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ABSTRACT

Using Rayleigh-Schrodinger perturbation theory, degive analytic expressions for the ground
state energy of the antiferromagnetic Axial Nexamdst Neighbour Ising (ANNNI) model in two
mutually orthogonal external magnetic fields. Exgsiens for various physical quantities are
also derived. The calculations are carried outte fourth order in the transverse field.
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INTRODUCTION

Hamiltonian spin models incorporating two externaltually orthogonal magnetic fields are
being increasingly studied these days [1, 2, 3]. &ample of such a model is the one
dimensional spinl/2 antiferromagnetic Axial Next Nearest Neighbdaoteraction (ANNNI)
model in the presence of a perpendicular exterrzgnatic fieldh, and a longitudinal fieldh,,

described by the Hamiltonian

H=Y§S,+i XSS, ~hYs -hYs
SH,+H, -
where
H, =Y §Su+iY 'S, ) (1)
and | | |

H,=-hYs" 2)

Here j is the next nearest neighbour exchange intergc&prare the usual spin-1/2 operators
and the fieldsh, and h, are measured in units where the splitting factmt Bohr magneton are
unity.
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The model described by the Hamiltoni&h cannot be solved exactly, as is almost always the
case with such models. It is therefore often newgs$o resort to approximate solution

techniques, perturbation being a convenient anduusshoice. The (sub)HamiltoniarH,,
describing the ANNNI model in a longitudinal fielsldiagonal in both the tote, basis as well
as in the eigenbases of the orthogonal subspactse dfanslation operator [4][. Thus it is
convenient to treaH, = —hXZSX as a perturbation on Hz for, = <The ground state dfl, is

antiferromagnetic in the region bounded By+h, <1, the non-degenerate ferromagnetic state
in the region bounded by the axis and the linen, = j +1, the four-fold degenerate antiphase
states in the region bounded Big, +1=2) and the | axis, and the three-fold degenerate!

in the region bounded by the three lin@h, +1=2j, 2j+h, <1 and h, =1+ j. All this
information is contained in figure 1.

N=oco

20 —

. i i e R L

16 —

A
Yor

1.2 —

-ﬁq —
TTLTTLTTLT Tl
0 — sp=2r=-_L (1+;+2k;)
o4 —
5 20
0.0 T T T T T T T T T ]
0.0 0.2 0.4 __,F 0.a 0.e 1.0

Figure 1: Ground state ener gy diagram of the longitudinal ANNNI model, H,

In this paper we will assume, without any loss ehgrality, that the number of spirié is a
multiple of 12. Periodic boundary condition is also assumed, lst S =S and
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In section 2 we will investigate the effect bf on the longitudinal ANNNI model in the region

2] +h, <1. In section 3 we apply the perturbation treatmerhe ferromagnetic ground state. In
section 4, similar investigations will be made fibre antiphase ground states, while the
perturbation effects on thet | states will be examined in section 5

2 Theantiferromagnetic ground state
We will denote the two-fold degenerate antiferromet@ states oH, in the region2j +h, <1

by the totalS, direct product statquF*> and‘ AF~), where
[AF*) =[1)0+)0[1)0]s)-[1)0[4)0]1)afs)

Sltirretit) ©
and
[AF7) =[r)ajrafaft)-[yo]nol)o)) @
=[irireatin)
The degenerate antiferromagnetic ground state giigrg
EQ, =EY =-%(1-)). ()

In order to facilitate the calculation of physiagliantities like the order parameter and the
associated susceptibility, we introduce a field> 0 and write the unperturbed Hamiltoniddh,
(1) as

N/2

H, = SIS+ 1D S8 -h Y S 0D (S5 -Sh). ©

This way, it will then be possible to compute tbad range antiferromagnetic order (staggered
magnetization)o,. and the susceptibilityy,- from

2 0E, (@)
= — ARV /) 7
MOON D da |, (7)
and
2 GZEAF (a)
= AFMN"J 8
AF N aaz o ( )

We note that the introduction af breaks the translational invariance symmetry dnds t
removes the ground state degeneracy, now giving

Ef;i =-N(1-j +2a)/4, 9)
with EfF)+ being the non-degenerate ground state energydialpto the state

45°)=

HHH---H>.
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2.1 Energy corrections

2.1.1 First order correction

Since the degeneracy remainsaat 0 we will apply degenerate perturbation theory toaob
the corrections to the ground state energy.

The operatorH, = —ziN:lSX, acting on an eigenstate of totd) generates a linear combination

of N states with thd th spin flipped in the th member, with each spin flip costirgl in the
total S, quantum number of theth member state. This means that a necessary @dut n

sufficient) condition for the matrix element ¢f, between any two states) and |b) not to
vanish is that the absolute value of the t@alquantum number dfa) and that ofb) must be
1. Thatis

(b|H,|a) =0 (10)
whenevds, () - S,(|b))| # 1, (11)

where|a) and|b) are eigenstates of tot&,. In particular
(alH,|a) =0 (12)

for any|a) an eigenstate o8,.
To first order inh,, the perturbation matrix/ , of H, is

(AFT|H,|AFT)  (AF"|H|AF)
V= : (13)
<AF"HX AF*> <AF“HX AF‘>

and since botﬁAF+> and‘AF‘> are totalS, =0 states, it follows from (10) that is a null
matrix, so that there is no first order correctiorthe antiferromagnetic ground state energy.

2.1.2 Second order correction
The 2x2 perturbation matrix for the second order correttio the ground state energy has
elements

gl i)
v :;<AF+ H!Qfgg AF’>’
g
andv,, = ; <AF_ ‘Hé|£\£;>_<r2|(gx AF_> : (14)

Each of the summations ovar above extends over the totg) direct-product basis stat¢m>

4
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of the Hamiltonian, but excluding the sta#é\EF*> and‘ AF‘>.

By inspection of the definitions (4), it is cledrat any state whosél, matrix element with
‘AF‘> does not vanish must have a vanishing matrix ehmveh ‘AF*> and vice versa.

That is
(AF~|H,|m) = owhenevefAF " |H,[m) # 0
and AF* |H,|m) = OwhenevefAF~|H,[m) # 0 (15)

for any|m) in the Hilbert space oH .
The conditions in (15) imply that the off-diagomaatrix elementd/,, andV,, are zero.

