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ABSTRACT

The objective of this paper is concerned with the following second-order differential equation of the form LY (¢) =
—(PYY't) —r(®)P)Y'(t) + q(t) + Y(t) = f(t, Y(t)), t € (0,). By applying critical point theory, we establish
sufficient conditions for the existence of periodic solutions of second order self-Adjoint differential equations with
variable potentials.
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INTRODUCTION

The problem of periodic solutions for differentejuations has been the subject of many investigmtiResearchers
have used various techniques such as fixed podatryh critical point theory, coincidence degreeotiyedynamical
system theory etc. a series of existing resultpéiodic solutions have been obtained in theditee. We refer to
[2,3,4,5,7,8,9, 10, 11, 12, 13], [2] and [E8hsider the case with r@&) 0. When f(t,x)= 0 for (t,x)e R, as in
(1.1) and (1.2).

In this paper, we consider the second-order diffiggeequation with variable potentials given by
LY (t) = —=(PY")'(t) = r()P(OIY' (1) + q(&) + y(t) = f(t,y(©)). te(0, ) (1.1)

With periodic boundary conditions.

Y@)=Y(t+ w),Y' () =Y'(t + w),te(0,0) (1.2)
Wherew > 0 is the period and we assume the following;

(H;) = P, q,re(R) with P(t),q(t) > 0 and r(t) = 0 for all t € (0, 0);

(Hy)) =P(t) =P(t+w), q(t) =q(t + w), r(t) = r(t+ w) forall t e (0, 0);

(H3) = f;(0,00).(0,00) = (0, 0) is continuous with f(t,z) = f(t + w, 2).

Equation (1.1) equivalent becomes the second dirdear self adjoint differential equation.
LU(t) =A[P(AU(t—1)+q(u(t) =0 (1.3)

Equation (1.3) may arise from various fields sustelectrical circuit analysis, matrix theory, cahtheory etc.
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Our aim in this paper is to use critical point theto establish the existence of nontrivial T. Bdit solutions of
(1.3) into the existence of critical points of sofaections called variational framework of (1.3)eWhall prove the
main results with Legget-Williams fixed point tot&lslish the existence of at least one positive fielde solution

for (1.1) and (1.2).

Recall some basic notations and known results fooitical point theory. Let H be a real Hilbert spa& €

C'(H,R) which means that K is continuous Frechet-difféedaié function defined on H. K is said to satishet
Palais-small condition if and any sequedgge}CH for which {k(x,)} is bounded andk’'(x,)} > 0asn — o

possesses a convergent subsequence in H. the ifaldvemma’s were taken from [9] and will be useifulthe
proofs of non trivial T-Period of periodic soluti® of (1.1).

LEMMA 1.1 (Mountain Pass Lemma)
Let H be a real Hilbert Space and assume khatC’'(H, R) satisfies the Palais-smale condition and the falg
condition holds;

(K1), There exist constangs> 0 and a > 0 such that K(x)a, for all xe B,. whereB, = {x € H:||x||11 < P}.

(K2) (Ko) <0 and there exists, & B, such that k(x,) < 0.

Then C =infhel sups € [O,l]K(h(s))is a positive critical value of K,wherel = {h € ¢([0,1], H), h(0) =
0,h(1) = x}-

LEMMA 1.2 (Saddle Point Theorem)

Let H be a real Hilbert SpacH,= H, @ H,, where H; # {0} and is finite dimentional. Suppose tha€ c'(H, R),
satisfies the Palais-Smale condition and the fahgviholds.

(K3), there exist constants p > 0 such that ||BpnH, < d;
(Ky), there ise € Bp N H; and a constant w > o such that kle + H, > w.

Then K possesses a critical value ® andC = inf,er maxyeppnn, K(h(w)).

WhereT = {h € C(B, n Hy,H),|h|B, N H, = id}.

2. VARIATIONAL FRAMEWORK FOR EQUATION (1.3)

Let S be the vector space of all real sequencebeoform,U = {U(t)}t e R,t € Z = (....,U(t),U(-t),U(—t +
1), ... LU(=1),U(0),U(1),....U(¢), ...), namely,

S={U={U®)}U(t)| € R, t € Z} . Define the subset E of SBEs= {U = {U(t)} € S|U({t +T) = U(t),Vt € Z}.
Clearly, E is isomorphic to RE can be equipped with the inner product.

