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Abstract 
Euler introduced the famous Euler method in 1728. As the simplest and the most analyzed 
numerical integration, it has become the stepping-stone of numerical methods for solving Initial 
value Problems in Ordinary Differential Equations. There has been considerable efforts to 
improve on Euler method by increasing its order of accuracy. Recently, in [1], Abraham 
proposed a new improvement on Euler Method called Modified Improved Modified Euler 
Method. In this work, we investigate the basic properties of this new method vis-à-vis the older 
ones. Our analysis show that the method is convergent to order 2 and stable when applied to 
autonomous Initial Value Problem. 
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INTRODUCTION  
 
Ordinary Differential Equation often arise from the mathematical modelling of physical 
phenomena in almost every sphere of human endeavour such as engineering, physical and 
biological sciences. 
Given a function ���, � ���	 and an "initial value” ���
�, corresponding to a solution value at �
, we seek to evaluate numerically the function ���� satisfying 
 ������ 
 ���, � ���	, � � ��
, �����,� ��
� 
  �
 �     �1� 

 
An approximate solution to an Initial Value Problem (IVP) given in (1) above is typically 
obtained by iterating a set of difference equations that approximate the original problem. For this 
reason, we need to discretize the independent variable �. 
Let   ���|� 
 0, 1, … , �� 
 
be a mesh over the interval of integration, �
 �  � … �  ��! �  �� 
 " 
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Then #� 
  �� $  ��!  is the �%& step size. We assume for simplicity a uniform mesh, # 
  '! ()�  . 

The recursive application of the difference equation defines a mesh ����, with each ��  an 
approximation of the exact solution �����. 
 
The number of instances where an exact solution of (1) can be found by analytical means is very 
limited. Apparently, only a small class of differential equations possesses analytic solution 
expressible in terms of known tabulated transcendental functions that satisfy the differential 
equation as well as the initial conditions. Even when the analytic solutions to certain differential 
equations are available, their numerical evaluation may be quite difficult. This gave rise to the 
development of many numerical methods for advancing the solution of IVP (1). In the selection 
of a good numerical scheme, basic characteristics such as consistency, convergence and stability 
are paramount. In this article, we study these basic properties in relation to the newly proposed 
method and the existing ones. 
 
2. Development of Euler Methods 
2.1 Famous Euler Method 
The historical method of Euler involves computing a discrete set �*+� for arguments �,+� using 
the difference equation 
 

-.: *+01 $  *+ 2
  Ф- �,+, *+; 4�                          
 45 �,+, *+� , + 
 1, 6, … , 7�      (2) 

where the step size 4 
  ,+01 $  ,+ 
 
It is linear in *+ and 5+, and being a one-step method, it poses no difficulty when there is need to 
change from one step size to the other [4, 5, 7, 8]. As the simplest and the most analyzed 
numerical integration, it has become the impetus for developing numerical algorithms for IVPs 
in ODEs. 
 
2.2 Modified Euler and Improved Euler Method 
There has been a considerable effort to improve on Euler method because of its easy 
implementation and low computational cost. While studying the relationship between an IVP (1) 
and, in the case when 5 is independent of *, the integration problem, 
 

*1 $  *8 
  9 5 �,�:,,80 4
,8

 

 
Runge [9], observed that Euler method (2) gives rise to a rather inefficient approximation of the 
integral by the area of a rectangle of height 5 �,8�. Thus, he says, "it is already much better" to 
extend the Midpoint rule and the Trapezoidal rule to differential equations by inserting for the 
missing * $ values the results of Euler steps yielding the following methods: 
 

.- ;  *+01 $  *+  <
  Ф.-�,+, *+; 4�                                   
 45 =,+ >  164, *+ > 1645 �,+, *+�? �     

 (3) 

@- ;  *+01 $  *+  < 
  Ф@-�,+, *+; 4�                                                             
  461 =5�,+,  *+ � >  5�,+ > 4, *+ >  45 �,+, *+�	?�   

 (4) 
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Method (3) is referred to as the Modified Euler (ME) or the Improved Polygon method, while (4) 
is known as the Improved Euler (IE) method. 
 