In V,,, there are onlyN non-vanishing matrix eIemen(x;n|HX
such that

AF*> contributed by statelsn)

myo{eerere ) rrrrrs e frereernf, (16)

N/2 of these states (correspondingNé2 — cdhfigurations with 3 consecutive spins down and
1 configuration with first two spins up and the laptn up, with totalSz(| m>) =-1) contribute

NR -

— (17)
2 41-j+a+h,

to V,, while N/2 states (corresponding thi/2— dtates with 3 consecutive spins up &nd
configuration with first two spins down and the tlaspin down, with totaISZ(| m>):+1)
contribute

N

SR 18
2 41-j+a-h, (18)

The diagonal element;; therefore evaluates to

2
v=-Nf 1, 1 ) (19)
8 (1-j+a+h, 1-j+a-h,

Similarly, we have
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2
\@=—Nm .1 + .1 : (20)
8 \1-j-a+h, 1-j-a-h,

In the limit a - 0, V,, and V,, give the second order corrections to the antifeegnetic
ground state energy to be

E@ =-E® :_Nhf 1 + 1

AR AR 8 (1-j+h, 1-j-h,

__NR (1-)) (21)
4 (1-))°-h2’

We see that, to second order in perturbation, #gederacy in the ground state energy is not
lifted by the application of an external magneted h,. This is probably a manifestation of the

translational invariance which exists far  =0ranslation invariance is a symmetry of our
general Hamiltonian, even in the presence of aareat transverse magnetic field. One should
therefore expect the two-fold degeneracy of thdeambmagnetic states to remain to any order in
perturbation. This is in fact known to be the cas¢he thermodynamic limit, at least for the
transverse Ising modelj(=0=h,) for h, < 0.5 [3].

As expected, the second order correction to thargtstate energy (equation (21)) is negative
sincel-j >0 (becaus€j+h, <1) and (1-j)*—h? =(1-j-h,)(1-j+h, )is clearly a positive
quantity in the region 2j—-h, <1 for which the perturbation is carried out
(2j+h,<1=1-j> j+h,=1-j>=zh, since j,h, >0).

From (5) and (21) we have that the antiferromagngtound state energy to second ordehjn
is given by

N(@1-j) h?
Ep =-— 1+ b : 22
" 4 ( (1-)*-h 22
So that the antiferromagnetic ground state eneeggpin is
(1-)) he
Eppg = 1+ P : 23
e U a-i-n )

From (9) and (19) we have

_N(1-j+2a) N 1-j+a
4 4 (1-j+a)?-n*
where for the sake of definiteness we have tafl@ﬁ*> = ‘T Lrltl - l> as the definition of

E,.. (@)= (24)

the antiferromagnetic ground state. Results{ mr> can be obtained from those ﬂofRF*> by
replacinga with —a .
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The staggered magnetization is then obtained as

20
pAF+ - _Na(EA'ﬂ— (0)10:0
1 h? 2(1- )
=1+— X 1- . 25
2(1—J)Z—h§( (1-j)*-h? (&)
We observe that
-y _ 1] 1 |
= 26
@-w =i | 29

(1-j)
SO thatpAF+ <lwhich is consistent with the requirement thatstegygered magnetization attain

its maximum value of unity in zero external transefield.

The magnetic susceptibility is obtained from equa{i8) as
___ h@a-i 4(1-j)*
=- - : 27
o (@-p*-h)* @-p)*-K @0

We notice that the bracketed term is always negativhich means thap(AF+ Is always a

positive quantity. This is consistent with the inality proved by Ferrell [5, 6] for a Hamiltonian
with a linear dependence on a parameteor the ground state energy, namely that

0°E
<0. 28
N (28)

2.1.3 Third order correction
The third order correction to the ground state gneontains terms of the form

AF+>

oy (A,
AR k,m (EAF+ _Em)(EAF+ _Ek)

2 (E..-E)* 29

m

2

HX

~(AF

First we note that the second term in the abovewamshes because of (12). Also, wHea m
in the above sum, the first sum conta{ngH,|m) which is zero for the same reason. If we now

consider terms in the first sum such tkat m we have the following situations

<AF+ HX| m> 0= SZ(| m>) = ilanc(k|HX AF*> 0= SZ(| k>) =+1. (30)
If the above set of equations hold, then we have
S,(|m)) - S,(k)) =0or2 (31)
7
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For the first sum in equation (29) not to vanisk, must have, for everyn andk :

(m|H,|k) # 0. (32)
This is possible only if (11)
S,(m)-s,(k)} =1 (33)
which contradicts equation (31).
We therefore have that
ESF)+ =0. (34)

In fact, it is clear there can be no odd-order gbuations to the energy corrections due to the
following reason. The lead sum mth order perturbation has a productrmfmatrix elements in
the numerator for any combination of the summaifiwices. If m is odd, then if the first
(m-1)/2 matrix elements, as well as the lg§st—  12Atrix elements are non-vanishing, then

the remaining matrix element (in tif;+  1)#dsition) has the fornir|H,|s) such that

m-1 (35)

S,(r)=+S,(s) ==

This matrix elementr |H,|s) will therefore be zero by virtue of (2.1.1).

The remaining terms in the expression for timeh order correction to the energy will be
proportional to odd order correction terms and kewdl vanish on account of this present
arguement.

2.1.4 Fourth order correction
The fourth order correction to the antiferromagnenergy is given by

oy A B 0
AR (EDL -EO)ED, —EP)ED. -E)
o s (AR HLK)(kH.|AFT) (36)
AF* - (E(AOF)+ _ EIEO))Z

If {ja,>,r =1.2,.., N} be the set of states with non-vanishing matrixnelet with‘ AF*>, that is,

such that
<AF+

H,la)#0, (37)

then the expression fdj's/(:‘F)+ simplifies to

> (AF"[H.Ja )a H, AF+>2<@IHXIJ><J'IHXIas>
+ 0 0 0 0 0 0
S B -EDNED BT EDL-EP
2
(AF*|H |a,)
-E?, (€7 ~E0y (38)
8

Scholar Research Library



Kunle Adegokeet Arch. Phy. Res., 2010, 1 (4):1-31

A Maple procedure was written to evaluate the atsmras. The first sum evaluates to

5 (AF"JH {2 )(a,H, AF*>z<aleli><Jlelas> _
(EQ, —EO)E?, -EO) 4 EO _EO -
rs AE* a N ag J AET J
Nh! 1 2 . N/4-1 . N/4-3/2 N 2
32 (-1+j-a-h)*|-1+2j-2a -1+j-a -1+j-h—-a -2+j-2a-2h,

+Nhf 1 2 N N/4-1 N N/4-3/2 . 2
32 (-1+j-a+h)? |-1+2j-2a -1+j-a -1+j+h -a -2+j-2a+2h,

L NK 1 . 1
16 |(-1+j-a+h)’(-2+j-2a+2h) (-1+j-a-h)’(-2+|-2a-2h)