(UVE=YT_ U@)V(t) forany U, V.€ E (2.1)
by which the norm ||d|can be induced by;

IIE= V(U VE = (T, U? (£))z, U €E 2.2)

It is clear that E with the inner product (2.1)idinite dimentional Hilbert Space and is lineanymeomorphic to
R'. Now define the function | on E as;

1) =TI, [FP(0 AU - 1)? = 2q(OU? + F(LU®)],U € E, (2.3)

Where F(t > 0) = foxf(t, s)ds. Thenl € ¢'(E,R), and for anyU € E, by using U(0) = U(T),U(I) = U(T +
1) and (2.3), we can compute the Frechet derivatye a
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ol = —APOAU(E ~ D] - q(OU + f(tu®), t € ZU,T).

Thus, U is a critical point of | on E (i.¢!(U) = 0) if and only if, A[P()AU(t — 1)] + q(®)U®) + f(t, u(t)),

vt € Z(I,T). Which is precisely normalized equation (1.1) thiaes equation (1.3). Therefore, we have reduced
the existence of the non trivial T. Periodic salatiof (1.1) to the existence of a critical pointladn E. in other
words, the function | is just the variational framerk of (1.3). Where P and Q are written in mafdsm as;

P(1)+P(2)  —P(2) 0 0 —P(1)
/ -P(2) PQ)+P@3) -P(3) 0 0 \
P= 0 -P(3)  P(3)+P®4) 0 0 I
0 0 0 P(T — 1)+ P(T) —P(T) /
—P(1) 0 0 —P(T) P(T)+ P(1)
—q(1) 0 0 0 0
{ 0 —q(2) 0 0 0 \
Q= 0 0 -q(3) 0 0
0 0 0 —q(T-1) 0
0 0 0 0 —q(T)

3. TO PROVE THE NONTRIVIAL T-PERIOD SOLUTIONS OF EQ UATION (1.1)
We assume the following;

(Ay) for each & Zlimy,,., 222 = 0. (3.1)
(A,) There exist constants > 0, a, >0 and § > Z such that fooof(t, s)ds < —a;|x|# + a,, Vx €R.
(3.2)

BY (A2) limjyne 22 = —co

X

LEMMA 3.1: Suppose thgf € C(Z x R) satisfies (A); then | satisfies the Palais-Smale condition.

THEOREM 3.1: Suuppose that f satisfies jfand (4). In addition, assume that the following holds.
P(t) >0 forallt € Z(I,T)

q(t) <0 forallt € Z(1,T) and there exists at least oge Z (I,T) such that g@) < 0. Then there exist at least
two non trivial T-Periodic solution for (1.1).

PROOF:

We will use Lemma (1.1) to prove theorem (3.1). iiéed to verify that all the assumptions of the ntaumnpass
theorem hold. The Palais-Smale condition startethoumt proof in Lemma (3.1) will equally be tool fohis

theorem. Lemma (1.1) assumption can be demonstbgtedatrix theory, which can easily be checked as® is
positive definite and its eigen values are represkby,, 1,, ... ... A with0 < A; <4, < -+ .. < A7 By (A)),

there existp > 0 such that for anyx| < pandt € Z(I,T),F(t,x) < %Alxz. Thus, for anyu € E,||U]| <
p\UI < P, forall t € Z(,T), and I(w) = 3 Aqlull? = 3 Ay |[ul2 = 5 Ayl |2

Takinga = %Alpz > 0, we have |ul|f, = a, and assuming (K is verified, clearly, 1(0) = 0.

For any givernw € E with ||w|| = 1and a constant «> 0, I(x w) = %((P + Q)aw, aw) + ¥t aw(t)) <

La?hr — a, P X1 Jw(D)F + a,T < a?ay - 2D

af + a,T > —ooas x— +oo,

Thus we can easily choose a sufficiently lasgeuch thate>p and forU, = aw € E, I1(U,) < 0. Therefore, by
Lemma (1.1), there exists at least one critical®@él > a > 0. Suppose thdl is a critical point corresponding to C,
i.e.I(U) =C and I'(U) = 0. By a similar argument to the omitted proof of leen(B.1).