2.3 Improved Modified Euler and Modified Improved Modified Euler Method 
In [1], Abraham improved on the Modified Euler by inserting the forward Euler method, in place 
of *+ in the inner function evaluation of the Modified Euler method. This improvement led to a 
new method called Improved Modified Euler (IME) Method. It is given as,  
 

@.- ;  *+01 $  *+  <
  Ф@.-�,+, *+; 4�                                                                    
 45 =,+ >  164, *+ >  1645 �,+ > 4, *+ >  45 �,+, *+�	?�  

 (5) 
That is, *+ in ME method (3) was replaced with *+ >  45 �,+, *+�. 
 
However, it was found out that the IME method performed very poorly in comparison with the 
ME method, with respect to autonomous IVP. Thus, a further improvement was carried out by 
using *+ > 1645 �,+, *+� to replace *+ in IME method (5) to develop, 
 

.@.- ;  *+01 $ *+  A
  Ф.@.-�,+, *+; 4�                                                                     

 45 B,+ >  164, *+ > 1645 =,+ > 164, *+ >  1645�,+, *+�?C �          

 (6) 
known as Modified Improved Modified Euler (MIME) method 
 
3. Basic Properties of Euler Methods 
The properties of the increment function Ф of the newly proposed MIME and older Euler 
methods (2) – (6) are, in general, very crucial to their stability and convergence characteristics. 
These properties are studied in this section. For any standard IVP of an ODE given by (1), we are 
interested in finding the solution of *�,� by the Euler methods (2) – (6). Whenever the function 5 does not depend on , the equation (1) is said to be autonomous. 
 
Theorem 3.0.1 
: The existence of such a solution *�,� is guaranteed and unique provided that 5�,, *�:  

• item  is continuous in the infinite strip D 
  �,8  E , E F, |*| �  ∞�, 
• and is, more specifically, Lipschitz continuous in the dependent variable * over the same 

region D, i.e. G a positive constant L such that H �,, *�, �,, ŷ�  I D, |5�,, *� $ 5�,, ŷ�|�E J|�* $ ŷ| 
 
Actually, these (sufficient) conditions also guarantee that the solution depends Lipschitz 
continuously on the initial condition. i.e., if *�,� is the solution to the original problem and now 
ŷ�,8�  also satisfies the ODE but with a different initial condition G a positive constant K such 
that |*�,� $  ŷ�,�| E K | *�,8� $  ŷ�,8�|. 
 
These conditions together with the existence and uniqueness of a solution defines a well-posed 
problem (2). 
 
The following lemma will be useful for establishing the properties. 
Lemma 3.0.2  Let JLM �NOO 
  8�1�+� be set of real numbers. If there exist finite constants P Q+: R STU4 M4QM |NO01| E P|LO| >  R, O 
 8 �1�+ $ 1,        (7) 
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then |NO| E  PO! 1P!1  R > PO|L8|, P V 1.         (8) 

Proof. When O 
  8, �W� is satisfied identically as |L8| E  |L8|. 
Suppose (8) holds whenever O E X so that YNXY E  PX! 1P!1  R > PX|L8|.         (9) 

Then, from (7) O E X implies that  YNX01Y E PYLXY >  R.          (10) 
On substituting (9) into (10), we have  YNX01Y E  PXZ1! 1P!1  R > PX01|L8|.        (11) 

Hence, (8) holds for all O [ 8 
 
3.1 Stability 
The following theorem guarantees the stability of the newly proposed MIME and other Euler 
methods (2) – (6)  
 
Theorem 3.1.1 Suppose the IVP (1) satisfies the hypotheses of theorem (3.0.1), then the methods 
are stable. 
Proof  Let *+ Q+: \+ be two sets of solutions generated recursively by the Euler methods with 
the initial condition *�,8� 
  *8, \�,8� 
  \8, |*8 $  \8| 
 N8  
Let  N+ 
  *+ $  \+, + [ 8,         (12) 
and  *+01 
  *+ >  4Ф�,+, *+; 4�,        (13) \+01 
  \+ >  4Ф�,+, \+; 4�          (14) 
 
This implies that *+01 $  \+01 
 *+ $  \+ >  4�Ф �,+, *+; 4� $  Ф�,+, \+; 4� � ,    (15) 
 
And for the individual methods, we have 

*+01 $  \+01 

]̂
_
^̀ *+ $  \+ >  4 �Ф-.�,+, *+; 4� $  Ф-.�,+, \+; 4� �*+ $  \+ >  4 �Ф.-�,+, *+; 4� $  Ф.-�,+, \+; 4� �                         

*+ $  \+ >  4 �Ф@-�,+, *+; 4� $  Ф@-�,+, \+; 4� �*+ $ \+ >  4 �Ф@.-�,+, *+; 4� $ Ф@-�,+, \+; 4� �                   �1a�
*+ $  \+ >  4 �Ф.@.-�,+, *+; 4� $  Ф.@.-�,+, \+; 4� �                   

