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ABSTRACT
By the capacity of Kirchhoff’s rectangular plate differentials, buckling and deflection are solved together and since 
the deflection-factor is readily recognizable, buckling results are partially confirmed. In this way, unsafe buckling 
results are identified for correction. Deflection factors are needed to eliminate many un-useful harmonic buckling-
solutions; a plate with a larger surface area will have a larger factor. The all-round simply-supported plate at an 
aspect ratio of “s*=3.5” is found to be only 30-percent as stiff as that of “s*=1.0”; the two plates cannot have the 
same critical load. This new capacity-analysis is able to eliminate the discontinuities prevalent in strength versus 
aspect-ratio correlations, emanating from joining isolated harmonic waves as final. A large number of plates in mixed 
boundary conditions have been successfully treated by the new method. 

Keywords: Kirchhoff’s plate, Differentials capacity, Rectangular plates, Harmonic-deflections, buckling, Mohr’s 
loading-curvature, Unsafe solutions.

INTRODUCTION

Studies in rectangular plates are readily justified by their ever extensive deployment in the assembly of vessels-ships, 
aircraft, cans, cylinders. George Gerard and Herbert Becker [1] supplied studies in early analytical and supporting 
works in buckling in a Handbook on Structural Stability. Supporting experiments in the subject are averagely available, 
Richard Pride and George Heimeri [2]; Nishino et al., Lehigh Preserve [3]; A striking aspect of the latter is that the 
theoretical prediction of strength exceeded the experiment by 30 to 50 percent in simply supported plates. A very 
extensive coverage, and perhaps still the most comprehensive, in plate buckling is found in “Buckling of laminated 
composite plates and shell panels by Arthur W. Leissa, Ohio State University for Wright-Patterson Air Force Base-
Flight Dynamics Laboratories” [4]. A recent “MIT-2013” lecture, OpenCourseWare, [5] updates the state of the art 
in the subject. The trigonometric deflection representation has always been associated with buckling and vibration in 
exact Eigen-value solutions, but the Rayleigh-Ritz principle also embraces polynomial representations for approximate 
results. Iwuoha [6] demonstrated good use of polynomials for the complicated plate with three sides clamped and the 
fourth simply supported; polynomials cannot generally yield exact solutions and are less attractive in use; there is 
consuming interest in modes since a compressed bar bends in a pure Sine-wave, after Euler.

The aforementioned studies have produced extensive data on buckling but the problem of discontinuities in mode-
coupling harmonic solutions has lingered to date. Figure 1, is a typical nature of the 2-way-supported plate; a choice 
has to be made between the clashing of two meeting waves (as is seen in buckling monographs) or the weaving of the 
waves as accepted in vibration studies in Dunkerly’s resultants. Buckling and vibration are the same!

Existing problems in the use of harmonic buckling monographs, which now hold sway, include (i) rampant 
discontinuities in load versus aspect-ratio correlations; this disrupts design. (ii) The strength, about the meeting point, 
of any two solutions-waves (point-i in Figure 1, lacks interpretation; a plate weakens as its surface-area increases but 
some existing graphs imply strengthening. A case in point, among many others, is the all-round simply supported 
plate, [4]; the critical load between mode numbers, Figure 1, is yet not known. A design aspect-ratio of, say 1.7, has no 
direct correct-solution. This is a challenge to safety. Can a harmonic, say “m=3=a”, independently yield a safe result? 
The existing result of “Ncr=4π2” is untenable compared with the case of “m=1=a” which has the same result; it implies 
the plate is not weakening with larger surface-area; attaching deflection-factors to solutions will cure this problem.
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From history, deflection has always been employed to relate buckling and modes; the “Southwell-plot is an ingenious 
method of extracting first-mode bar-buckling; the method has been extended to plates. The 6th international specialty 
conference on cold-formed steel structures, [7], gives good coverage.

The present investigation, stressing the capacity of Kirchhoff ’s plate differentials, aims to detect unsafe results, relying 
on relative displacements and forces between consecutive points of the aspect-ratio curve; the latter is modeled to 
provide incremental analysis of the plate. The deflection-factors employed emanate from the capacity of the Kirchhoff ’s 
plate differentials which form the basis of all analyses, analytical or finite-elements; these are easily recognizable. A 
fast approximate spot-solution is also necessary for additional checks; Mohr’s loading curvature-circles are devised to 
meet this need. 