14
Scholars Research Library



Ebiendele E. Pet al Arch. Appl. Sci. Res,, 2014, 6 (1):12-17

1 2-8 B
1(U) <5 1 Amax |WUIPE = ai T2 ||UI| + a,T, VU € E (3.3)

Thus one is bounded from above. We denote hy e supremum ofl(U), U € E}. Since (3.2) implies that
lim| |40 [ (U) = =00, -1 and +1 attains its maximum at some pbint e. I(U) = C,,q. Clearly,U # 0, then the
proof of theorem (3.1) is completed.

REMARKS (3.1)
The periodic solutions we have obtained in the ahmwof are non trivial, but they may be non zesostant. If we
want to obtain non constant periodic solutions,only need to exclude non zero constant solutions.

COROLLARY (3.1)
Suppose that f satisfies {4 (A2), (P) and (q) ang(t,x) = 0 for allt € Z(I,T), if and only if x = 0. Then there
exist at least two non constant T-Periodic solifor (1.1).

4. PROOF OF THE MAIN RESULT — EXISTENCE OF A PERIODIC SOLUTION
We begin this section with necessary definitiond atate a Lemma without proof and use extensiobegfett-
Williams to establish the existence of solutioriLjland (1.2).

Lemma (4.1)

Assume (H) and (H). Let h; R - [0,] be continuous and let z, y be the solutions 08)(1ThenY(t) =
1

exp{f,” 0()aj}(1+exp [y’ 5()))

p| |Y|| fort € (0,w),where the constant p is given by

DEFINITION (4.1)

A mapp is said to be non negative continuous concavetifumon a cone P of a real Banach Space, [E i —
[0, 0] is continuous ang@ (tx + (1 —t)y = tB(x) + (1 —t)B(y) for all x, ye P and € (0, 1). Similarly, we say
the mapx ia a negative non continuous convex function @ore P of a real Banach space k:if? — (0, ) is
continuous and(tx + (1 —t)y) < tv(x) + (1 — t)x(y), forallx,y € Pandt € (o, 1).

Let @ andy be non negative continuous function on P &rathd Q be non negative continuous convex functioons
P. Then, for non negative real numbers a, b, cdamee define the following sets:

A=A(a,B,a,d)={y€eP:a<a(y)and B(y) <d} 4.1)
B :=B(a,6,B,a,b,d) ={y € A:6(y) < b} (4.2)
C=Cla B acd)={y€eAC=yp»)} (4.3)

We say that A is a functional wedge with concavecfional boundary defined by the concave functianaind a
convex functional boundary defined by the convexcfional 5. We say that an operatérA — P is invariant with
respect to the concave functional boundgfyy < a(Ty)for allY € A, and that T is invariant with respect to the
convex functional boundaryf (Ty) < d for all Y € A. Note that A is a convex set. The following theorisman
extension of [11].

THEOREM (4.1) [EXTENSION OF LEGGETT-WILLIAMS]

Suppose P is a cone in a real Banach spaacednd iy are non negative continuous concave functions on P
6 and B are non negative continuous convex function oaré, for non negative real numbers a, b, ¢ andedseis

A, B and C are as defined in (4.1), (4.2) and (4e3pectively. Furthermore, suppose that A is anted set of P,
thatT: A — P is completely continuous and that the following ditions hold;

(A) {red:C<y@)and §(y) <b}#0 and {Y € P:a(y) <aand d < B(y)} = 0;
(B) a(Ty) = a forally € B;

(C) a(Ty) = a forally € Awith 6(Ty) > b;

(D) B(Ty) <d forally € (C;and

(E) B(Ty) <d forally € Awithy(Ty) < c.

Then T has a fixed poift* € A.
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The following cone structure will have helped tagplpthis theorem to equations (1.1) and (1.2). Eetlenote
Banach space (0, ) with the supremum norm

[IY]| = suplY ()], t € |0, w| (4.4)

And for p given in Lemma (4.1), define the con€ E via;
P={Y eE:Y() = p|lIYI,Y({t+w)=Y(t) and Y'(t + w) = Y'(t) forallt € (0,)} (4.5)

Then the fixed points of the integral operdtoP — E given by (4.6)

Ty() = [ G(t,5)f (5, y(s))ds (4.6)

Are solutions of (1.1) and (1.2). Using (4.5), feé non negative continuous concave functjo® — (0, ) be
defined by

U(y) = ming(oq) Y (), Y EP (4.7)

forY eP, 0<y(y) <||Y| by Lemma (4.1). Furthermore, let the linear equrettix, 3: P — (o, ) be defined by
BO) = aly) == [ Y (t)dt (4.8)

And §: P - (0,)be defined by 6(y) = ||Y||, makingd a non negative continuous convex function.

