1.01p603 1.019607001BR30P 3.08668E- 1.97982E106 5.24985g-06 1.1516BE-0
1.016398 1.016282 1.016396 1.016395 1.0[639 1.0163930011032P2 2.16406E- 1.38821E{06 3.68067E-06  8.072LE-07
1.01408p 1.013999 1.014086 1.014086 1.014082 1.014088214RE-0% 1.60081E- 1.02699EL06  2.7227E-06  5.9699pE-0
1.012346 1.012278 1.012347 1.012346 1.01p344 1.01234B50@E-0% 1.23192E-
1.01098p 1.010934 1.01099 1.01p99 1.010987 1.010989 9WESDH 9.77267E-
1.00990[L 1.0098p5 1.009902 1.009901 1.p099 1.009901598RB-0%  7.94123E-

7.90383EL07  2.0953F-06 4.5933fE-0
6.27033E{07 1.66218F-06 3.64359E-07
5.09546Er07 1.35068E-06  2.960%E-07

lol~NlolanldblwliNd]|iE O

N[N ]|o|o|o |

=
o
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Table 3: Numerical Values and Absolute Error of y(X for x = 0 (0.02) 20

h=0.02 Numerical Values of y(x) Absolute Error ofhe Numerical Values of y(x)

X yExact EM ME IE IME MIME EM ME IE IME MIME

o

2 2 2 Y. 2 2 D D D 0

1.047619 1.0462]16 1.047697 1.047667 1.04/486 1.047580014D279]L 7.80513E-P5 4.75286EH-05 0.00013B411 3.22699E-
1.02439 1.023941 1.024411 1.024403 1.021354 1.0243820041927¢ 2.08812E-05 1.27418EL05 3.57445E-05 8.6158BE-0
1.016398 1.0161¢9 1.016403 1.016399 1.01p377  1.0163900220788 9.49575E-06  5.79849E;06  1.62636E-05 3.914BPE-0
1.012346 1.012209 1.012351 1.012349 1.01p336 1.012346001B631JL 5.40327E-P6  3.30065H-06 9.25694F-06  2.22647E-
10 1.009901L 1. 0098&)9 1.009904 1.009903 1.009895 1,009908ZBE2-0%  3.48216E-06  2.12758E}06  5.9667[E-06  1.4344VE-06
121 1.008264# 1. 0081&)8 1.008267 1.009266  1.0p826 1.00826867ME-0p 2.4294E-4)6 1.48457E106  4.16327E-06  1.0006E-06
14 1.00709p 1.007042 1.007¢94 1.007093 1.007089 1.0p70910664E-0p 1. 79078E-J)6 1.09444E106  3.06913E-06  7.3748PE-
16 1.00621[ 1.0061F1 1.006213 1.0069212 1.006209 1.0p6219898FE-0p 1.37448E-P6  8.4008EL07  2.35581FE-06  5.6598pE-
18 1.00552p 1.005493 1.005%26 1.009526 1.006523 1.0p5522294BE-0b 1.08812E-P6  6.65093H-07  1.86508E-06  4.4803RE
20 1.00497p 1.004948 1.004976 1.004976 1.004974 1.0p4976713BE-Op  8.8274E-Q7 5.39588EL07 1.51311F-06  3.6304YE-

Table 4: Numerical Values and Absolute Error of y(X for x = 0 (0.03) 30

© o |Is I

0.03 Numerical Values of y(x) Absolute Error of the Nmerical Values of y(x)
X yExact EM ME IE IME MIME EM ME IE IME MIME
2 2 2 7 2 y D D D 0

1.032258 1.0311%4 1.032348 1.03p31 1.03p105 1.03221701108571 9.00061E-5 5.15154E05  0.00015327  4.0605(E-05
1.016398 1.0160%2 1.016417 1.016407 1.01p353 1.016383003%149P 2.35069E-P5  1.34882H-05 4.01583E-05 1.0508BE-

4
2

1.010989 1.010821 1.0011 1.010p95 1.019971 1.030984 1H880¢ 1.06022E- 6.08871E106  1.81329E-05 4.7752fE-06
3
5