� 
 
Using (12) and triangle inequality, we have : -.: |N+01| E �1 > 4J�|N+|, + [ 8       (17) .-: |N+01| E �1 > 4J�|N+|, + [ 8       (18) @-: |N+01| E �1 > 4J�|N+|, + [ 8        (19) @.-: |N+01| E �1 > 4J�|N+|, + [ 8       (19) .@.-: |N+01| E �1 > 4J�|N+|, + [ 8       (20) 
If we assume b 
 1 > 4J, cde R 
 8, then Lemma 3.0.2 implies that |N+|  E K|N8|,            (22) 
where  K 
  LJ�f!Q� �  g, 



Akanbi Ma                                                                            Arch. Apll. Sci. Res., 2 (2): 369-379   
______________________________________________________________________________ 

373 

Scholar Research Library 

which implies the stability of the newly proposed Modified Improved Modified Euler and other 
Euler method 
 
3.2 Absolute Stability 
A special stability concept is that of absolute stability, which is normally associated with 

inherently stable IVPs (such as (1) whose Jacobians �h5h*� have eigenvalues with negative real 

parts [6, 7]). If the step length used for the implementation of a numerical method is too small, 
excessive computation time and round--off error result. We should also consider the opposite 
case, and ask whether there is any upper bound on step length. Often there is such a bound, and it 
is reached when the method becomes numerically unstable: the numerical solution produced no 
longer corresponds qualitatively with the exact solution because some bifurcation has occurred. 
In this section, we study the absolute stability of the newly proposed (MIME) and other Euler 
methods (2) - (6). 
 
Absolute stability analysis of one-step methods is usually carried out using the linear model 
problem  *′ 
  i*, *�,8� 
  *8, ,8  E ,        (23) 
 
where i is complex. This has the analytical solution *�,� 
  jLi �,! ,8�          (24) 
 
The problem has a stable fixed point at * 
 8 5kl mL�i� �  0 . 
The region of absolute stability for a method is then the set of values of � (real and non-
negative) and i (complex) for which *+  n 8 QS + n  ∞, that is, for which the fixed point at the 
origin is stable.  Thus, we want the set of values of 4 Q+: i for which |m.LM4k:�4i�| E 1| opqrq m.LM4k:�4i� E 1, the stability function, is the eigenvalue of the Jacobian of the Euler 
methods map evaluated at the fixed point. 
 
Using the linear model problem (23), the Euler methods (2) – (6) give the following recurrence 
relation  -. ;  *+01 
  �1 > 4i�*+         (25) .- ;  *+01 
  =1 > 4i > 16 46i6? *+       (26) 

@- ;  *+01 
  =1 > 4i >  16 46i6 > 1s 4tit? *+      (27) 

@.- ;  *+01 
  =1 > 4i >  16 46i6 >  16 4tit? *+      (28) 

.@.- ;  *+01 
  =1 > 4i >  16 46i6 >  1s 4tit? *+     (29) 

 
Using the new MIME as a case study, the solution which satisfies the initial condition *8 
 1 is *+ 
  uvw4 n 8 =1 > 4i >  16 46i6 >  1s 4tit?+

      (30) 

 
In order to examine the convergence of this at, say, ,+ it is necessary to study the behaviour of 
this function as 4 tends to zero in such a manner that ,+ remains fixed. 
Now 

 *+ 
  =1 > 4i >  16 46i6 > 1s 4tit?,+4        (31) 

so that 
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ud *+ 
 ,+4 ud =1 > 4i >  16 46i6 >  1s 4tit?       (32) 

Then by de l’Hopital’s rule 
  uvw4 n8 14  ud =1 > 4i >  16 46i6 >  1s 4tit ?       (33) 

    = i        (34) 
Hence, 
 uvw4 n8 ud *+ 
 i,+           (35) 

and thus, 
 uvw4 n8 *+ 
 Li,+          (36) 

 
Then the method is consistent and convergent to x�4t� If we let \ 
 4i then, the general form 
of the stability function of MIME method is: m�\�  
  1 > \ > 16 \6 >  1s \t         (37) 