                         

Figure 1: Discontinuous buckling curve (two waves meeting at “i”; no existing solution about “i”)

NOMENCLATURE

•	 a, b: Rectangular plate dimensions in X,Y

•	 s*: Aspect ratio, 

•	 E: Young’s modulus of elasticity

•	 ρ=Dπ2/b2

•	 T: Thickness of plate

•	 D: Flexural rigidity of plate, (isotropic); D =  Et3 / 12(1-µ)2

•	 μ: Poisson’s ratio

•	 W: Deflection symbol; δΔ=small change in deflection

•	 wxx-r; wyy-r; Relative curvature in X-direction; Y-direction

•	 wxx-r /w: Relative-curvature/deflection ratio; must be a scalar for any solution 

•	 XX-SC; YY-CC: Plate simply and clamped on X-X; and clamped-clamped on Y-Y 

•	 rcap: the capacity ratio of axes as, (∂4w/ ∂x4) / (∂4w/ ∂y4)

•	 H = (∂4w/ ∂x4 + 2∂4w/ ∂x2 ∂y2 + ∂4w/ ∂y4) = Hxx
 + Hxy + Hyy

•	 𝒳: Curvature; δ𝒳=small change in curvature

•	 m, n: Wave numbers

•	 σcr; Ncr: Critical stress symbol; critical buckling load symbol

APPLICABLE EQUATIONS

The existing uni-axial buckling equation, Eq. 1, is first stated. The uni-axial analysis equation,

( )4 4 4 2 2 4 4 2 2( ) (/ 2 /  /   )  / /xw x w x y w y N D w x∂ ∂ + ∂ ∂ ∂∂ + ∂ ∂ = ∂ 				              (1)
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4 4 4 2 2 4 4 2 2 2 2/ 2 /  /   { } [   ]/ /x yD w x w x y w y N w x N w y∂ ∂ + ∂ ∂ ∂ + ∂ ∂ = ∂ ∂ + ∂ ∂ 			             (2)

Also the shear loading equation, Eq. 3 is balanced. 

( )4 4 4 2 2 4 4 2/ 2 /  /   ( / )2 /xyw x w x y w y N D w x y∂ ∂ + ∂ ∂ ∂ + ∂ ∂ = ∂ ∂ ∂ 					                (3) 

Under uniformly distributed transverse loading, q, Eq. 4 ensues 
4 4 4 2 2 4 4/ 2 /  /    /w x w x y w y q D∂ ∂ + ∂ ∂ ∂ + ∂ ∂ = 								                  (4) 

Eq. 1-4 are summarized as, 

Hxx + Hxy + Hyy = H = RHS (loading)								                    (5)

“H” is the invariant Capacity (in bending, buckling, vibration) for a given deflection shape function.

Capacity of the Kirchhoff ’s plate differentials, “H” 

By giving finite values of the left-hand differentials, the capacity of a Kirchhoff ’s plate is found; this is achieved through 
valid deflection functions, “W”. 

( )
( )

( )4 44 // 4
 

1 xxH
∂ ∂ ∂ ∂∂ ∂

= =
∂ ∂

∫∫w w x x yw x
w x y∬

							                (6)

( ) ( )
( )

( )4 44 4 //
1 yyH

∂ ∂ ∂ ∂∂ ∂
= =

∂ ∂
∫∫w w y x yw y

w x y∬
							                (7) 

( ) ( )
( )

( )4 2 24 2 2 2 /2 /
     

1 xyH
∂ ∂ ∂ ∂ ∂∂ ∂ ∂

= =
∂ ∂

∫∫ w w x y x yw x y

w x y∬
					                (8)

( ) ( )
( )

( )2 22 2 //
   

1 xχ
∂ ∂ ∂ ∂∂ ∂

= =
∂ ∂

∫∫w w x x yw x

w x y∬
						       	             (9)

( ) ( )
( )

( )2 22 2 //
1 yχ

∂ ∂ ∂ ∂∂ ∂
= =

∂ ∂
∫∫w w y x yw y

w x y∬
							                  (10)

( ) ( ){ } ( ){ }
2 22

1,2   / 2    / 2 / 2   x y x y xyχ χ χ χ χχ= + ± √ − 
  

+ ; principal curvatures;			            (11a)

Or by reference to the Mohr’s circle, ( )1,2     / 2    x y Rχ χ χ= + ± ; R=Mohr’s circle radius			           (11b)

 The average curvature, ( ) / 2x yχ χ+ , is found significant as an intermediate loading curvature when

“    x yχ χ< ” over the range of “   y xχ χ> ” in uni-axial X-loading. For the bi-axial case, ( )  .biaxial x yχχ χ= +   

These integrals are the outcomes of the criterion of buckling as relative-curvature/deflection resonance. A typical 
buckling resistance integral is,

( ) ( )
( ) ( )