N N(N -6)h! 1 N 1
128 (-1+j-a+h)® (-1+j-a-h)’
4 —
T et , 2 | (39)
16 (-1+j-a-h)(-1+j-a+h) |-1+j-a -1+2)j-2a

while the second sum vyields

o AF )
ARt - (Ef,3+ _Er(o))z

‘2

_ N’ 1 1 1 1
- . 2+ . 2 . + . " (40)
64 ((-1+j-a+h)” (-1+j-a-h)" \(-1+j-a+h) (-1+j-a-h)

Substituting (39) and (40) for the sums in equaf&8), and noting that the terms proportional to

N? cancel out, we have

e - Ni 1 { 2 1 312 2 }

= + + —
AFY 32 (-1+j-a-h)® |-1+2j-2a 1-j+a 1l-j+h+a 2-j+2a+2h,

S NR 1 2 L1 82 2
32 (-1+j-a+h)? |-1+2j-2a 1-j+a 1l-j-h+a 2-j+2a-2h

_NH 1 12
16 (-1+j-a-h)(-1+j-a+h) |-1+j-a -1+2j-2a

+Nhf 1 N 1
16 |(-1+j-a+h)?(=2+j-2a+2h) (-1+j-a-h)*(-2+j-2a-2h)

Scholar Research Library



Kunle Adegokeet Arch. Phy. Res., 2010, 1 (4):1-31

_ 3Nk 1 N 1 1)
64 [(-1+j-a+h)® (-1+j-a-h)*}

Substituting a =0 in (41) and dividing byN, we find the fourth order correction to the
antiferromagnetic ground state energy per spireto b

£ _h 1 2 , 1., 32 2
AFT32(-1+j-h)* |-1+2] 1-j 1-j+h, 2-j+2h
h! 1 2 1 3/2 2
32(-1+j+h)*|-1+2j 1-j 1-j-h, 2-j-2h

_hy 1 1 2
16 (-1+j—h)(-1+j+h,) (-1+] -1+2]

+&4 L + L
16 [ (-1+]+h)’(-2+j+2h) (-1+]-h)*(-2+]-2h)

4
_3n; CHN S (42)
64 ((-1+j+h)" (-1+j-h)

From equations (9), (19) and (42), we have
Eper @ 1) = - J4+2a) _%3{1— j +1a'+hz 1) +1a-hz}

L 1 { A - 2 }
32(-1+j-a-h)? |-1+2j-2a 1-j+a 1-j+h+a 2-j+2a+2h,
e 1 { 2 1 .32 2 }
32(-1+j-a+h)* |-1+2j-2a 1-j+a 1-j-h+a 2-j+2a-2h

_hy 1 1 2
16 (-1+ j-a-h)(-1+j-a+h) |-1+j-a -1+2j-2a

hy 1 1
+X +
16{(—1+ [—a+h)i(-2+|-2a+2h)  (-1+]-a-h)(-2+] —2a—2hz)}
4
—3hX{ 1 1 } (43)

+
64 |(-1+j-a+h)® (-1+j-a-h)’
The antiferromagnetic ground state energy per, $pithe fourth order irh, is therefore given
1-1

by
& +(O!j'hx'hz):_ - 1 + 1
A 1-j+h, 1-j-h,

4
h? 1 { 2 312 2 }
+

P o3

X + + -
32(-1+j-h)*|-1+2j 1-j 1-j+h, 2-j+2h,

h? 1 2 1 3/2 2
+ X + + -
32(-1+j+h)?

~1+2j 1-j 1-j-h, 2-j-2h,

10
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_hy 1 1 2
16 (-1+j—h)(-1+j+h,) (-1+] -1+2]

+&4 L + L
16 [ (-1+]j+h,)’(-2+j+2h) (-1+]-h)*(-2+]-2h)

_3hf{ t 1 3}. (44)
64 ((-1+j+h)” (-1+j-h)

The simplest case of equation (44) is the transvising modelh, =0= |, and the ground state
energy per spin is

h? h?
- X 45
) (45)

The exact ground state energy per spin of thewess Ising model is [7, 8, 9]

E:—(1+2hX)E V8hX
N 2 (1+2h)
1 h n
== _X L omd). 46
7 4 16 (h) (46)
Thus we see that the perturbation expansion (4&sgihe correct energy per spin for the Ising

model in a transverse field to the fourth ordehjn

3 Theferromagnetic ground state

The ground state of the longitudinal ANNNI model) (¥ the non-degenerate all-spin up
ferromagnetic state in the region bounded by ltheaxis and the lineh, =1+ | in the h, -]
plane. That is, the unperturbed ground state is

[F)=[tt11e1t), (47)
with corresponding energy
EO = N(1+j) Nh, . (48)
F 4 2

We note that the ground state is ferromagnetic daotyfinite h,, this is in contrast to the
situation in a ferromagnetic model. The inversigmsetry which makes the all-spin up and all-
spin down state to be degenerate is removed bgrédsence of a finite longitudinal fieldh,, so
that the ground state is the all-spin up nondegaeestate in the indicated region. The
longitudinal field h, however does not break the translational invagasgmmetry of the
Hamiltonian. We see also that the presench,ahakes the Hamiltonian to already be in a form

where can apply the Feynman technique directlyatoutate the various physical quantities. We
recall

H=H,+H,, (49)

11
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where

H, = 8§, +2.8'S,-h)§ (50)
and

H, =-h>s". (51)

3.1 Energy corrections
The first order correctioE® to the ferromagnetic ground state energy is

EY =(F|H,|F). (52)
This quantity vanishes, on account of equation.(12)

3.1.1 Second order correction
The second order correction to the ground stateggne given by

£e = 3 {FIALIXIHF)

j E(O) —_ E]-(O)
(FIH,[1)
Z‘ E(O) E(O‘) ) (53)

i

The only non-vanishing matrix elements in the abswa are those contributed by tihe-fold
degenerateN -1 spins up,1 spin down stateﬂ,m}, any linear combination of which is also a

first excited state of the ferromagnetic groundestdhe degenerate unperturbed energ},m}f
is
N : N
@ = Z-1|1+j)-| —-1]h, 54

[ e R N IR R RS R IR R R ES! ) (55)
We therefore have from equation (48) and (54) tthraienergy shift is
EQ-EQ =1+ -h,. (56)

with

The second order correction to the ferromagnebarmyl state energy is therefore

2
E® = A" 1 . (57)
4 (1+j-h)

We remark that perturbation expansions with termslar to that in equation (57) have been
obtained in a quantum modelling of the two-dimenalcANNNI model by Barber and Duxbury
[10], for a ferromagnetic model. The said paper natsconcerned with the longitudinal ANNNI
model and in fact the longitudinal field was intoogéd merely as an artifice to enable the
calculation of the ferromagnetic order parametet thie associated susceptibility.

