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ABSTRACT

The objective of this paper is to give sufficient conditions for the existence of bounded solutions
that are globally exponentially stable, periodic and almost periodic for a certain third-order
non-linear differential equation. A matrix inequality is obtained and proved to satisfy a
generalized frequency domain inequality of [ 7] through the frequency domain technique.

Keywords: Boundedness, globally exponentially stable, peciadi almost periodic, Lyapunov
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INTRODUCTION

In a relatively recent note of Clen Jipeng (1998) h suitable Lyapunov function of the type
“quadratic form only” was used to obtain sufficiesdnditions for the existence of a solution

which is uniformly ultimately bounded and periodiic almost periodic) for the third- order non-
linear differential equation.

x"+ F(r)x"+ G(r)x'+ H(r) x = e(x) (1.2)
G(r)=1-— g[1+ km(e)r?],
H(r)= 1-— ekl(e) 2

The functions F(r),G(r),H(r),and e(x) are continuous with 72 = x?2 + x2 + x 2.
MoreoverK > 0 and ¢ are real parameters. Equations of the form (1iff) sombinations of
non linear terms have been of great interest toymaathematicians for decades. The reader can
find interesting expositions in [2, 3, 4, 5, 8, 13]. These equations are not only of theoretical
interest, but also of a great practical importaasethey can be applied to model automatic
control in T.V systems realized by means of R-@ff.
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In this study, | shall also consider the equatibd) and find necessary and sufficient conditions
that guarantees the existence of a bounded sojwtibich is globally exponentially stable and
periodic (or almost periodic). The method of applo& the frequency domain technique. The
frequency domain technique employed in this stgdyf ibeneficial applications and circumvents
the limitations experienced in the practical camgion of the well known Lyapunov functions
method. Besides, it has been asserted [10] thdtyapunov function can be better than the
frequency domain inequality criteria. This factn®re profound in the work of Barbalat and
Halancy [7] and Yacubovish [15, 16]. For more expos on the frequency domain method, see
[1, 2, 11]. My-reapproach in this study has an advantage over yhpunov second method in
[9], because the best choice of Lyapunov functibthe type “quadratic form plus the integral of
the non linear term” was not used in [9]. Consetjyethe results obtained- iby [9] cannot be
better than the result obtained in this study.

In an interesting paper, Afuwape [1] derived coiodis for the existence of solutions that are
bounded, globally exponentially stable and periddicalmost periodic) for special cases of the
equation (1.1), when the non linear term4, H and e(x) depend only on one argument. The
results obtained in this study improved some ofs¢hgontained in [2] and [9]. This study
depends on the generalized Yacubovish’s theorenwjiith is stated without proof.

Generalised Yacubovish’'s Theorem [7].

Consider the system:
x'= AX — Bp(G) + D(t),0 = C*X

1.2)

Where A is an nx n real matrix, B and C are nx al matrices withC* as the transpose of

C,p(a) = Col ¢j(0j),(j= 1,2,————,m)and D(t) is an n-vector.

Suppose that in the system (1.3), the followingiaggions are true:

0] A is a stable matrix;

(i) D(t) is bounded for alt in R;

(iii) For some constantgj > 0,(j = 1,2,— —— — — ,m).

(iv) There exist a diagonal matrixd>> 0, such that the frequency domain inequality,
m(w) = MD + Re DG(iw) > 0

(1.4)

holds for all w in R, where G(iw) = Cx (iwl -A) — 1B is the transfer function antf =

dlag(l/ U]), (] =12,-———-- 'm)'

Then, the system (1.2) has a unique solution wisittounded in R, globally exponentially stable
and periodic (or almost periodic) wheneyHit) is periodic (or almost periodic).

This paper is organized in the following ways. btton 2, preliminary notes which will be
needed in the next sections was given. In sectjaheBmain results of the work and part of the
proof will be given. The last section will concluttee proof of the main result.