4 4

4 4

/
, /  

1
( )xd xx r xd xcdC w w C R−

∂ ∂
= =

w x
							               (12)

The ratio, “(w,xx-r/w) = (Rxcd)” must always be a scalar or else the function-w is inadmissible. The function-w is chosen 

as to make the ratio, (w,xx-r/w), a scalar. The domain compliant factor at resonance, Cxd4, is what is left to be found. 
Multiply both sides of Eq. 12 and integrate them to find it 
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( ) ( )4 44 4

4  [ ] [
//

 . ] 
1xd xcdC R

∂ ∂ ∂ ∂∂ ∂
= =

∂ ∂
∫∫w w x x yw x

w x y∬
							                 (13) 

Buckling potential limits

Three possibilities are identified relative to X- and Y-axes in emulating the reactive potentials
4 4 4 2 2 4 4 “ / ;2 / ; / ”w x w x y w y∂ ∂ ∂ ∂ ∂ ∂ ∂

(i) x xσ χ
This is first in contention in uni-axial X-compression; this case easily solves Eq. 1.

(ii) y yσ χ
This is out of contention when no load is applied in the Y-axis, whatever the value of “ yχ ”

(iii) x avσ χ
This “average loading-curvature” situation will always happen and also in contention. (i) and (iii) are identified in 
Mohr’s diagram (Figure 2).

Figure 2: Buckling curvature-loading-circles; X-compression (useful for spot-solution)

In effect, two curvature-loading circles ( ),  x avχ χ  are operative and the larger circle gives the required solution “Nx”. 
This process softens the stiff constraint that the wave numbers “m, n”, must be whole.

a. Importance of curvature, /( ”)“ ∂∂2 2
crw x  , in X-compression 

The solution of Eq. 1 is easy when
2 2 2 2( )/   )/(w x w y∂ ≥ ∂∂ ∂ ; and 

2 2( )/x cr w xχχ ∂= = ∂

When
2 2 2 2( )/   )/(w x w y∂ < ∂∂ ∂ , 1“ ”χ may be interpreted as “effective principal loading curvature.”

So, Figure 1, explains Mohr’s loading-curvature, supplying the critical curvatures, exact or near-exact.

Figure 3: (a): Expected buckling stress-aspect ratio curve; (b): Biaxial loading curvature; (c): stressed boundary lengths-ratio 
representing side areas
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b. Alternate critical X-curvature, from deflection 

Relying on the deflection coefficients, ∆1, ∆2 at two consecutive locations, “i” and”i+1”, Figure 3a, the curvature at the 
second location may be found from Eq. 14

( )( ) ( )( )1 1 ,1 2 2 ,2/ /x xA Aχ χ=∆ ∆ 								                 (14)

A2/ A1 = CA, stressed boundary lengths-ratio representing side areas; Figure 3b and 3c.

Aspect ratio, “s*” gap of 25-percent can be tolerated.

This equation is similar to Eq. 1 as “(Force/Area) (curvature)=Constant”=Kirchhoff ’s plate-capacity 

Deflection-factor as part of buckling solution 

From Eq. 1,

( )4 4 4 2 2 4 4 2 2/ 2 /( ) )/ /  *(xD w x w x y w y H N w x q∂ ∂ + ∂ ∂ ∂ + ∂ ∂ ∂∂= = =

For a given plate-function the “LHS” is invariant and once computed can be used for bending, buckling, and vibration; 
q*it is equivalent uniform transverse pressure. That is, ( )( )  1/ shapeH w−∆ = ; the primitive value is sufficient. The 
familiarity of “∆-value” gives confidence the solution is on track.

ILLUSTRATIONS

The “SCCC” plate, Figure 4

Figure 4: “SCCC” plate in details

( ) (  /  /  /  ) 1) (W Sin Kx a Ax a Cos n y bπ= + − ; n=2,4,6…; K=4.5;A=0.977

(i) 0.757 w x y∂ ∂ =∬ ; b=1

(ii) ( ) ( )
4 4

4 4
/

0.675 /
1

K a
∂ ∂ ∂ ∂

=∫∫w w x x y ; (ii)/(i)=365.74/a4.

(iii) ( )4 2 2
2 2 2 2 2

2 /
 0.45 . . / .

1
( )n K a bπ

∂ ∂ ∂ ∂ ∂
=∫∫ w w x y x y

; (iii)/(i)=475.24/a2.

(iv)  ( )4 4
4 4 4( )

/
0.383 . /

1
n bπ

∂ ∂ ∂ ∂
=∫∫w w y x y

; (iv/i)=788.46 

(v) ( ) ( )
2 2

2 2
/

0.675 /
1

K a
∂ ∂ ∂ ∂

=∫∫w w x x y ; (v/i)=18.056/a2. 