With argument similar to that in the previous sactiwe find that the third order correction to
the ferromagnetic ground state energy vanishes.

12
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Next we will compute the fourth-order correctiorthe ferromagnetic ground state energy.

3.1.2 Fourth order correction
The fourth-order correction to the ground stategnés given by
£ = s AFIRJN AR KK, )
"R EP-EM)EP -EP)EP -EY)
FIH, [k)XKH,|F
_eoy (P E«[) ><E£O)) F) 58)

k

If {|a7>,r =1,2,.., N} (equivalent to the sdﬁm)} of equation (55)) be the set of states with non-
vanishing matrix element wit}F) , that is, such that
(FH,|a,) %0, (59)

then the expression fd® simplifies to

_v| (FlH.Ja)a[H|F) <(aH.]i)iH{a)
E® = Z((E(O) _ E(O))(E(O) —EO) ZJ: EO —gO
ag j

rs

FlH,Ja )
E® ‘
Z(E(O) E(O)) (60)
A Maple procedure computes” as
£ = N_rﬁ 2 N .2 +(N_—5)/2
16(1+ j—h)*(1+2j-2h, 2+j-2h, 1+j-h,
N Nh! 1 N 1 N h!N(N -5)
8(1+j—h)?\ (1+2]-2h) 2+-2h,) 32(1+j-h,)’
214
_N—.hX3_ (61)
16(1+ j-h,)
We observe that the terms proportionaNé cancel out and we are left with
4 —
IO e . S — (62)
16(1+ j-h)°((A+j-h,) (2+j-2h,) (1+2j-2h,)

The expression (62) is always positive. This is éasee when we recall that the ground state of
the longitudinal ANNNI model is ferromagnetic féx > j +1. Substitution ofh, = j+1+9J in
(62) (0 a positive quantity) gives
£ = Nh{ (51 +_65+6j5+452]
1602 d(j +20)(1+20)
which is clearly a positive quantity.

(63)

Combining equations (48), (57) and (62), we theeeftave that to fourth-order in the transverse
field h,, the ferromagnetic ground state energy of the ANMIddel in mixed field is given by

13
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_ Nh! -5 4 4
EF_ + +
16(1+j-h)*((1+j-h) (2+j-2h) (1+2j-2h)
NRE | N(@+j-2h)

YA -n,) 4 (54

3.2 Physical quantities

Having obtained the approximate ferromagnetic gdostate energy, we are now in a position to
calculate various quantities of physical interés¢, ferromagnetic order parameter, the magnetic
susceptibility and the specific heat. The formhad Hamiltonian makes it easy to compute these
guantities using Feynman's theorem [11]

3.2.1 Ferromagnetic order parameter
Using Feynman's theorem

oH oE
FI—I|F)= F, 65
Flon 170 =50, (65)
the ferromagnetic order parameter of the ANNNI elod mixed fields is given by
Ne =2<) § >IN
= —2/NOE_/oh,
= —20&./0h,
21 h? 1 h? -5 N 4 N 4
2(1+j-h)*> 4@A+j-h)*(1+j-h, 2+j-2h, 1+2j-2h,
4 —
JLoh fo -5 . 8 , 8 (66)
8(1+j-h)"((A+j-h)” (2+j-2h)" (1+2j-2h)
The susceptibility is given by
Xe =0%e. 10N
__h 3 h -5 . 4 . 4
(1+j-h)* 4(1+j-h)"\1+j-h, 2+j-2h, 1+2j-2h,
21 h? -5 N 8 N 8
2(1+j-h)’((1+j-h)* (2+j-2h)* (1+2j-2h)*
4 —
Aoh s, 16, 16 ) 67)
4(1+j-h)"\(A+j-h)" (2+j-2h)" (1+2j-2h,)

3.2.2 Specific Heat
The specific heat of the ferromagnetic ground staN&INI model in mixed fields is given by

__1dE
N dh?
2 —
=1 3 h f 5, 4, 4 ) 68)
21+j-h, 4@+ j-h)\1+j-h, 2+j-2h, 1+2j-2h,
14
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4 Theantiphase ground state
The ground state of the longitudinal ANNNI model) (b the region bounded by the line

2h,+1=2j and the j axis is the four-fold degenerate antiphase statéh, two spins up

followed by two spins down. Classified by transdatl invariance, the states occur in the
subspacesk =0, k=N/4, k=N/2 and k=3N/4 of the eigenstates ofl (one linear
combination in each subspace). In order to simulhaée antiphase states correctly, we will
assume thalN is a multiple of4. The degenerate energy is

.
EQ =) (69)

belonging to each of thé states
[<2>) =|1tistriy),

|<2>) =|tiit it
[<2>) =[1ittetirt),
and<2>) =[111i it (70)

In order to facilitate the calculation of the orgi@rameter and the susceptibility, we introduce in
the unperturbed Hamiltonian (1), a fiel@,> 0, and write the unperturbed Hamiltonian as

H z = ZSZSZH + ZSZSiZ - hz ZSZ

~ B (Shs *+ Shs ~Shs— Si). (71)
k=1

This way, the antiphase order parameley,,, and the associated susceptibility,,. can be
calculated from
_ _3 aE<2>
N 08 |,
2
andy = _20 E<22>
N of

(72)

B=0

We note that the fielg3 breaks the translational invariance symmetry eflfamiltonianH . A
finite £ also lifts the degeneracy of the antiphase statdsyugh not completel;{.<2>>b and
|<2>>d are not sensitive to the fiel@p, and so they remain degenerate, with the energy
remaining the same as in (69), while2>) and|<2>)_now have energies given by

EO =—N(J+2’B)an(E(0) __N(J_Z,B)l (73)

<2>a 4 <2>c 4

We see that<2>>a is the non-degenerate ground state of the unpeduHamiltonian (1) in
the region between the axis and the lin@h, +1=2]j, for a finite 5.
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4.1 Energy corrections

4.1.1 First order correction

In zero field 8, the ground state of Hamiltonian (71) is four-falegenerate, so that thix4
perturbation matrix/ , has elements

Vv, =(<2>|H,

ij

<2>)). (74)
where the state|s< 2>S> are given in (70). All sixteen elements\¢fvanish on account of (12),

so that as in the previous cases, the first orderection to the ground state energy of the
antiphase states is zero.