2.0Preliminary Notes
The equation (1.1) can be transformed into its\edent non-linear system by setting,

x'=y,
V' =%
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z'= —x— (1—8y-(1- &=+ ke[l(e)x + m(&)y + n(e)z] (x* + y? + z%) +
e (2.1)

This system is a periodic system with periedand satisfies the uniqueness condition of the
solution with respect to the initial value problem product space 1xF, wher&€ [,1 = (0 +

w), [x,y ,%] €F.F is an arbitrary compact subsetrs.

The linear part of the system (2.1) is the system,

x'=y,
y' =z
g2 =—x—(1-98y-(1- ¢z
(2.2)
from which we can derive coefficient matrix A as,
0 1 0
A(E) = 0

0 1
-1 -(1-8) -(1-¢)
(2.3)
With characteristics polynomials,
det(Ml —A) =3+ (1-22+1A-E1+1

(2.4)
The characteristics roots of the equation (2.4)garen as,
Al = _1
€
) /12 = E + (1 -
§2) 3
] ) 2 (2.5)

1
h=;+ (1-EF)

NOTE that for matrix to be stable, all it's eigetues should have negative real parts, i.e.

Re(4j) < 0. For our casej, = 1, 2,3, and moreover A) will be stable if€ < —2. Thus we

can havgiwl — A(€)) to be,

o -1 0
(iwl —AE)=[0 o -1 (2.6)
1 (1-8) iwt+(1-€)

And,
det((iwl — A(€)) =4 = w2(1-€) + 1- iw(w2 + € - 1)
(2.7)
From which we get,
|42 = [w2(E-1) + 1]* + w2 [w2 + €-1]%
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RESULTS

Theorem 3.1: Suppose that in the equation (1.&Jetbxist positive parameters i, andugz such

that for allZ, Z €R, Z + Z, we have
< H(Z)—H(Z)<

0< — 3 = M1
(3.1)
G(Z2)-G(2)
0< — 5 < U2
(3.2)
F(2)-F(Z)
0="%7 = s
(3.3)
And the inequality,
3 2
M1 — Tily (Z_3 + !;_2) > 6(€— 1) uypiapts, (3.4)

is satisfied. Then the equation (1.1) has a solutMhich is bounded iRt R, globally
exponentially stable and periodic or almost pedoaccording a%(t) is periodic or almost
periodic.

The proof of the main result.Let us setx’ = y in the equation (1.1) to have the system (2.1).
(1.2) can be rewritten in the vector form,
x'= AX — Bp(6) + D(t), where6 = C*X

0 1 0 0 0 0 1 0 0 0
Also, A={ 0 0 1 : B=<0 0 0);C= (0 1 0);P(t)< 0 >;
-1 -(1-8) -(1-8) 111 0 0 1 e(t)

H(x)
Bo(0) [ G)

F(z)
(3.5)
The transfer functiol (iw) = c*(iwl — A)~1B of this system thus becomes,

1 1 1
G(iw) = 1/4 (ico i® i(o)

-02 -02 -02
(3.6)
On choosing,
2 0 0
;7 0 0 H1 .
D:<0 Ty 0), andM =| 0 - 0
1 1 13 :
0 0 —
Us

We obtain the frequency domain inequality of (lag)
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T11 Tq12 i3
(w )= Ty Tap T3 |> 0

31 T3z Tl33

(3.7) i
where, 1(0)= rl[#il + %F”“],
(3.8) .
Taa(0)= e —
(3.9) n
Taa(0)= > ]
(3.10)
T12(®)= %Zz — lwT,A =751 (),
(3.11)
T13(0)=( 2|§|2 — w?T3A) =T13,
(3.12) i
23 (@)=( T~ w'T3h) =Tz,
(3.13)

For us to show that the inequality (3.7) is valids suffices to use the Sylvester criteria which
states that the principal minorsofw) in (3.7) be strictly positive. We shall now pravese in
series of Lemma.

Lemma L For all w in R, mii (w) > 0,(i = 1,2,3).