We shall use the Leggett-Williams fixed point tmye the existence of at least one positive solutio(l.1) and
(1.2) in the following theorem.

THEOREM (4.2)

Assume (H) — (Hs) for any d > 0, suppose the following hold:
@ f(ty) =my+bl forY € [p3d,pd], forallt € [0, w];

(b) f(t,y) <m,(ld) + bl forY € [p%d,d/p], for all t € [0, w],

Where forp, g, and g* given in Lemma (4.1), we have taken

2401-%
—=>0 and b, = Pat=n o g (4.9)

m; =

*

Then the operator T has at least one positiveisalit' € A(a, 8, p?,d, d), and thus equation (1.1) and (1.2) has at
least one positive solution.

PROOF:

For any d > 0 ang in Lemma (4.1)/et a = ¢ = p*d, b = pd. By the properties of G(t, s) given in Lemma (4.1),
we haveT:A(a,B,a,d) » P. Arzela-Ascoli theorem shows that T is a completdntinuous operator from the
properties of G and f, and by the definition ®f we have that A is a bounded subset of the coni P.e
Pand B(y) > d,thena(y) = B(y) >d > p?d =a. Therefore,{Y € P:a(y) <aandd < B(y) = ®}. We
define a constant functiotio == (c + b), then a(y,) = y, =5 (a+b) = a and B(y,) = y, = (p*d + pd) <

d since p € (0,1), putting y, € A. Moreover,Y(y,) =¥, > ¢,8(y,) =¥, < b,and thus {Y € A:C <

Y(y) and §(y) < b} # ©.

CONDITION 1:
a(Ty) = a, forallY € B. For anyY € B, thereisat, € (0, w) such that y(t,) = a(y) = a. It follows that for
Y € B,

pd=b=68(@) =|IYl| = aly) =y(t,) =9p») = p|IY|| = pa(y) = pa =p?d, and thereforey(y) = pa =
p3d. Thus, for allY € Bwe have p3d < Y(t) < pd for all t € (0,). Consequently by condition L(TY) =

%fow ftHw G(t,s)f(s,y(s))dsdt =

LI fsy()dsde =2 [ [ f(s,y())dsde = g. [, f(5,7())ds = g. [’ (muy(s) + by)ds =
g.o(ma(y) + b)) = g.o(mya + b)) = a, using a =p?d and (4.9).
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CONDITION 2:
a(Ty) = a forall Y € A with 6§(Ty) > b. LetY € A with6(Ty) > b. Thus Lemma (4.1),Ty(S) =

pb for all S € (o0, w),so that a(Ty) = %fow Ty(S)ds = %fowpbds =pb =a.

COMDITION 3:
B(Ty) <d,forall Y €C. IfY € C,then for allt € (0, ),
We have,

B®»)

csw(y)SY(t)s@sTs

Hence for allt € (0, ), we have p

o |

N

d=c<Y(t) < %, so that by condition 2, we see that,

B(TY) = ifow f:w G(t,5)f(s,Y(s))dsdt < ‘%fow ftwa(s, Y(s))dsdt = %fow fowf(s, Y(s))dsdt =
9" F(S,Y($)ds < g* [ (my(pd) + by)ds = g* w(m,(pd) + by) < g*w(myd + by) = 2d(1 +2p — p?) < d.
Sincep € (0,1),

COMDITION 4:
B(TY)<d, forall Y € A withy(TY) <C.
LetY € A withy(TY) < C. Then using Lemma (4.1), we have;
c

1 1
Ty(S) < % forall S € (0,w), hence B(Ty) = ;fow Ty(S)ds < ;fowgds == pd < d.
Therefore, the hypotheses of theorem (4.1) haven Isegisfied. Thus the operator T has at least asitipe
solution,
Y*€ A(a, B,a,d) = A(a, B, p?d, d).

This completes the proof.
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