4.1.2 Second order correction

The perturbation matrix for the second order caioecto the antiphase ground state energy has
elements

_ (2> [H fm)(miH,

Vi = ; EQ -EO

<2>

<2>j>

(75)

It is clear that it is impossible to have a stkm; in the 2" dimensional Hilbert space of the
Hamiltonian of N spins simultaneously having nonzero matrix elemeith two different
members of the four-fold degenereﬁt‘ez >> states. In other words, the matik is diagonal,
with

<2>H,/m ?
Vi :ZK EO |_ E|‘°)>‘ ' (76)

<2>i

which are just the Rayleigh-Schrodinger expressfonsecond-order corrections to the energy
in non-degenerate perturbation theory.

Puttingi =a,b,c,d in turns in (76), we have

2
gq =-NN t L, 1 (77)
a 8 \j+h+f j-h+p

2
g =N 1o, 1, 1, 1 lge (78)
> 8 \j+h+g j-h-f j-h+p j+h-f ‘
and
2
Eﬁ>=—Nm 1 (79)
c 8 \j+h,-8 j-h-p

Equations (77), (78) and (79) contain an intergssammary of the properties of the general
Hamiltonian H of the ANNNI model in mixed fields. We note thdthaugh the introduction of
the field S breaks the translational invariance symmetry ef lfamiltonian, it does leave the

reflection symmetry intact. In fact every eigenstaf the reflection operatoR is also an
N/4

eigenstate of the operatoﬁZ(Sik_3+Sjk_2 —Sjk_l—Sjk) with eigenvalueO . That is, for any
i=1
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|¢) an eigenstate of totd,, we have

(IBZ(SZk—:% + Szzlk—z - SZk—l - S:k ))w/ > =0, (80)

i=1

whenever

Rjy)=+y). (81)
In other words, eigenstates Rf do not sense the presence of the figld

Each of the two states (and hence their linear cwoatibn)

[<2>) =|tiit - tiit)and<2>) =ittt (82)
is an eigenstate d® . This explains their degeneracy at zeroth-ordetugeation and why the
second order energy corrections in these statehargame. SincgH,R] =0, it is expected that
their degeneracy will not be lifted, to any order perturbation. It is also noteworthy that
|<2>) and|<2>) are related by the inversion symmetry, which haaves not a symmetry

of H for finite h,.
As for

d

|<2>>a:‘TTll ~-~Mu>anq<2>>0:‘um SRR (83)

the translational invariance which connects the staies is removed by the field and they
cease to be degenerate. We observe also that thestates are related by the inversion
symmetry, but this is not a symmetry of the Harmnilém, except ah, =0 (corresponding to the
ANNNI model in a transverse field). Results for ostate can be obtained from the other by
replacing 8 in one with— £ in the other.

Putting 8 =0in (77), (78) and (79) we see that the degeneratlye antiphase states remain to
second order in perturbation ).

4.1.3 Fourth order correction

For simplictity we will drop the subscripgd on |<2>a> henceforth and simply refer to the
antiphase ground state l|)5z2>>. The fourth-order correction to the ground statergy of the
antiphase ground state is given by

@ =52 {S22HI R[] <2>)
T (ES -EO)NER -EP)ES -E?)

_go v {s2>[H.[k)KK[H,|<2>)
<2> - (E(O) _EIEO))Z .

<2>

(84)

If {| a,>},r =1,2,--,N denotes the set of states with non-vanishing mateéments witH <2 >>,
then the above expression simplifies to
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<2>|H |@><ar|H |<2>>

Lo s (<2 a)(a . |<25) < a M)
2 ;( (E(O) _E(O))(E(O) _EéZ)) Z E© —E]-(O)

<2> <2> <2>

( <2>|H a) \
Eizz)> (0) _ (0)) (85)
<2>
A Maple procedure evaluates the above sum to
@ _ _Nh 1 1 L2 1 . NA-1 NA4-3/2
T 32 (j+p+h)’\2j+2B+1+2h, j+28 2j+2B-1 j+f+h, [+

_ Nh{ 1 1 L2 . 1 NA-1 NA4-3/2
32 (j+p-h)’\2j+28+1=-2h, [+2B 2j+2B-1 j+f-h, |+

_Nh 1 . 1
32 ((j+B+nh)’(2j+2B8+1+2h) (j+B-h)*(2j+2B8+1-2h)

_ NK 1 2 (N2-3), 4 )
32 (j+B+h)(j+B-h)\2j+26-1 j+B [+2p

_Nhf(ﬁ_lj 1,1
32\ 4 (i+B+h)> (j+p-h)

+Nh<( . = 2+ . : 2]( . L +— ! j (86)
64\ (j+B+h)” (j+B-h)" \(j+B+h) (j+B-h)

If we denote the terms proportional &’ in the above equation b%z, then

. :_Nzhf 1 _ N?hng 1 1
N 64 (j+B+h)°> 128 (j+B+h,)* j+p
_N?ng 1 _N?h; 1 1
64 (j+B-h)® 128 (j+B-h)* j+p
_N?ng 1
64 (j+B+h)(j+B-h)(j+p)
N *h? 1 +N2h;‘ 1 1
64 (j+B+h)° 64 (j+B+h)* (j+B-h)
N *h? 1 1 +N2h;‘ 1
64 (j+B-h)’ (j+B+h) 64 (j+B-h)’

We therefore have that the fourth order correctiotine antiphase ground state is given by

@ _ N 1 1 L2 . 1 132
¥ 32 (j+B+h)?\2j+28+1+2h,  [+28 2j+2B-1 j+f+h, [+
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N1 1 P S S
32 (j+p-h)’\2j+28+1=2h, [+2B 2j+2B-1 j+B-h, [+

_NR 1 N 1
32 ((j+B+nh)’(2j+2B8+1+2h) (j+B-h)*(2j+2B8+1-2h)

NR 1 2 3 4

32 (j+B+h)(j+B-h)(2]+2B-1 [j+B |j+2p
+Nfﬁ(_ 1, 1 3) @)
32\ (j+B+h)” (i+B-h)

The antiphase ground state energy per spin, tahifarder in the transverse fielg is therefore
given by (equations (73), (77) and (88))

[ 1 L2 . 1 1 3
32(j+pB+h)*\2j+2B+1+2h, j+20 2j+20-1 j+pB+h, j+p

€<2> (IB = O) = {_

_h 1 1 L2 1 1 32
32(j+B-h)\2j+2B+1-2h, [j+2B 2j+2B-1 j+p-h, j+p

h 1 1
_3_2((1' +[+h,)* (2] +28+1+2h,) ' (i+B-h) (2] +2,3+1-2hz)j

_hi 1 2 3 . 4
2(j+p+N)(i+B-)\2j+28-1 j+B j+28

h;‘( 1 1 j
+ X +
32((j+B+h) (j+B-h)

_h_f(_ 1, 1 ]_(j+2,8)}_ | (89)
8\(i+B+h) (i+f-h) 4

/=0
That is

. _ h 1 S S
# 32(j+h)%(2j+1+2h, 2j 2j-1 j+h,

R 1 1.1 1
32(j-h)?(2j+1-2n, 2] 2j-1 j-h

_h 1 . 1
32((j+h)*(2j+1+2h,) (j-h,)*2j+1-2h,)

_h¢ 1 ( 2 +1J
32(j+h)(j-h)\2]-1 |

Sty
32\ (j+h)’ (j-h)’
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—“—5( 1, 1 j—l. (90)
8\(jth) (j-h)) 4

In particular the ground state energy per spinhefdntiphase state for the ANNNI model in a
transverse fieldlf, =0), to the fourth order i, is

H 2 12
o =_l_h_x._ 1 L_l h4- (91)
Zunnne 4 4) 16j°( 4j2-1 )

£ is always negative sincg>0.5. The ground state energy per spin for the tramssver

<2>{ANNNI

ANNNI model is plotted as a function &, in figure 2 for three different values gf.