 
The stability functions of the new method show that it is a second-order method. Similarly, the 
stability function and order of convergence of other Euler methods are displayed in the table 1 
 

Table 1: Stability functions and Region of Absolute Stability of MIME and other Euler 
Methods 

 
Method m.LM4k:�y� Stability Function Region of Absolute Stability 

EM m-.�y� 1 > \ $6 � \ � 0 
ME m.-�y� 1 > \ >  16\6 $6 � \ � 0 

IE m@-�y� 1 > \ > 16\6 >  1s\t $6 � \ � 0 

IME m@.-�y� 1 > \ > 16\6 >  16\t $1. szz{z � \ � 0 

MIME m.@.-�y� 1 > \ > 16\6 >  1s\t $6 � \ � 0 

 
3.3 Convergence 
For a difference approximation to be usable for a class of functions 5�,+, * �,+�	 it is necessary 
that any function in this class satisfies a number of requirements as mentioned earlier on [7]. One 
of such requirement is the convergence of the method. Though convergence is implied by the 
consistency condition proved above. However, a succinct overview of the test of convergence is 
presented below: 
 
Lemme 3.3.1 Suppose the IVP (1) satisfies the hypothesis of the Existence and Uniqueness 
Theorem (3.0.1), and then the increment function Ф.@.- specified by (6) satisfies a Lipschitz 
condition of order 2 with respect to the independent variable *. 
Proof. Suppose L is the Lipschitz constant for 5 �,, *� w.r.t. y, then, by theorem (3.0.1) |5�,, *� $  5�,, ŷ�| E J |* $  ŷ| 
Using (6), |Ф.@.- �,+, *+; 4� $  Ф.@.- �,+, \+; 4�| 


  |45 },+ > 164, *+ >  1645 B,+ >  164, *+ > 1645�,+, *+�C~� 
�     $45 },+ > 164, \+ > 1645 B,+ >  164, \+ > 1645�,+, *+�C~| 
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� J|*+ $ \+| �4 >  1646 >  1s4t�                                           � J� |*+ $  \+|                                                                        
where the Lipschitz constant J � is given as J�  
 J �4 >  1646 >  1s4t�         (39) 
 
Thus, the proposed method is convergent and it's order of accuracy is 2. 
 
4. Numerical Computations 
In this section, we discuss the implementation of the proposed MIME and existing Euler 
Methods on the IVP given by *′�,� 
  $18 =�*�,6 � $ 1�, * �8�? 
 6       (39) 

 
Four numerical experiments comprising of 1000 steps each, were performed on this IVP as 
follows: 

A.  for , 
 8 �8. 81�18 O. L 4 
 8. 81 
B.  for , 
 8 �8. 86�68 O. L 4 
 8. 86  
C.  for , 
 8 �8. 8t�t8 O. L 4 
 8. 8t 
D.  for , 
 8 �8. 8s�s8 O. L 4 
 8. 8s 

 
The numerical results of the experiments A – D are displayed in tables 2 – 5 and figure 1 – 4. In 
order to distinguish between the methods in the graphs plotted for the numerical values, we 
limited the display to 8. 1 E , E 8. 6t, though the problem was solved for , 
  8 n18, 68, t8, s8 respectively. 
 

 
 
 

Table 2: Numerical Values and Absolute Error of y(x) for x = 0 (0.01) 10

h = 0.01 Numerical Values of y(x) Absolute Error of the Numerical Values of y(x)