(vi)  ( )2 2
2 2 2( )

/
0.383 . /

1
n bπ

∂ ∂ ∂ ∂
=∫∫w w y x y ; (vi/i) ≅20/b2.

a/b=0.95; 𝒳x=(18.06/0.952)=20.0; 𝒳y=20.0; Hxx=448.49; Hxy=526.58; Hyy=788.46; H=1763.53; 𝞓s*=0.95=wc/
H=0.00143; Nx,s*=0.95=H/𝒳=8.93𝜌 (expected to be exact), cf ≅ 8.98 [4]; cf 8.98 (approx.) [4]
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Continuing, “SCCC”; “a/b=1”, by Eq. 14, knowing, “s*cr=0.95” from, 

“χx=χy”: Hxx=365.3; Hxy=475.46; Hyy=788.46; H=1629.0; Δs*=1=wc/H=0.001554; cf 0.00161, Oba et al. [8].

Find “𝒳x,s*=1” from: “𝒳x,s*=0.95” 

by Eq. 14 

(𝒳x,s*=1)=(CA)(Δs*=0.95/Δs*=1)(𝒳x,s*=0.95);

from Figure 3(c),

(CA)=2.5/2.475=1.01; (𝒳x,s*=1)=18.64;

 Nx,s*=1=87.41=8.85𝜌

Continuing, “SCCC-case”; Check competing spot solution (Moh’r circles, Figure 2) 

at “s*=1”: Hxx=365.3; Hxy=475.24; Hyy=788.46; H=1629.0; 𝒳x=18.06; 𝒳y=20; 𝒳cr=𝒳av=19.03. Figure 2(a)

(Nx,s*= 1)=8.67; close to 8.85𝜌 above.

a The “CCCC”; (Δ-method), Eq. 14, for “χcr”; “a/b”=1→1.25→1.5, etc

( )( )1   . /  1   . /W Cos m x a Cos n y bπ π= − − ; m, n =2,4,6…

(i) a/b=1; Hxx=1168.8; Hxy=779.2; 𝒳x=𝒳y=𝒳cr=29.61; Hyy=1168.8; H=3116.8 Ns*=1=31168.8/29.61=10.66𝜌; 
Δc=0.00128;

cf, 0.00126 [9]; the nearness of the primitive-Δ to the final-Δ, (0.00128 to 0.00126), confirms “H” on which “Nx” 
depends. Further, the exactness of the w-function is verified.

Continuing, “CCCC”: {a/b=1.5; H=1746; Δ=0.00229; 𝒳x,s*=1.5=19.0;Nx,s*=1.5=9.3𝜌}.

(ii) “a/b=2”; For comparison a spot-solution by Figure 2a, Mohr’s-circle, for waves, m=n=2 

(𝒳x)=7.4, (𝒳y)=29.608, (𝒳av)=18.5 and Ns*=2,mohr=1436.65/18.5=7.87𝜌; cf, 8.0 [4]

b. The “CCCC” plate is summarized in Table 1 for the “𝞓-method”: 

Table 1: “CCCC” plate and s*; Nx=DKcr. ;“𝒳” from “Δ”; (Δi=1/H)

s* 𝞓s* CA. χ𝞓. H Kcr; [Ref.-4] (δx/δ𝞓)=monitor
1 0.00128 29.608 3116.8 10.66ρ, [10.4] -

1.25 0.00186 1.05 21.72 2146.2 10.01ρ, [9.9] -13,600.0 
1.5 0.00229 1.071 19.00 1746.0 9.3ρ, [9.3] - 6,325.6
1.75 0.00258 1.055 18.06 1547.85 8.68ρ, [8.6] - 3,241.4
2.0 0.002784 1.053 17.88 1436.65 8.14ρ, [8.0] -900.0 
2.25 0.002923 1.051 17.88 1368.3 7.75ρ, [7.7] 0
2.35 0.002967 1.019 17.88 1348.2 7.64ρ 0
2.45 0.003005 1.019 17.88 1331.05 7.54ρ 0
2.5 0.003022 1.009 17.88 1323.39 7.50ρ, [7.5] 0
2.75 0.00309 (0.00302) 1.045 18.24 (17.88) 1292.5 7.32ρ +493.2, δχ/δ∆=min,so,δ∆=0

3 0.00302 1.0526 18.70 (17.88) 1292.5 7.32ρ, [7.35] (“H, χ”, move together)

The “SSSS” plate, (Nx From Δ ) is compiled in Table 2 

The trend is similar to the “CCCC” in Table 1; discontinuities are now overcome.