1a

0z

23 Ay
[}
=

=
=
I=

02

DD T I T I T I T

oo 0.2 0.4 hx 0.6 08 10

Figure 2: Transversefield antiphase ANNNI ground state energy per spin asa function of hX , tothefourth
order, for selected valuesof | .

4.2 Physical quantities of the antiphase ground state
4.2.1 Order parameter
The antiphase long range order parameter is olotdinm

. & z z z z a£<2>
P = lim 2 Z(S4k—3 +Su Syt S4k) IN = -2——==
N-e \ka 0B |4

_ hf( 1 1 j
=1--= +
4((j+h)* (i-h)’

1 h S S S
8(j+h)*\2j+1+2h, 2j 2j-1 j+h

=

[

1w R S S
8(j-h)’\2j+1-2h, 2j 2j-1 j-h

z
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1 n 2 L5, 2 1
16 (j+h,)?( (2j+1+2h)* 2j* (2j-1)* (j+h,)?

1 K 2 L5, 2 1
16 (j+h,)?\ (2j +1-2h,)* 2j? (21 ) -
n 1

8 (J+h)(2]+l+2h) (]+h) (2]+1+2h)

h! 1
8 (j—hz)3(21'+1—2hz) (J—h)(21+1 2hz)2j

_hi( 2 +1J( 1
16(2j-1 jA(j+h)*(j=h,) (J+h)(1

h! 1 4 5 3h4 1
- - . ;T2 |t (92)
16 (j+h)(j-h)\ (2] -1)" ] (i+h)* ( h)
The antiphase order parameter for the transverdgMNnodel is given by
1 1-16j2 +112j*
=1- h? — :, 93
p<2>tANNNI 2]2 X ( 8(4j2_1)2j4 hx ( )

P2 i is plotted in figure 3 as a function &f for three different values of . We observe

that both the second order and the fourth ordetribations to the order parameter are negative,
so that the antiphase order parameter drops irevahe vanishing of the order parameter is well
depicted in figure 3. The application of an extérinansverse magnetic fielth, is therefore
expected to destroy the 2> antiphase spin ordering which exists jat 0.5 for h, =0. This

expectation turns out to be correct as finite sealing shows that the model undergoes a
transition to paramagnetic phase.

1.0

0E —

0& —

Pe22; iz
1

04 —

0.0
o0 0.2 F 04 0.6 0.8

Figure 3: Transversefield antiphase ANNNI order parameter asa function of hx,tothefourth order, for
selected valuesof | .
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4.2.2 Susceptibility
The magnetic susceptiblity of the antiphase grastate under the influence of a weak transverse

external magnetic field is

N = =2 6 0°€y
<2> aﬂz o

I 2
2\ (j+h)® (j-h)®
3 1 1 1 1 1
+4 = +—+ -
{8(j+hz)4(21+1+2h2 2] 2j-1 j+hz]

L3 1 1 1,1 1
8(j—-h)*l2j+1-2h, 2] 21 j—h
1

1
+

4(j+h)’

1 1

(e s 3
+ +
(2j+1+2h)*  2j* (2] 1)
( 2 5 1 j
+= +
4(j-h)*((2j+1-2h)* 2j? (21 1)° (J—hz)2

(J+h)

1 1 2 13
+= +—=+
16(j+h)*((2j+1+2h)* j° (2] 1)
1 1 2 13
+— +=+
16(]—hz)z((ZJ'+1—2hz)3 i@ 1) 23

(] +hz)3

3 1
+§((i +h)@j 1 2h) (j-h) @] +1—2hz)j

1 L
2\ (j+h,)'(2j +1+2h,)"

: L j
(i-hF (2] +1-2h,?

2 1
2\ (j+h,)*(2j +1+2h,)°

: L j
(i-hy@j+1-20

WL 1 ( 1
8(j+h)(i-h) j+h,

1 j( 4 5}
+ +—=
j-h, \@2j-1* j?

1 1 ( 1 1 j( 2 1]
+— R N N + R N +_.
8(j+h)(i-h)\(i+h)* (i-h)*N2j-1 |
1 1 ( 2 1}
+= +=
8(j+h)’(i-h)*(2j-1 |j

.\ 1 ( 1,13
(j+h)(ji-h) (2j-1)° 8j°

[l )
-2 + ht .
4 (j+h)> (i-h)°

(94)

A particular case of equation (94) is the ANNNI rebth a transverse fieldh{ =0), for which

the magnetic susceptiblity is
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1,1 (-384j* +88j%+832j°-7)
X<2>tANNNI_'_3 x+2-5 4-2_13 .
j j (4j°-1)
Again we note thap(<2>tANNNI Is a positive quantity forj > 0.5. The transverse ANNNI model

(95)

susceptiblity, to fourth order ih, is plotted in figure 4.

20

16 —

Il

LE55 N
1

0g —

04 —

0o

0o 0s

Figure 4: Transverse antiphase ANNNI magnetic eotdiolity as a function oh,, to the fourth
order, for selected values 9gf.

4.2.3 Specific heat
The specific heat of the ANNNI model in the presend a longitudinal fieldh, and a weak

transverse fieldh, , to second order ih, is given by

- _ 02£<2> (18 = O)
b oh?