PROOF: For ali = 1,nii (w) in the equation (3.8) will be positive for allin R.

v(v+€-1)2 2
If ,Ll1< U(€—1)+1—m W=7V
(3.14)
Let,
+E-1
si(0) = —v(E-1 +1-22H,

Thenv; =0,v, = 1— €andv; = -1/ € -1,
Are the roots of the equatiomgv + € —1)2 = 0and (v(€ — 1) + 1) 2 = 0 respectively. We
shall denote byn,, the minimum ofs,(v) and let this minimum be attained at says: v,.
Thensi(vy) = 0. Thus, si(v,) can be zero in the intervak| v,], obviously the points; and
v, are the minimum points of; (v). If we substitutev = v; and v = v, respectively in the
inequality (3.14), we shall hawg(v,)= 1 and s,(v,)= €% — 2€ + 2. We note that there is an
asymptote ab = vsfor s; (v).
Thus the minimum value of;(v) =m; and it is attainable in the intervab,[v,]. hence
m11(w) > 0. Next, fori = 2, m,,(w) in the equation (3.9) will be positive for allin R, if we
can show that,
2

Uy <v(v+€—1)+%.

(3.15)

Let,
v(E-1)+1)?

s, =pu, <vlv+€-1)+ oorE-1) "
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We note that there are asymptotes,&t;) ands,(v,). The maximum that,(v) can attain is at
sayv = v,. Letm, = s,(v,) be this maximum which is attainablerat v;, and given by,
s,(v3) = ea-(e-1)
2 3) —

(E-1)2
(3.16)
Thusm,,(w) > 0. Next, fori = 2, m35(w) in the equation (3.10) will be positive for allin R,
if we can show that,
v(E-1)+1 (v+€-1)
Hs < v v(E-1)+1

(3.17)
This is possible if we let,
_v(E-1)+1 (v+€-1)
s3(v) = v(E-1)+1
and show that it has a maximum which is always tega_etv = v,, be the point at which this
maximum(mgs) is attained. Observe that &§(v;) and s;(v3), there are asymptotes, hence the

maximum is not attainable at these points. At thiafwy = v,,
€(2—€)

s3(vp) = ¢

(3.18)
And the maximum is attainable there, thyg(w) > 0.
LEMMA 2 : For allw in R,
()1 (w) = [T (w)|* >0, (i#J;i,j,=12,3)
Proof: fori = 1,j = 2, we derive from the inequality (3.7),
. (w) = (7T11 7T12) > 0. (3.19)

Ty T2
For us to show that the inequality (3.19) is skdsfit suffices to use Sylvester's criteria which
states that the principal minors of the matrix3rl@) and det.(w) be positive definite. It has
already been shown in the proof of the Lemma 1 blodh 7., (w) andm,,(w) are positive. It
remains to show that det(w) in the inequality (3.19) is positive definite.
On simplifying the inequality (3.19), we have,
1T, 0P (wiHE-l) | T (0P+(E-D+ 2 +w?t2
U1ltz p1l4l? U242 4]4|2

> 0 (3.20)

(W) = Ty Tp — | |* =
Further simplification give,
me(w) =22 (@° + wH[(€ = 1D? +2(E = 1) — pp] + @?[(€ = D> + (2 + iy — pa)(E-
1) Tzﬂlﬂz + (/J +1— 2#1#2] > 0.

This WI|| be true if,

(M1 —u)(€—1) — _.U1/v‘27 and ——
Hence we have,

4(1+uy) > _,
Hil2 T2
Ml _Ta 40 — )
o 4Q+m) T Hapy
Which imply that,
(H112)? < 16(ug—pz) (1 + py).

Thus,
m.(w) = 0.
Next is to show that,
T T
Ta(@) = (ot o) >0. (3.21)

334
Scholar Research Library



E.P. EBIENDELE et al Arch. Appl. Sci. Res,, 2010, 2 (4):329-337

On following the above arguments, we only needhowsthat detr; (w) in (3.21) is positive
definite so as to satisfy Sylvester's criteriacsiit has already been proved in the Lemma 1 that
m,, and my5 are respectively positive.