Table 2: “SSSS” plate and s*; Nx= DKcr.; “𝒳” From “Δ”; (Δ i=1/H)

s* Δs* CA. χΔ. H Kcr; [Ref. 4] (δχ/δΔ)=monitor
1 0.00416 - 6.0875 240.34 4.0ρ [4.0] -
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1.25 0.00619 1.06 4.337 161.6 3.78 [>4] -862
1.5 0.00798 1.06 3.566 125.36 3.56 [>4] -431
1.75 0.00948 1.055 3.174 105.73 3.375 [>4] -265

2 0.0106 1.051 2.977 93.73 3.195 [4] -173
2.25 0.0116 1.051 2.859 86.11 3.05 [>4] -118
2.5 0.01236 1.0048 2.812 80.85 2.91ρ -61.8
2.75 0.013 1.046 2.797 77.02 2.79 ρ -23.4

3 0.0135 1.043 2.797 74.18 2.69 [4] 0

3.25 0.0139 (0.0135) 1.04 2.83 (2.797) 72 2.60ρΔ +82.5,(δ∆/
δΔ=min,so,δΔ=0)

3.5 0.0135       2.6 (“H, χ” move together)

Deflection limit 

In Tables 1 and 2, the factor, δ𝒳/δΔ, changes sign at a critical point, Figure 5, where the deflection limit is reached. The 
minimum buckling load is indicated at that point, whatever the values of “m, n or s*”. The relative weakness of a plate 
is indicated in buckling-vibration-bending analyses [10-12]. The plate analysis starts with beam-strip solutions that 
are already fully known; for simply supported beam, Δ=5/384=0.01302 and the “SSSS” plate ends in this value when 
it is very long or very short; for example, check the Δ=0.0135 in Table 2 in the “SSSS” at s*=3.5; so the size of “Δ” can, 
also, be used to terminate solutions. 

Figure 5: Curvature-displacement-rate (δχ/δΔ) Versus  Displacement (Δ)

Higher modes in buckling; The “SSSS”

Table 2 has already solved the problem relying only on the fundamental wave, m=1, but the question may be posed: what 
is the failure mode for a given aspect ratio? In combining two neighboring symmetrical waves, the tried Dunkerley’s 
approximate resultant is used to study this question.

For example; s*=2.5, try two waves placed between the actions, 

•	 m=1, n=1 ≡ Cs*=2.5, m=1, or C 2.5, 1, and

•	 m=3, n=1 ≡ C 2.5, 3 

In details

•	 C 2.5, 1: Hxx=1.54; Hxy=19.2; Hyy=60.1; H=80.8; 𝒳=0.94; Nxx=82.95=8.4𝜌

•	 C 2. 5, 3: Hxx=374; Hxy=519; Hyy=180.2; H=1073; 𝒳x=26.3; Nxx=4.13

Combining by Dunkerley’s; Ncr=8.4 (4.13)/(8.4+4.13)=2.77, cf, 2.91 in Table 2 above. This is a fail-safe combination. 

So, it can be said that the waves “m=1 and m=3” combine for the aspect ratio, s*=2.5; N 2.5, 1, 3=2.77𝜌 This result 
is very different from the reference value of “4𝜌”, [4,5]. In this way, the complementary question of failure-mode is 
answered after the strength-solution.

CONCLUSION

•	 The “Capacity” of the Kirchhoff ’s plate differentials that produces buckling results also yields known primitive 
deflection   coefficients for design purposes
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•	 Deflection coefficients are found at each aspect ratio, with these an alternate curvature of the new point is also 
found from a relation connecting the former; these curvatures yield critical buckling loads. The only input mode 
needed is the exact fundamental

•	 Every plate has a critical aspect ratio, s*cr, where “𝒳x=𝒳y”. If a buckling solution is found at si* >scr* then “Δi 
≥Δcr” otherwise abandon the solution. With this, many results will fail. Where the solution does not, expectedly, 
rely on deflection, the latter can still be found from references for the purpose of eliminating suspect unsafe cases

•	 The meaning of infinitely long plate is the aspect-ratio when there is no significant change in deflection in the 
incremental analysis as demonstrated in the results for the “CCCC and SSSS”

•	 By this study the “SSSS” plate, at aspect-ratio of “3.5”, is only 30-percent as stiff (≡1/Δ) as that of an aspect ratio of “1.0; the 
two plates cannot, therefore, have the same buckling strength. The corresponding ratio in the “CCCC” is 41-percent the 
presentation.
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