1( 1 1 3 1 1 1 1 1
== + += +—+— -
4(j+hZ j—hzj 8{ (j+hz)2(2j+1+2hZ 2] 2j-1 j+hj

A

c

1 1 1 1 1
+ —
(j-h)?(2j+1-2h, 2j 2j-1 j-h,

1 1
+((j Fh)A@j+1+2h) | (1 -h) (@] +1—2hz)j

—( . L -+ — L 3j+ . 1. ( _2 +1] }hf. (96)
(j+h)” (i-h)") (J+h)(j-h)(2j-1 |

In particular, we have for the ANNNI model in artsaerse field, (corresponding tp =0 here)

23
Scholar Research Library



Kunle Adegokeet Arch. Phy. Res., 2010, 1 (4):1-31

: 2
Cor :i_+§_i3(4‘_2 +1th2 . 97)
tANNNI 2] 4 J 4J _1

We observe that equation (97) always gives a pesitalue for the specific heat of the model.
We also remark that contrary to the appearancejaéteon (97), there are no singularities. The
condition 2h, +1<2j reduces toj > 0.5 for the unperturbed Hamiltonian (ANNNI model), so
that there must be next nearest neighbour interaxtand hencg cannot be zero. Aj = 0,5
the ground state of the ANNNI model is highly degraxte [10], so that formula (97) is then not
valid. The specific heat as a functiontgfis plotted in figure 5 for three different valuafs | .

<2 P g aennr

Z

I:II:I T I T I T I T I T

00 02 04 h, 08 0.8 10

Figure 5: Transverse antiphase ANNNI specific heat asa function of hx,tothefourth order, for selected
valuesof | .

5 The 111 ground state
The ground state of the longitudinal ANNNI modelsdébed by the Hamiltonian (1) in the

region bounded by the lingg =1, 2j+1=2h, and 2j +1=h, is the three-fold degenerate two
spins up followed by one spin down state, eigeastaf total S, with eigenvalueS, = N/6.
Classified by translational invariance, these statecur in thek =0, k=N/3 and k =2N /3
subspaces of the space of eigenstates of thedtmmsbperatofT . Here we assume th&t is a

multiple of 3.
Explicitly, the degenerate states are

5
a)y=—(t1L -t L) H[ it et L) H LT e L)), (98)
2= )+ )+ )
having translational invariance quantum numbker , =€ the zero momentum state (eigenstate
of T of eigenvalueexp(0) =).

|b>:i0TTl ~-~TTl>+eXF(—2?HI)‘T L1 ety T>+exq—4?ﬂ)‘lTT "'lTT>j, (99)

NE
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the 2713 -momentum state witk = N /@igenstate off of eigenvalueexp(27i/3)).
and
1 271 A7t
|C>‘ﬁ(‘”l ---TTl>+eXK?)‘TH ---TH>+eX[X?)‘HT ---HT>), (100)

the 4n/3 -momentum state witk =2N /@igenstate ofl of eigenvalueexp(4n i/3).

The degenerate energy is
_r _g _~N@+j+2h)
Ba =By =By = T : (101)
As in the previous section, it is useful to incllWleymmetry breaking, order parameter term to
the Hamiltonian (1) by including a field >@&nd write the unperturbed Hamiltonian as follows:

H, =Y S+ 1Y Sk~ Y S~ (She, + Shu— i), (102)

k=1

y breaks the translational invariance symmetry Hf, so that the state#TTi ~-~TH>,
‘TH ---TH> and ‘1 URIRRER T> are no longer degenerate and can therefore ncelobg
classified as eigenstates ®f. The state(Mi e 11 l> (which we shall henceforth denote by

‘TH>, with a similar notation for the remaining twotss) is now the non-degenerate ground

state ofH,.

The long range order parameter,, and the magnetic susceptibiliy ., can now be calculated
by computing

E.. (j,h,h
p, =- 2Tl )] (103
N ay y=0
and
2 0°E,,, (j,h,h,,))
X, =-———u =2, (104)
N %

whereE,  (y =0)is the ground state energy Bf=H,+H, and ¢

Tl

energy per spin. To zeroth order then,
EQ (i,h,=0,h,,)) =

(y =0)the ground state

Tl

-N(+j+2h) Ny
12 2

(105)
and

-N@+j+2h) Ny _ o

12 6 e

EY (j.0,h,,)) =

Tt

(,0,h,.5). (106)

5.1 Energy corrections
5.1.1 First order correction to the ground state energy

Since the three state#zsu>, ‘TH> and‘HT> are degenerate fgr = @ve can considey to

be small and attempt to apply degenerate pertarbatieory to determine the first order
corrections to the energies. TBg p8rturbation matriy/ @ is given by
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L)
i)
)

it

(t14]H,
(tir|H,
(1i1|H,

t1e) (114]H,

t1e) (111]H,
)

tre) (br1|H,

TH> <TH‘HX

tit) (111]H,
<

TH> HT‘HX

V(1) -

(207)
But the three stateb 1 l>, ‘TH> and ‘1 1 T> are all eigenstates of tot&, with the same
eigenvalue ofS, = N/6 for a chain ofN spins, it follows from equation (12) thet® is a null
matrix, so that there are no first order contribos to the energies.

5.1.2 Second order correction to the ground state ener gy
Treating y as a small parameter and the stz#te$1>,‘1 l TH i1 T>} as nearly degenerate, the

3x3 second order perturbation math%? has elements of the form

@ _ 5 ([HJK)(k[H, | §)
Vi =3 EO_EO (108)

k i k
where

Liofrr o))

and k runs over the2" basis states of the Hilbert space excludiijgand | j). Clearly, for
i # ], any statdk) whose H, matrix element withi) must have a vanishing matrix element
with |j> Therefore the matriv® is diagonal, with the diagonal elements giving sieeond
order corrections to the ground state energiest iSha

2
VO =E® = zw (109)
11 Tl - ET(CT))l _ EIEO)
2
V2<22> —E® = zw (110)
Tt - ET(?)T —_ EIEO)
and
2
o o Kl T ‘Hx|k>‘
V33 - EHT - zw (111)
k L k

We note that there are on non-vanishing contributions in each of the abavas, so that the
evaluation of each sum is almost trivial. We have

: NRZ (2 1
E@ (j,h,h,py)=- + 112
TTi(J X Zy) 12 (hz+y 1+j—hz+yj ( )

and

26
Scholar Research Library



Kunle Adegokeet Arch. Phy. Res., 2010, 1 (4):1-31

2
E® (j,hx,hz,y)=—'\'rL L, 41 ey, (113)
Tt 12 hz+y 1+J_hz_y hz_y it

We see here that the degeneracy in the sﬁathes> and ‘1 1 1> is not lifted to second order in
h

"

5.1.3 Fourth order correction
The fourth order correction to the energy of ﬁlne1> state is given by

(110 [HL L] G GHL RYKIH 110

E® =
TR E - EPE -EPET )
o (114 |HJK)K[H,|111) (114)
Tl (E(O) _E(O))Z '
k 111 k

If we Iet{ja7>,r =12;-, N} be the set of states such that
(t14]H,Ja)=0, (115)

that is if
[a)O{ |tre e tturtt)htti e ttiti)|tri e ttiity),

e tertrr it iter et (116)
then equation (114) simplifies to

Y =Y (114]HJa)aH, TH>Z<aTlelJ‘><J'|Hxlas>
TS (EY -EO)ET -EY) & EY -EV
(t11|H o)
x| &
-E® . (117)
(e ey