On simplifying the inequality (3.21), we obtain,

7173 0 Ty 3(@¥(E-D+1 | 1urs(@i(E-1D+1  tit+w?t}

M1z u1lal? uslal? 4|42
w?t113(w?(E-1)+1)2 2wt 13 (w?+(E-1)
a5 > 0,

mg(w) = myqm33 — |7T13|2 =

From which we have,
AP + AP [(@(€ = 1) + D0 =) 3G + 2] ity > [20* (@0 + (€~ 1) ~

w? (w*(€ = D+1)?]ug . 43)
For the inequality (3.22) to be valid, it suffic@sshow that the minimum of its left hand side is
positive and is greater than the maximum of thbtrigand side. The maximum of the right hand

side is—2p; 43 and the minimum of the left hand sidetis- u; — =%, thus we have,
3

w?415

1+4p — 228> —2up,,

4'['3
Which implies that,

H1l3 73
Hence, m;(w) > 0.

At least we shall show that,
T T
ne(w) _ ( 22 23) >0

T3y T33
(3.23)
On using the preceding arguments, we have,
1,73 0?T03(w?(E—1)+1  w?t,13(w? + (E—1))

Uz U3 - Uz Al? uslAl?

T1

(W) = Mppm33 — |7T23|2 =

207242
w?(Tt5+713)
—2=3- 0.
41412

Which reduces to,
W+ 0 [(E-12+(€E-1) —pp — Tappuz] + W*[(E-12+ 2 —pp)(€E—1) — p3 —]

2Rl 41 > 0.
4T3

(3.24)
The inequality (3.24) holds if,
Dk T3 and (2-p2)(E-1)—us S T2

U3 41, MUz 413’

This is possible since,
Hal3 T2 _ 4((2 —m)(E€-1) - u3>

—_— <
4(E-1) - Us T3 U3
From which we have,

(H2k3)? < 16[((2 — pu)(€E— 1) — u3)((€E — 1) — py).
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4. CONCLUSION TO THE PROOF OF THE MAIN RESULT.
It now remains to show that from the inequality7§3.
detm(w) =myq(mppm33 — |7523|2 + 7‘22(75117533 - |7f31|2) + 7523("117‘23 - |7512|2) -
. 2.7[117[22.7[33 + ZRe(TE127E237[3-1) > 0 . (41)
This is equivalent on further simplification to,

T, T,T 1 [ w? ’T
123 ( 117,73 (w?(E—1) + 1)
142

4#1

detn(w) = L(12 + w?t?) +

Mabaps A2 \u

%3 (w2(E — 1)41)2

T T1T,73
(T + w4T2) + —(Tz + wzrz) — —(wZ(E 1)+1)2 _
! ’ 4py g Hal3 o |A*

4,

4
(O]
—20*(w*+E€-1)%*+ 4H_(T1 +o0*td)(0?+E—-1) — A (0? + € - 1)(2w?*(0* + €
T1T3
_1)2 - 3((,02(8 - 1) + 1 )T1T2T3 > 0. (42)
Forw? = 0, detm(w) is positive if,
HiTq [H3 | Ha
1- — 4+ —.
’ul 4 T3 Ty
Forw? # 0, detw(w) will be positive if we can show that,
JA1° = 141 (025 [0?(€ = 1) + 1] + 0 222 (12 1 202) + 2285 (22 4 412y 4
ToT3 4T1T3

Iz
o (1 + 07 — 02 (07 + €= 1) + 1y [(02(E = D) + 1IAP (0P [0? (€ = )
142

+1]%) — 202%uuz (0% + € — 1)2 + 0?(1? + w)(0? + € — Dz > 0*(0? + €—1)
Ble*(€ = 1) +1]%) — 20*(@? + € = 1)1 up 5. (4.3)

The inequality (4.3) will hold if we can show thi&ie minimum of its left hand side is strictly
greater than the maximum of its right hand sidee Thinimum of the left hand side of the
inequality (4.3) is,

4 lr; 1,[
While the maximum of the right hand sidevi€ — 1), 1, us. Thus the inequality (4.3) holds if,

(1-p) -2 [M + HZ] > 6(€ — Dpypaps.

This is p055|ble by using Lemmas 1 and 2. The cmmwh to the proof follows from the
generalized theorem of Yacubovish.
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