x yExact EM ME IE IME MIME EM ME IE IME MIME

0 2 2 2 2 2 2 0 0 0 0 0

1 1.090909 1.088913 1.090971 1.090949 1.090804 1.090886 0.001995996 6.19185E-05 3.96068E-05 0.000105313 2.32462E-05

2 1.047619 1.046924 1.047637 1.04763 1.047589 1.047612 0.000695061 1.77296E-05 1.13597E-05 3.01534E-05 6.6311E-06

3 1.032258 1.031898 1.032266 1.032263 1.032244 1.032255 0.000359869 8.25589E-06 5.29282E-06 1.40413E-05 3.08371E-06

4 1.02439 1.024168 1.024395 1.024393 1.024382 1.024388 0.000222536 4.75476E-06 3.04918E-06 8.08684E-06 1.77478E-06

5 1.019608 1.019456 1.019611 1.01961 1.019603 1.019607 0.000152302 3.08668E-06 1.97982E-06 5.24985E-06 1.15168E-06

6 1.016393 1.016282 1.016396 1.016395 1.01639 1.016393 0.000111322 2.16406E-06 1.38821E-06 3.68067E-06 8.0721E-07

7 1.014085 1.013999 1.014086 1.014086 1.014082 1.014084 8.52142E-05 1.60081E-06 1.02699E-06 2.7227E-06 5.96996E-07

8 1.012346 1.012278 1.012347 1.012346 1.012344 1.012345 6.75007E-05 1.23192E-06 7.90383E-07 2.0953E-06 4.59357E-07

9 1.010989 1.010934 1.01099 1.01099 1.010987 1.010989 5.48997E-05 9.77267E-07 6.27033E-07 1.66218E-06 3.64359E-07

10 1.009901 1.009855 1.009902 1.009901 1.0099 1.009901 4.55982E-05 7.94123E-07 5.09546E-07 1.35068E-06 2.9605E-07
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Table 3: Numerical Values and Absolute Error of y(x) for x = 0 (0.02) 20

h = 0.02 Numerical Values of y(x) Absolute Error of the Numerical Values of y(x)