Maple procedures evaluate the above suns asds,, respectively, where
16s _ 2N 1 1 N 1 N 1 N 2N/3-3
h! 3 (-h,-y)?|-1-2h,-2y -1-2y -j-2y -2h,-2y
N/3-2 N 1 N N/3(N/3-1)
-1-j-2y -j-2h,-2y] (-1-j+h,-))*(-2-2j+2h,-2y)
N 1 2 2 2N/3-4 N/3-1
+— + + +
3(-1-j+h-p?|-1-2y =-j-2y -1-j-2y -2-2j+2h,-2y
1 { 2N/I3 | 2N/3(2N/3-3) 2NI3 }

+
(_hz _y)2 -1- 2hz -2y _th -2y -] _2hz -2y
, 1 { ANIS | AN/3(N/3-2) | ANI3 } (118)
(-h,-nNE1-j+h-p (-1-2y -1-j-2y -j-2%
and
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16?:_2N 1 2+ﬁ 1 : 2N 1 N1  (119)
h, 3 (h,-y)° 3(-1-j+h,-y)°" A\ 3 -h,-y 3-1-j+h -y

Upon adding equations (118) and (119) and notiegcdmcellation of the terms proportional to
N?, we obtain

@ hy 1 1 3 1
&y, (hhoh,y) == 21 + —=
12(h,+y)" | (A+2h,+2y) 2h,+2y j+2h,+2y

h! 1 1 2
+ X + + x
24((h,+y)* (A+j-h+p)* (h+p)A+j-h+y)
4
1 _ 1 N .2 h 1 (120)
1+2y j+2y 1+ j+2y 48(1+j—h +p)*

so that the fourth order correction to the groutadesenergy per spin of thet | state is given
by

h! 1 3 1
T(‘:)l(J’ X! Z’ ) _2 - + T
12h; | 1+2h, 2h, |j+2h,

h! |1 1 2 1. 2
+ X+ + -1-—+—
24|h; (+j-h)" h(1+]j-h,) o1+

4
o ; (121)
T a8+ -n )

Combining equations (105), (112) and (120), we have

* 1 1 3 1
gyyl(J’ X1 Z’y)_ + o
12 (h, + y)? (1+2hz+2y) 2h,+2y j+2h,+2y

el 1 N 2 §
24 (h,+y)? @+j-h+p)?* (h+Y)A+j-h,+y)

{_ 1 1, 2 }+&4 1
1+2y j+2y 1+j+2y| 48(1+j-h +p)®
_h_f{ 2, 1 }_(1+j+2hz)_
12 |h,+y 1+j-h+y 12

N

(122)

I\J_IY

The ground state energy of the longitudinal ANNNbdul in the region bounded by the lines
2j+h, =1, h, =1 and 2h, +1=2j, to fourth order inh_ is therefore given by

h4 1 3 1
gyyl(J’ X1 Z’O) 2 + o
12 h; 1+ 2h, 2h, j+2h,

pA

Jhe 1 2 1 2
— 1 - + : “1-—+—
" 24 h2 (1+j-h)* h(1+j-h) j o1+

4 2 :
h 1 _h £+ .1 _(1+j+2h) . (123)
48(1+J—h) 12\ h, 1+]j-h, 12
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As noted earlier, ther 1| state as an eigenstate of the unperturbed Hanailton, has the
unique property that it can be ground state onfyfifute h, and finite j (in fact j >0.5). If

j =0, the ground state is ferromagnetic fgr>1 and antiferromagnetic otherwise.Hf =0 the
ground state is the four-fold degenerate antiplzasdiguration for j > 0.5and the two-fold
degenerate configuration if< 0.®ne implication of this remark is that there aespecial
cases of equation (123).

Typical behaviour ofe  (j,h,h, ,0)as a function ofh, is plotted in figures 6a and 6b.
Comparing the two curves, it appears that (j,h,,h, isOnore sensitive to changes jnthan
in h,.

0.5

04 —

2 8TT¢D_3

02

Dl T I T I T I T I T
oo 02 04 h, 0& 0g 1.0

@ ¢, (j,h,h,,0)as a function oh, for h,=0.5

0s :
| T
A
04 — R
. ”,f’ /
R
03 —
SERLT o AT .-—‘H____,/
02 | =0.3,hz=.75 — _——
7=0.5 hz=.875 ceiecn.
1 1=0.5.hz=5 —
01 ; | ; | ; : : ; ,
H o2 04 i, 06 08 10

(b) €., (j,h,h,,0) as a function oh, for j=0.5

Figure 6: £ (j,h,,h,,0) asafunction of h
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5.2 Physical quantities
5.2.1 Longrangeorder parameter
From equations (103), (104) and (122) we obtainlting range order parametgr of the

t 11 state to fourth order in the perturbatibpas
. h(2 1 h! 1 3 1
pTH =1-— _2+ : 2 + 3| + o
6\h; (1+j-h,)°) 3h;{ 1+2h, 2h, j+2h,

K 2 3. 2 1 n
6h? | (1+2h,)* 2h} (j+2h)*) 8(1+]j-h)"

-2hn* i+ 1 + 1 + 1 _1_1+i
Wb (@+j-h)® hi(d+j-h) h(1+j-h)° jo1+]

4
N, o, 2 gt 2 (124)
6\h (1+j-h)° h@A+j-h) i (1+j)

A typical behaviour of the long range order paranet depicted in figure 7. To fourth order in

perturbation, we see that the | order of the ANNNI model in mixed fields vanishhat the
model indeed does not possess long range ordéeithermodynamic limit was confirmed by
finite size scaling results which showed that thadel indeed undergoes a phase transition from

the 11| state to a paramagnetic phase.

1.0

0g —

08 —

P Il
04 —|

g ' | ' | ' |
00 02 h, 04 06

Figure 7: p . asafunction of h, tofourth order in h,

Tl

CONCLUSION

Using Rayleigh-Schrédinger perturbation theory, lveere derived analytic expressions for the
ground state energy of the ANNNI model in two peutieular fields, as a function of the nearest

neighbour exchange interaction j and the two figidand h, . The transverse fieltl, was taken
as the perturbation parameter, and the calculatias done to the fourth order ihx. The

motivation was the fact that many important phyismgaantities, such as magnetization, of a
statistical system, can be determined once thengrstate energy is known.
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