© o [w |o

5
12 1.00826# 1.0081 1.00827 1.008268 1.00B254 1.0082620001W12¢6 6.00785E-06 3.45174E;06 1.02812E-05 2.7056BE-0
15 1.00662B 1.0065 1.006626 1.004625 1.006616 1.0p66218013E-0%  3.8621E-06  2.2195E106  6.61151E-06  1.73896E-06
18 1.00552p 1.005476 1.005%28 1.005526 1.0Dp552 1.00552@033BE-Op 2.68996E-P6  1.54615EL06  4.60601F-06  1.2106PE-
6
6
6

21] 1.00473p 1.004702 1.004741 1.00474 1.004736 1.00473814RE-Op 1.98048E- 1.1385E[06  3.39175E-06  8.916TpE-0
24 1.00414 1.00412 1.004151 1.00415 1.004147 1.00414917Q4B-0% 1.51871E- 8.73127E;07  2.60126E-06  6.8369BE-0
27] 1.00369 1.003666 1.003¢91 1.003691 1.00B688 1.003689558B8E-0p 1.20145E- 6.90781E-07  2.05806FE-06  5.4088pE-
30 1.00332P 1.003303 1.003323 1.003323 1.008321 1.0P3329450bE-0% 9.74138E-p7 5.60118E-07 1.66881E-06 4.38BIRE

Table 5: Numerical Values and Absolute Error of y(X for x = 0 (0.04) 40

OO

h=0.04 Numerical Values of y(x) Absolute Error ofhe Numerical Values of y(x)
X yExact EM ME IE IME MIME EM ME IE IME MIME
0 2 2 2 Y. 2 y D D D 0
4 1.02439 1.0234¢3 1.024492 1.024444 1.024218 1.0243410092007¢ 0.0001013p3 5.37268H-05 0.00017p049 4.95539E-0

8| 1.012346 1.0120¢5 1.012372 1.0136 1.01p301 1.01233300ZBO0SY 2.61425E-05 1.38992E105 4.46014F-05  1.278IE-05
12 1.00826# 1.0081 1.008276 1.009271 1.008244 1.0p825900XB737p 1.17408E-P5 6.24873H-06 2.00665E-05 5.74R68E

32 1.00311p 1.003092 1.003117 1.003116 1.008112 1.0p3113427BE-0%  1.6728E-( 8.91471EL07 2.86555F-06 8.18BGHE-
360 1.0027f 1.0027%1 1.002471 1.00Z771 1.00R768 1.0027689892VE-0% 1.32288E- 7.0505E107 2.26647E-06 6.4709bE-0
40 1.00249¢ 1.002478 1.002495 1.004494 1.00R492 1.0p2493578BE-0% 1.07228E-p6 5.71531E-07 1.83735E-06 5.248IPE

7
16 1.00621] 1.0061%29 1.006218 1.00§215 1.p062 1.006208164BE-0% 6.63883E-06 3.53519E{06 1.13569E-05 3.2476YE-0
20 1.00497p 1.00492 1.004979 1.004977 1.00A968 1.00497898GRE-0p 4.26222E-P6 2.27035E-06 7.29526F-06 2.088HIE-
24 1.00414p 1.004]11 1.004152 1.004151 1.00p144 1.004148535BE-Op 2.96609E-P6 1.58027E-06 5.07864F-06 1.4508PE-
28 1.00355p 1.003529 1.003%61 1.00356 1.00B555 1.00355888(BE-Op 2.18243E-P6 1.16293EL06 3.73782E-06 1.060BRE-
6
6
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Figure 1: Numerical Values of ¥(x) using h = 0.01 (0.1 <x <0.23)
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Figure 2: Numerical Values of y(x) using h=0.02 (0.1 =x =1.23)
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Figure 3: Numerical Values of v(x) using h=0.03 (0.1 <x = 0.23)
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CONCLUSION

The basic selection properties of a numerical ntkthiere analyzed in respect of the propc
MIME and other existing Euler Methc. This analysis of the stability, convergence absbéute
stability show that the improvement that led to thevelopment of theéModified Improved
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Modified Euler Methods worthwhile. The comparison between the numerialues generated
by this method with the theoretical solution shdwatf indeed the new scheme is accurate and
efficient. From the numerical experiments the congoa of the results generated with those of
the existing methods also show that the new methdtlie best as far as our computation is
concerned.
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