x yExact EM ME IE IME MIME EM ME IE IME MIME

0 2 2 2 2 2 2 0 0 0 0 0

2 1.047619 1.046216 1.047697 1.047667 1.047486 1.047587 0.001402791 7.80513E-05 4.75286E-05 0.000133411 3.22899E-05

4 1.02439 1.023941 1.024411 1.024403 1.024354 1.024382 0.000449276 2.08812E-05 1.27418E-05 3.57445E-05 8.61583E-06

6 1.016393 1.016169 1.016403 1.016399 1.016377 1.01639 0.000224788 9.49575E-06 5.79849E-06 1.62636E-05 3.91456E-06

8 1.012346 1.012209 1.012351 1.012349 1.012336 1.012343 0.000136311 5.40327E-06 3.30065E-06 9.25694E-06 2.22647E-06

10 1.009901 1.009809 1.009904 1.009903 1.009895 1.0099 9.20823E-05 3.48216E-06 2.12758E-06 5.9667E-06 1.43447E-06

12 1.008264 1.008198 1.008267 1.008266 1.00826 1.008263 6.66709E-05 2.4294E-06 1.48457E-06 4.16327E-06 1.0006E-06

14 1.007092 1.007042 1.007094 1.007093 1.007089 1.007091 5.0664E-05 1.79078E-06 1.09444E-06 3.06913E-06 7.37482E-07

16 1.006211 1.006171 1.006213 1.006212 1.006209 1.006211 3.98987E-05 1.37448E-06 8.4008E-07 2.35581E-06 5.65986E-07

18 1.005525 1.005493 1.005526 1.005526 1.005523 1.005524 3.22943E-05 1.08812E-06 6.65093E-07 1.86508E-06 4.48032E-07

20 1.004975 1.004948 1.004976 1.004976 1.004974 1.004975 2.67138E-05 8.8274E-07 5.39588E-07 1.51311E-06 3.63447E-07

Table 4: Numerical Values and Absolute Error of y(x) for x = 0 (0.03) 30

0.03 Numerical Values of y(x) Absolute Error of the Numerical Values of y(x)

x yExact EM ME IE IME MIME EM ME IE IME MIME

0 2 2 2 2 2 2 0 0 0 0 0

3 1.032258 1.031154 1.032348 1.03231 1.032105 1.032217 0.001103571 9.00061E-05 5.15154E-05 0.00015327 4.06054E-05

6 1.016393 1.016052 1.016417 1.016407 1.016353 1.016383 0.000341492 2.35069E-05 1.34882E-05 4.01583E-05 1.05918E-05

9 1.010989 1.010821 1.011 1.010995 1.010971 1.010984 0.000168406 1.06022E-05 6.08871E-06 1.81329E-05 4.77527E-06

12 1.008264 1.008163 1.00827 1.008268 1.008254 1.008262 0.00010126 6.00785E-06 3.45174E-06 1.02812E-05 2.70543E-06

15 1.006623 1.006555 1.006626 1.006625 1.006616 1.006621 6.8013E-05 3.8621E-06 2.2195E-06 6.61151E-06 1.73896E-06

18 1.005525 1.005476 1.005528 1.005526 1.00552 1.005524 4.90358E-05 2.68996E-06 1.54615E-06 4.60601E-06 1.21109E-06

21 1.004739 1.004702 1.004741 1.00474 1.004736 1.004738 3.71401E-05 1.98048E-06 1.1385E-06 3.39175E-06 8.91615E-07

24 1.004149 1.00412 1.004151 1.00415 1.004147 1.004149 2.91704E-05 1.51871E-06 8.73127E-07 2.60126E-06 6.83698E-07

27 1.00369 1.003666 1.003691 1.003691 1.003688 1.003689 2.35583E-05 1.20145E-06 6.90781E-07 2.05806E-06 5.40855E-07

30 1.003322 1.003303 1.003323 1.003323 1.003321 1.003322 1.94505E-05 9.74138E-07 5.60118E-07 1.66881E-06 4.38514E-07

Table 5: Numerical Values and Absolute Error of y(x) for x = 0 (0.04) 40

h = 0.04 Numerical Values of y(x) Absolute Error of the Numerical Values of y(x)

x yExact EM ME IE IME MIME EM ME IE IME MIME

0 2 2 2 2 2 2 0 0 0 0 0

4 1.02439 1.023463 1.024492 1.024444 1.024218 1.024341 0.000927076 0.000101363 5.37268E-05 0.000172049 4.95529E-05

8 1.012346 1.012065 1.012372 1.01236 1.012301 1.012333 0.000281057 2.61425E-05 1.38992E-05 4.46014E-05 1.2784E-05

12 1.008264 1.008127 1.008276 1.008271 1.008244 1.008259 0.000137376 1.17408E-05 6.24873E-06 2.00665E-05 5.74208E-06

16 1.006211 1.006129 1.006218 1.006215 1.0062 1.006208 8.21649E-05 6.63883E-06 3.53519E-06 1.13569E-05 3.24707E-06

20 1.004975 1.00492 1.004979 1.004977 1.004968 1.004973 5.49862E-05 4.26222E-06 2.27035E-06 7.29526E-06 2.08474E-06

24 1.004149 1.00411 1.004152 1.004151 1.004144 1.004148 3.95358E-05 2.96609E-06 1.58027E-06 5.07864E-06 1.45082E-06

28 1.003559 1.003529 1.003561 1.00356 1.003555 1.003558 2.98806E-05 2.18243E-06 1.16293E-06 3.73782E-06 1.06752E-06

32 1.003115 1.003092 1.003117 1.003116 1.003112 1.003114 2.34276E-05 1.6728E-06 8.91471E-07 2.86555E-06 8.18254E-07

36 1.00277 1.002751 1.002771 1.002771 1.002768 1.002769 1.88927E-05 1.32288E-06 7.0505E-07 2.26647E-06 6.47095E-07

40 1.002494 1.002478 1.002495 1.002494 1.002492 1.002493 1.55788E-05 1.07228E-06 5.71531E-07 1.83735E-06 5.24519E-07
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Modified Euler Method is worthwhile. The comparison between the numerical values generated 
by this method with the theoretical solution show that, indeed the new scheme is accurate and 
efficient. From the numerical experiments the comparison of the results generated with those of 
the existing methods also show that the new method is the best as far as our computation is 
concerned. 
 

REFERENCES 
 

[1] O Abraham: J. Sci, 12 (2008) 57 – 66. 
[2] UM Ascher and LR Petzold: Computer Methods for Ordinary Differential Equations and 

Differential -- Algebraic Equations. SIAM, Philadelphia (1998) 
[3] JC Butcher: J. Comput. Appl. Math. 125 (2000) 1 – 29. 
[4] JC Butcher:  Appl Numer. Math. 20 (1996) 247 – 260.  
[5] JC Butcher: The Numerical Analysis of Ordinary Differential Equations Runge-Kutta and 

General Linear Methods, John Wiley & Sons Ltd., New York (1987) 
[6] SO Fatunla: Numerical Methods for IVPs in ODEs; Academic Press Inc, USA. (1988) 
[7] JD Lambert: Numerical Methods for Ordinary Differential Systems: The Initial Value 

Problem. John Wiley & Sons, England (1991) 
[8] JHJ Lee: Numerical methods for Ordinary Differential Equations: A survey of some 

standard Methods, MSc Thesis University of Auckland (Auckland, New Zealand, 2004) 
[9] C Runge: Uber die numerische Auflosung von differntialglechungen, Math. Ann. 46 (1895) 

167-178. 


